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Quasicontinuum Monte Carlo: A method for surface growth simulations
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We introduce an algorithm for treating growth on surfaces which combines important features of continuum
methods~such as the level-set method! and kinetic Monte Carlo~KMC! simulations. We treat the motion of
adatoms in continuum theory, but attach them to islands one atom at a time. The technique is borrowed from
the dielectric breakdown model. Our method allows us to give a realistic account of fluctuations in island
shape, which is lacking in deterministic continuum treatments and which is an important physical effect. Our
method should be most important for problems close to equilibrium where KMC becomes impractically slow.
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Epitaxial growth on surfaces is of central importance b
for applications and as a very interesting example of sta
tical processes out of equilibrium.1 We may idealize the pro
cess as the introduction of new atoms~adatoms! onto a crys-
tal surface with flux F; the adatoms then diffuse, wit
diffusion coefficientD, nucleate islands or attach to existin
islands. During the early stages of growth, the submonola
case, the island size and shape distribution is a matte
substantial practical and theoretical interest.

The island growth process is commonly modeled by
netic Monte Carlo~KMC! or continuum models. In KMC,
internal noise processes are automatically represented w
the model and each adatom is represented individu
Therefore, when there are many adatoms~e.g., close to equi-
librium! such simulations slow down considerably. A det
ministic continuum model which represents the adatoms
continuous fluid does not have this problem, and should
much faster. There has been considerable work in the de
opment of such models for epitaxial growth~see Refs. 2, 3
and references therein!. In some cases they have been qu
successful, but sometimes they do not reproduce experim
tal results. One reason for such problems is that determin
continuum models neglect important fluctuations. In this
per we present a method of dealing with some fluctuati
without giving up the advantages of a continuum treatme
We call this approach quasicontinuum Monte Ca
~QCMC!. The most important use of this method will be
cases where fluctuations are important, but which would
difficult to treat with KMC because of the presence of a lar
number of adatoms. A computation in a similar spirit h
been given in Refs. 4,5. However, the present approach
fers in a number of important ways, which we will discu
below.

There are several sources of fluctuations in the gro
process. The one we consider here is the fact that when
oms attach to islands they do so one at a time—that is, th
is shot noisein the island growth process. This is importa
because island growth limited by diffusion isintrinsically
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unstable. The surface of the island will grow fingers due
the analog of the well-known Mullins-Sekerka instability
metallurgy.6 In the context of thin film growth the instability
was discussed in detail by Bales and Zangwill.7 The reason
for unstable growth is easy to see: if a finger on the edge
an island starts to grow it will project out onto the terra
and be fed by more adatoms than the portions behind.
finger will grow longer, and be fed by still more flux, etc
Edge diffusion and other restructuring processes smooth
the fingers, and the final shape depends on the compet
between unstable growth and smoothing.

An extreme case of the diffusively unstable growth is re
resented by the diffusion-limited aggregation~DLA ! model
of Witten and Sander.8 In this model all smoothing processe
are neglected and growth takes place so slowly that one
dom walking adatom at a time is considered. DLA cluste
are sprawling fractal objects with many branches which
semble some cases of island growth.9,10 There is a variation
of the model called the dielectric breakdown model~DBM!11

in which random walkers are not used. Instead the Lapl
equation is solved outside the aggregate for a fieldr which
represents the probability density of walkers, and the gro
algorithm is to add one particle at a time with probabili
proportional to]r/]n at the surface. Thus the DLA limit can
be successfully treated by a model in which the adatoms
a continuum. However, methods such as the level
method3 cannot go to this limit and thus cannot produ
dendritic islands which are seen in experiment.

The unstable modes for the interface of the islands
present in level-set models, of course. However, the rea
why the DBM limit is not achieved is that the growth proce
is represented by deterministically advancing a continu
interface according to the flux of the adatom fluid into t
surface@see Eq.~4! below#. In this algorithm the amplitude
of the perturbations to a smooth interface are not corre
represented: they are given either by the initial conditions
by computer roundoff errors. In the experiment, howev
there is a mechanism for feeding the instability: each ada
©2004 The American Physical Society06-1
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attaches not as a spread-out advance of the interface, b
an atom. In the case of DLA the result is that noise in
shape is present at all scales12 and does not average out.

