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We introduce an algorithm for treating growth on surfaces which combines important features of continuum
methods(such as the level-set methoand kinetic Monte CarldKMC) simulations. We treat the motion of
adatoms in continuum theory, but attach them to islands one atom at a time. The technique is borrowed from
the dielectric breakdown model. Our method allows us to give a realistic account of fluctuations in island
shape, which is lacking in deterministic continuum treatments and which is an important physical effect. Our
method should be most important for problems close to equilibrium where KMC becomes impractically slow.
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Epitaxial growth on surfaces is of central importance bothunstable The surface of the island will grow fingers due to
for applications and as a very interesting example of statisthe analog of the well-known Mullins-Sekerka instability of
tical processes out of equilibriuiie may idealize the pro- metallurgy? In the context of thin film growth the instability
cess as the introduction of new atofaslatomgonto a crys- was discussed in detail by Bales and ZangWillhe reason
tal surface with fluxF; the adatoms then diffuse, with for unstable growth is easy to see: if a finger on the edge of
diffusion coefficientD, nucleate islands or attach to existing an island starts to grow it will project out onto the terrace
islands. During the early stages of growth, the submonolayeand be fed by more adatoms than the portions behind. The
case, the island size and shape distribution is a matter dinger will grow longer, and be fed by still more flux, etc.
substantial practical and theoretical interest. Edge diffusion and other restructuring processes smooth out

The island growth process is commonly modeled by ki-the fingers, and the final shape depends on the competition
netic Monte Carlo(KMC) or continuum models. In KMC, between unstable growth and smoothing.
internal noise processes are automatically represented within An extreme case of the diffusively unstable growth is rep-
the model and each adatom is represented individuallyesented by the diffusion-limited aggregati®LA) model
Therefore, when there are many adatdig., close to equi- of Witten and SandétIn this model all smoothing processes
librium) such simulations slow down considerably. A deter-are neglected and growth takes place so slowly that one ran-
ministic continuum model which represents the adatoms as dom walking adatom at a time is considered. DLA clusters
continuous fluid does not have this problem, and should bare sprawling fractal objects with many branches which re-
much faster. There has been considerable work in the devesemble some cases of island growtfiThere is a variation
opment of such models for epitaxial growtbee Refs. 2, 3 of the model called the dielectric breakdown mo@2BM)**
and references therginin some cases they have been quitein which random walkers are not used. Instead the Laplace
successful, but sometimes they do not reproduce experimeequation is solved outside the aggregate for a fieldhich
tal results. One reason for such problems is that deterministicepresents the probability density of walkers, and the growth
continuum models neglect important fluctuations. In this pa-algorithm is to add one particle at a time with probability
per we present a method of dealing with some fluctuationproportional todp/dn at the surface. Thus the DLA limit can
without giving up the advantages of a continuum treatmentbe successfully treated by a model in which the adatoms are
We call this approach quasicontinuum Monte Carloa continuum. However, methods such as the level-set
(QCMO). The most important use of this method will be in method cannot go to this limit and thus cannot produce
cases where fluctuations are important, but which would belendritic islands which are seen in experiment.
difficult to treat with KMC because of the presence of alarge The unstable modes for the interface of the islands are
number of adatoms. A computation in a similar spirit haspresent in level-set models, of course. However, the reason
been given in Refs. 4,5. However, the present approach difwhy the DBM limit is not achieved is that the growth process
fers in a number of important ways, which we will discussis represented by deterministically advancing a continuum
below. interface according to the flux of the adatom fluid into the

There are several sources of fluctuations in the growttsurface[see Eq.4) below]. In this algorithm the amplitude
process. The one we consider here is the fact that when adf the perturbations to a smooth interface are not correctly
oms attach to islands they do so one at a time—that is, themepresented: they are given either by the initial conditions or
is shot noisen the island growth process. This is important by computer roundoff errors. In the experiment, however,
because island growth limited by diffusion istrinsically  there is a mechanism for feeding the instability: each adatom
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attaches not as a spread-out advance of the interface, but as
an atom. In the case of DLA the result is that noise in the
shape is present at all scdieand does not average out.

