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Abstract

We present the results of a series of simulations of the growth of polycrystalline, faceted films in three spatial dimensions. The

simulations are based upon the assumptions of the well known van der Drift model in which the growth rate of each surface is fixed

only by its crystallographic orientation. The simulation method is based upon the level-set formalism and the only input are the

relative velocities of the different facets. We focus specifically on cubic crystals that expose only {111} and {001} facets, such as

diamond. Results are presented for the temporal evolution of the surface morphology, microstructure, mean grain size, grain size

distribution, and crystallographic texture. The mean grain size and surface roughness increase with film thickness h as h2/5, in agree-

ment with theoretical results. The grain size distribution is self-similar. The films all exhibit a columnar microstructure and a fiber

texture that sharpens as the film grows. The orientation of the texture is determined by the facet growth velocity ratio. The new

simulation method is equally applicable to any type of faceted film growth.

� 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The growth of polycrystalline films is central to a

wide range of modern technologies. In fact, outside of

the microelectronics industry, most technologically

important films and coatings are polycrystalline rather

than single crystals or amorphous (polycrystalline films

are also widely used in microelectronics). A wide range
of techniques has been employed to grow polycrystalline

films, including electron beam deposition, molecular

beam epitaxy, chemical vapor deposition, magnetron

sputtering, etc. In many cases, the resultant films are
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strongly faceted, generally exhibiting faces correspond-

ing to low index crystallographic planes. The growth

rate of the different facets may depend on several fac-

tors, including their inclination relative to the deposition

flux, sticking coefficients, site specific reaction rates, etc.

In this paper, we examine the situation in which the

growth rate (velocity) of each facet depends only on

the crystallographic orientation of the facet. This is
interface-limited growth and is common in, for example,

the chemical vapor deposition (CVD) of diamond. This

idealization of the growth process was suggested by van

der Drift [1] (it is often referred to as the van der Drift

model) and even earlier by Kolmogorov [8]. In this pa-

per, we perform a series of simulations of the growth

of polycrystalline, faceted films and examine the

implications of this model for the evolution of the
ll rights reserved.
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microstructure and morphology of such films in three

spatial dimensions using a level-set technique.

In many film growth scenarios, such as diamond

CVD, the film develops a fiber texture (i.e., a particular

crystallographic direction is normal to the substrate,

but the crystal orientation of the film grains parallel to
the substrate is random). For example, if each grain has

its Æ111æ direction oriented normal to the substrate, such

a crystal has a Æ111æ fiber texture. The development of a

fiber texture during polycrystalline film growth is a natu-

ral consequence of the van der Drift [1], faceted growth

model. In this model, each crystallite or grain grows with

each crystallographically equivalent facet moving with a

known normal velocity until a facet meets the surface of
another growing crystallite. When surfaces of different

grains meet, a grain boundary is formed. We will assume

that the resultant grain boundaries are immobile. A fiber

texture develops because the edges of faceted crystallites

grow faster than faces and corners grow faster than

edges. If we consider a substrate on which are placed

infinitesimally small crystallites with random orienta-

tions, the ones with the corners pointing normal to the
substrate will have the largest growth velocity perpendic-

ular to the substrate. Since these crystallites or grains

grow fastest, they will outgrow their neighboring grains

and, hence, win the growth competition. As time pro-

ceeds the growth front is increasingly composed of grains

with these fastest growing orientations – this is the fiber

texture. This process is sometimes referred to as geomet-

ric selection. Thompson [2] discusses these issues in his re-
view article on polycrystalline films.