We should mention that there are other fluctuations wh
we will not treat. For example, there are density fluctuatio
in the adatom fluid which are important in the nucleation
new islands. There is a method13 to treat this within level-set
theory that we could employ. We will not consider such p
cesses in this work, but rather look at the shape fluctuat
of existing islands.

The QCMC algorithm goes as follows: we treat the
lands on the surface as crystals containing discrete at
which occupy the sites of a lattice. To illustrate the meth
we use a square lattice here. On the other hand, the ada
are treated as a continuum whose surface density isr, and
which is governed by

] tr5D¹2r1F. ~1!

In practice we solve this equation numerically on a discr
square grid which is commensurate with the crystal.

Equation~1! is solved with periodic boundary condition
on the edge of the system. The important physics of gro
is incorporated into the boundary condition at the surface
the island. We put for the net current of adatoms onto
edge of the island,

D
]r

]n
57k6~r2ro!. ~2!

Here k2 governs the attachment rate from the top of t
island andk1 from the terrace adjacent to the island. Ifk2 is
small, we have an Ehrlich-Schwoebel barrier.

In the case of irreversible growth only the first term
brackets in Eq.~2! would be present, and the current is i
ward, leading to island growth. The other termro accounts
for the detachment of atoms from the island and depend
the position on the island boundary. Physically, the bound
condition must allow for faster detachment at corners, s
than at flat surfaces. We represent this in a way that allow
to compare directly with the bond-counting version of KM

ro5exp~2nE/kBT!. ~3!

Heren is the number of nearest-neighbor bonds that mus
broken tocompletely detach~see below! the atom in question
and add it to the adatom sea. The value ofn depends on the
environment of the detaching atom. We imagine that ato
can break bonds by moving along lattice directions. AlsoE
is the bond energy andT is the temperature. Of course, w
can easily incorporate bonding to more distant neighbors

The interpretation of the number of bonds,n, is a bit
delicate. In Fig. 1 we show some examples of what we m
by ‘‘complete detachment.’’ For our square lattice, to deta
an atom on a@10# surface we need to break three bond
However, for a@11# surface, in order to detach from th
surface, an atom must first break two bonds, and then su
quently, one more—see Fig. 1. Thus, for a@11# surface we
setn53 as well because this corresponds to the produc
the probabilities of the two processes. In effect, we ha
12140
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coarse-grained. For other possible surface environments
not difficult to tabulate the correct value ofn.

In a pure continuum model, the velocity of the islan
growth would be determined by mass conservation,

vn5a2DF]r

]nG , ~4!

where a is the lattice constant and@•# denotes the jump
across the island boundary. Note that we can interpret Eq~2!
in a way which is familiar in studies of crystal growth.14 By
combining Eqs.~2! and~4! we find an equation for the den
sity at the surface,

r2 r̄5~ro2 r̄ !1avn , ~5!

wherea51/(a2@k11k2#) and r̄ is the equilibrium density
near a flat surface. That is, we are including both local eq
librium and kinetic terms in our boundary condition. Th
differencero2 r̄ is a measure of the number of danglin
bonds on the surface, and thus of the curvature~upon coarse
graining!. The first term in Eq.~5! is related to the familiar
Gibbs-Thompson boundary condition of crystal growth a
the second is a kinetic term.

In QCMC we implement Eq.~4! in a way thatincludes
fluctuations. Consider first a case where attachment is
only important process. Then we solve Eqs.~1! and ~2! and
compute the total flux onto the island boundary using E
~2! and ~4!. When the total flux exceeds one atom then
adatom is attached to the boundary at random with the p
ability proportional tovn ~exactly as in the DBM model.! In
the case where detachment is also present we conside
surface to be partitioned into the part where the net flux
inward ~growth!, and attach atoms with probability densi
}vn , and outward~detachment! and remove island atom
with probability density}2vn .