We should mention that there are other fluctuations which
we will not treat. For example, there are density fluctuations
in the adatom fluid which are important in the nucleation of
new islands. There is a methiddo treat this within level-set ] )

FIG. 1. (a) Detaching from g10] surface can be done in one

theory that we could employ. We will not consider such pro- )
tep, and breaks three bondk) Fully detaching from 411] sur-

cesses in this work, but rather look at the shape quctuation% i1 . lso breaks three bond
Of existing islands. ace In two steps also preaks tnree bonds.

The QCMC algorithm goes as follows: we treat the is- . . . -
lands on the surface as crystals containing discrete ato”g;soars_ejgralned. For other possible surface environments it is
which occupy the sites of a lattice. To illustrate the method"°t difficult to tabglate the correct value Df. :
we use a square lattice here. On the other hand, the adatoms/" @ pure contmuum.model, the velocity of .the island
are treated as a continuum whose surface density &snd growth would be determined by mass conservation,
which is governed by

ap

aJn

=a’D|—|, 4
9p=DV2p+F. (1) on @

In practice we solve this equation numerically on a discretevhere a is the lattice constant anf ] denotes the jump
square grid which is commensurate with the crystal. across the island boundary. Note that we can interpretZq.
Equation(1) is solved with periodic boundary conditions in a way which is familiar in studies of crystal growthBy
on the edge of the system. The important physics of growtltombining Eqs(2) and(4) we find an equation for the den-
is incorporated into the boundary condition at the surface ogity at the surface,

the island. We put for the net current of adatoms onto the

edge of the island, p—p=(po—p)+av,, (5)

Da_p =TK.(p—po). ) wherea=1/(a?[k,.+k_]) and;is the equilibrium density
an - near a flat surface. That is, we are including both local equi-
librium and kinetic terms in our boundary condition. The

difference p,—p is a measure of the number of dangling
bonds on the surface, and thus of the curvatupon coarse
n graining. The first term in Eq(5) is related to the familiar
Gibbs-Thompson boundary condition of crystal growth and

Here k_ governs the attachment rate from the top of the
island andk , from the terrace adjacent to the islandklf is
small, we have an Ehrlich-Schwoebel barrier.

In the case of irreversible growth only the first term i
brackets in Eq(2) would be present, and the current is in- . o
ward, leading to island growth. The other tepm accounts the second is a k_lnetlc term. . .
for the detachment of atoms from the island and depends 0{1 In Q.CMC we '.mp'er.”e”t Eq(4) in a way that'ndUd?S
the position on the island boundary. Physically, the boundar)}ucm_at'onS Consider first a case where attachment is the
condition must allow for faster detachment at corners, sa nly important process. Then we solve E(B.and (2) _and
than at flat surfaces. We represent this in a way that allows u ompute the total flux onto the island boundary using Egs.

to compare directly with the bond-counting version of KMC, ) and (_4)' When the total flux exceeds one atom then an
adatom is attached to the boundary at random with the prob-

po=exp(—nE/kgT). 3) ability proportional tov , (exact_ly as in the DBM modelj_n
the case where detachment is also present we consider the

Heren is the number of nearest-neighbor bonds that must bsurface to be partitioned into the part where the net flux is
broken tocompletely detactsee belowthe atom in question inward (growth), and attach atoms with probability density
and add it to the adatom sea. The valueafepends on the >v,, and outward(detachmentand remove island atoms
environment of the detaching atom. We imagine that atomavith probability density<—uv,.
can break bonds by moving along lattice directions. AEo, We have implemented QCMC and compared the results to
is the bond energy and is the temperature. Of course, we a KMC code on the same square lattice using nearest-
can easily incorporate bonding to more distant neighbors. neighbor bonding. We use the hopping rate of an adatom to