Wild et al. [3,4], Dammers and Radelaar [6], Paritosh

et al. [7] developed algorithms for simulating the growth

of faceted crystals based on the van der Drift model in

two dimensions. Dammers and Radelaar demonstrated

that the average grain size, d, grows as d �
ffiffiffi
h

p
, where

h is the film thickness. Paritosh et al. [7] did a more de-

tailed study and showed, among other things, that the
earlier results were valid for different types of faceted

crystals. They also found that the grain size distribution

was invariant upon scaling the grain size with the film

height. We also note that Kolmogorov [8] and Thijssen

et al. [9] predicted that in two dimensions d �
ffiffiffi
h

p
as

h ! 1 on theoretical grounds. In three dimensions, Thi-

jssen [10] predicted d � h2/5. In addition, Thijssen [10]
Fig. 1. The idiomorphs or, equivalently, the kinetic Wulff shapes for diamond

right, a increases from 1 to 3, in step of 0.25. All idiomorphs are identical f

identical for all aP 3: i.e., an octahedron with {111} facets. The third figu

growing direction.
performed computations on a simplified version of the

van der Drift model and showed that they were in agree-

ment with his analytical prediction. In these computa-

tions, Thijssen considered the crystallites as cones or

cubes. The growth front of the polycrystalline film was

first approximated as the outer envelope of all such
cones or cubes. The difficulty with this approximation

is that one crystal can interpenetrate through another

crystal and then unphysically re-emerge. Thijssen over-

came this difficulty by tagging crystal tops that have dis-

appeared. Tagged tops are not allowed to re-emerge, but

other parts of the crystal have the possibility to re-

emerge. The computations were in agreement with the

prediction that d � h2/5. Barrat et al. [11] used crystal
shapes as shown in Fig. 1 and approximated the growing

film as the outer envelope of the individual crystals. One

drawback of both these approaches is that information

about the grain boundaries is lost.

In this paper, we extend the earlier simulations of fac-

eted, polycrystalline growth from two to three space

dimensions while retaining a general description of fac-

eting and grain shape and avoiding the interpenetration
problems inherent in early three-dimensional ap-

proaches. The earlier two-dimensional simulations were

performed using a method that tracks the evolution of

the surfaces during film growth. Such an approach is

much more difficult to apply in three dimensions be-

cause of the increased topological complexity. To our

knowledge, no such three-dimensional algorithm has

ever been developed that fully implements the van der
Drift model. In the present paper, we extend the level

set method for faceted polycrystal growth originally

developed by Russo and Smereka [12] that altogether

avoids issues of topological complexity. We then apply

this model to the case of chemical vapor deposition of

polycrystalline diamond films. Specifically, we examine

the evolution of the surface morphology, polycrystalline

grain structure, grain size distribution and crystallo-
graphic texture.
2. Diamond

In the paper, we shall focus on the case of a cubic

material that exhibits only {001} and {111} facets, as
as a function of the facet growth velocity ratio, a. Moving from left to

or a 6 1; i.e., a cube with {001} facets. Similarly, the idiomorphs are

re from the left corresponds to a = 1.5. The arrow indicate the fastest
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appropriate for diamond [3,4,6,7,11]. In cubic crystals,

all {001} surfaces are identical and all {111} are iden-

tical. Wild et al. [3,4] showed that an isolated crystallite

growing with a fixed ratio of the {001} to {111} facet

normal velocity will evolve into a series of invariant

shapes that are known as idiomorphs. This ratio is tra-
ditionally written as

a ¼
ffiffiffi
3

p V 0 0 1

V 1 1 1

: ð1Þ

The procedure for determining this shape is identical

to that used to determine the equilibrium shape of a

crystal via the Wulff construction, except that the sur-

face free energy vectors are replaced with the orienta-
tion dependent growth velocity. Hence, idiomorphs are

also referred to as kinetic Wulff shapes. The presence

of facets in the present model implies the existence

of cusps in the growth velocity versus surface orienta-

tion plot. The variation of the shape of these idiom-

orphs with a is shown in Fig. 1. For a 6 1, the

idiomorphs are all cubes composed of {001} facets.

For a P 3, the idiomorphs are octahedra delimited
by {111} facets. For 1 < a < 3, the idiomorphs are

cubo-octahedron, exposing both {001} and {111} fac-

ets. For 1 < a < 1.5, the idiomorphs exhibit six octago-

nal {001} facets and eight triangular {111} facets.

For 1.5 < a < 3, the idiomorphs exhibit six square

{001} facets and eight hexagonal {111} facets. For

the special case of a = 1.5 only square {001} and tri-

angular {111} facets are present. These geometric con-
structions are useful in interpreting the polycrystalline

microstructures. Further, our computations will show

that an interesting morphological bifurcation occurs

in the polycrystalline films at a = 1.5.