We have implemented QCMC and compared the result
a KMC code on the same square lattice using near
neighbor bonding. We use the hopping rate of an adatom
set the unit of time, and the lattice constant to be unity.
have two independent parameters namelyD/F, and e
5E/kBT. We can also add edge diffusion, but here we ha
not done so. The KMC code is written using the meth
described in Ref. 15 which takes advantage of the fact
there are only a few independent jump probabilities fo
bond-counting model. We find that, as expected, at largee,
the KMC code is much faster. However, fore51.5 and with
about 300 adatoms in a 40340 system the speeds are com

FIG. 1. ~a! Detaching from a@10# surface can be done in on
step, and breaks three bonds.~b! Fully detaching from a@11# sur-
face in two steps also breaks three bonds.
6-2
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FIG. 2. QCMC simulations of the average profile of an equilibrium island compared with exact results. Left is fore52 and right for
e55. The heavy line is from the simulation and the dotted line is the exact result. The agreement is excellent.
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parable. In situations such as heteroepitaxy16 there are a grea
many independent probabilities to jump and KMC is slow

The procedure outlined above for choosingn, the number
of bonds broken to fully detach from the interface, may se
arbitrary. However, we can justify it by its results. To th
end, we show that QCMC gives the correct shape for
island in equilibrium with adatoms. This shape is know
exactly17 from a mapping to the 2d Ising model. We d
simulations withF50 starting with a square island, and ra
our code for a long enough time that the system seemed t
in equilibrium. In Fig. 2 we show some results superimpos
on the exact results for various temperatures. The simula
results are ensemble averages; that is, we did 20 indepen
simulations and averaged the density of the island after s
ing the center of mass of each one to be at the origin.
dotted line in Fig. 2 is the contour line where the averag
island density is 1/2.

FIG. 3. Irreversible~low T) growth for D/F5105.
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We now present some more results to demonstrate
technique. If growth dominates detachment we should h
DLA-like structures. Whether this occurs depends onT and
D/F.18 For low temperature, Figs. 3 and 4, we see the tr
sition in a very clear way. Figure 5 shows a higherT case. Of
course, all of these effects can be seen in KMC simulatio
In other simulations~not shown!, we have demonstrated tha
edge diffusion also smoothes out dendritic shapes, as
pected. The virtue of our method will be to treat systems n
equilibrium where the dynamics of fluctuations are of inte
est and where there are many adatoms, as in Fig. 5.

Another example is the thermal broadening of steps
to repeated attachment and detachment of adatoms. The
oretical expectation19,20 is that the thermal widthw of a step
should depend on the rate-limiting mechanism for step m
tion. In our model, without surface diffusion, this will be th
either detachment from the step or diffusion on the terra

FIG. 4. Irreversible~low T) growth for D/F5102.
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In these casesw2}t1/2,t1/3, respectively. We show, in Fig. 6
w2(t) for a pair of steps one atomic layer high which cros
1003100 terrace. We see indications of both of the expec
behaviors at late times. The early time behavior iskinetic
roughening,21 w2}t2/3. This is because we started with n
adatoms, and, initially, the steps were retreating.

A method similar to ours is in Ref. 4. This work is in on
dimension and neglects noise. A development of this
proach is Ref. 5. In this work the surface is divided into tw
regions. Islands and terraces are treated as continuua,
transition region is added near island edges where KMC
run. Again, the treatment is in one dimension, and we
only speculate about its performance in the cases we h
treated. For the case of a complicated shape such as F
the generalization of Ref. 5 would be considerably slow
down because the entire interior of the cluster would
treated by KMC. Further, our boundary condition, Eq.~2!,
takes into account repeated attachment and detachm

FIG. 5. Growth withD/F5105 ande52.5.
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whereas Ref. 5 follows these processes in detail, which
tentially slows its performance.

The QCMC technique should be most useful in situatio
where there is a large separation of time scales between
diffusion of the adatoms and fluctuations of island boun
aries. Another example for which it might be used are
studies of nucleation of large islands near equilibrium
surfaces,22 or in heteroepitaxy.
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FIG. 6. Thermal roughening of a pair of steps, average over
simulations. Lower curve~dotted! is the average adatom densityr.
For early times, while the steps are moving, andr is changing, the
scaling isw2}t2/3, kinetic roughening. Later there is thermal roug
ening with w2}t1/2 ~evaporation-condensation kinetics! crossing
over to terrace-diffusion kinetics,w2}t1/3. The straight lines, from
left to right, have slopes 2/3, 1/2, and 1/3.
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