The interpretation of the number of bonds, is a bit  set the unit of time, and the lattice constant to be unity. We
delicate. In Fig. 1 we show some examples of what we meahave two independent parameters namélyF, and e
by “complete detachment.” For our square lattice, to detach=E/kgT. We can also add edge diffusion, but here we have
an atom on gd10] surface we need to break three bonds.not done so. The KMC code is written using the method
However, for a[11] surface, in order to detach from the described in Ref. 15 which takes advantage of the fact that
surface, an atom must first break two bonds, and then substhere are only a few independent jump probabilities for a
guently, one more—see Fig. 1. Thus, fofld] surface we bond-counting model. We find that, as expected, at large
setn=3 as well because this corresponds to the product athe KMC code is much faster. However, fer 1.5 and with
the probabilities of the two processes. In effect, we haveabout 300 adatoms in a #Q10 system the speeds are com-
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FIG. 2. QCMC simulations of the average profile of an equilibrium island compared with exact results. LeftisZoand right for
e=5. The heavy line is from the simulation and the dotted line is the exact result. The agreement is excellent.

parable. In situations such as heteroepitisyere are a great We now present some more results to demonstrate the
many independent probabilities to jump and KMC is slower.technique. If growth dominates detachment we should have
The procedure outlined above for choosmghe number DLA-like structures. Whether this occurs dependsToand
of bonds broken to fully detach from the interface, may seenD/F.*® For low temperature, Figs. 3 and 4, we see the tran-
arbitrary. However, we can justify it by its results. To this sition in a very clear way. Figure 5 shows a higiarase. Of
end, we show that QCMC gives the correct shape for arourse, all of these effects can be seen in KMC simulations.
island in equilibrium with adatoms. This shape is knownIn other simulationgnot shown, we have demonstrated that
exactly’ from a mapping to the 2d Ising model. We did edge diffusion also smoothes out dendritic shapes, as ex-
simulations withF=0 starting with a square island, and ran pected. The virtue of our method will be to treat systems near
our code for a long enough time that the system seemed to keguilibrium where the dynamics of fluctuations are of inter-
in equilibrium. In Fig. 2 we show some results superimposedest and where there are many adatoms, as in Fig. 5.
on the exact results for various temperatures. The simulation Another example is the thermal broadening of steps due
results are ensemble averages; that is, we did 20 independentrepeated attachment and detachment of adatoms. The the-
simulations and averaged the density of the island after shifteretical expectatio?'?’is that the thermal widthv of a step
ing the center of mass of each one to be at the origin. Thehould depend on the rate-limiting mechanism for step mo-
dotted line in Fig. 2 is the contour line where the averagedion. In our model, without surface diffusion, this will be the
island density is 1/2. either detachment from the step or diffusion on the terrace.
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FIG. 3. Irreversiblgllow T) growth for D/F =10°. FIG. 4. Irreversible(low T) growth for D/F = 1C?.
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FIG. 5. Growth withD/F=10° ande=2.5.
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FIG. 6. Thermal roughening of a pair of steps, average over 20

simulations. Lower curvédotted is the average adatom densjty
For early times, while the steps are moving, ani$ changing, the

In these casew?>tY2t3 respectively. We show, in Fig. 6, scaling isw?=t23, kinetic roughening. Later there is thermal rough-
w2(t) for a pair of steps one atomic layer high which cross aening with w?=t*? (evaporation-condensation kineticerossing
100% 100 terrace. We see indications of both of the expecte@ver to terrace-diffusion kineticsy><t'*. The straight lines, from

behaviors at late times. The early time behaviokiisetic
roughening®* w?«t?3, This is because we started with no
adatoms, and, initially, the steps were retreating.

A method similar to ours is in Ref. 4. This work is in one

tentially slows its performance.

left to right, have slopes 2/3, 1/2, and 1/3.

whereas Ref. 5 follows these processes in detail, which po-

The QCMC technique should be most useful in situations

dimension and neglects noise. A development of this apwhere there is a large separation of time scales between the
proach is Ref. 5. In this work the surface is divided into twodiffusion of the adatoms and fluctuations of island bound-
regions. Islands and terraces are treated as continuua, buges. Another example for which it might be used are in
transition region is added near island edges where KMC istudies of nucleation of large islands near equilibrium on
run. Again, the treatment is in one dimension, and we casurfaces? or in heteroepitaxy.
only speculate about its perform_ance in the cases we have We acknowledge useful conversations with B. Orr, R.
treated. For the case of a complicated shape such as Fig.cflisch, and J. Evans. P.S. is supported in part by NSF
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