The microstructure of a polycrystalline film is deter-

mined by the growth competition between adjacent

grains and the film morphology is dictated by the orien-

tations and relative positions of the surviving grains
(with orientation playing a much more important role).

One expects that crystallites whose orientation is such

that the fastest growing direction is perpendicular to

the substrate will outgrow the crystallites with other ori-

entations, as discussed above. The variation of the fast-

est growing direction with a is indicated by the arrows in

Fig. 1. It is convenient to express this direction relative

to the Æ001æ direction using the two polar angles, h
and / from spherical coordinates. Paritosh, et al. [7]

present the following expression for the fastest growing

direction:

hmax ¼

tan�1
ffiffiffi
2

p
� 54:73

�
, a 6 1,

tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5a2�12aþ9

p
a

� �
, 1 6 a 6

3
2
,

tan�1 3�a
a

� �
, 3

2
6 a 6 3,

0, a P 3

8>>>>><
>>>>>:

ð2Þ
and

/max ¼

p
4
, a 6 1,

tan�1 3�2a
a

� �
, 1 6 a 6

3
2
,

0, a P 3
2
:

8><
>: ð3Þ

One can use these expressions to show that the fastest

growing direction is of the type:

hhk lifastest ¼

h111i, a 6 1,

hh11i, 1 6 a 6
3
2
,

h0k 1i, 3
2
6 a 6 3,

h001i, a P 3,

8>>><
>>>:

ð4Þ

where

h ¼ 3� 2a
a

, k ¼ 3� a
a

, and l ¼ 1:

For example, if a ¼ 3
2
, the fiber texture is Æ011æ. Eq. (4)

was presented in [5,24,25].

Eq. (4), combined with Fig. 1, can be used to

make several important predictions regarding the

microstructure in the long time limit within the van

der Drift model framework. For example, the film

will develop a fiber texture where the fiber axis is gi-

ven by (4).

When a 6 1, the idiomorph is a cube delimited by
{001} facets. The longest vectors from the center of

the idiomorph to any point on its surface are in the

Æ111æ directions. Hence, we expect the microstructure

to have a Æ111æ fiber texture and expose {001} facets

on its surface. As a is slightly increased, the fiber

texture will remain close to Æ111æ, but the surface

microstructure will change dramatically. It will pre-

dominantly show facets with normals nearly perpendic-
ular to this direction, namely the triangular {111}

facets (note the small triangular {111} facets in the

second idiomorph from the left in Fig. 1). As a in-

creases to 1.5, the fiber texture will change from

Æ111æ to Æ011æ and the surface microstructure will

evolve into a mixture of {111} and {001} facets (see

the third idiomorph from the left in Fig. 1). As a is

further increased to just less than 3, the surface micro-
structure will become dominated by square {001}

facets and the fiber texture will change from Æ011æ to

close to Æ001æ. For a P 3, the fiber texture will remain

Æ001æ, but the surface will be composed only of {111}

facets.

In the next section, we present the level set method

that we use to evolve three-dimensional, faceted, poly-

crystalline films to determine microstructure and mor-
phology. The simulations not only verify the above

discussion, but also provide images of the microstruc-

ture and morphology that can be directly compared with

experimental plan view and cross-sectional micrographs

as well as detailed information on texture and grain size

evolution.
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3. Simulation method

We now outline the derivation of our simulation

method; first, for a single crystal. The method is based

on two main ideas: the level set method and the Wulff

construction.

3.1. Level set method

We first discuss the level set method, originally devel-

oped by Osher and Sethian [13]. In this method, the

interface of crystal, C, is the surface on which the

smooth scalar field, u, is zero:

C ¼ fuðx,tÞ ¼ 0g:
We shall assume that the crystal exists where the field

u < 0 and there is a vacuum or vapor in the region

u > 0, exterior to the crystal. If the velocity of the surface

in the direction of its normal, vn, is known, then the time

evolution of u is given by

ou
ot

þ vnjruj ¼ 0:

For an introduction to this method the reader is referred

to the books by Sethian [14] and Osher and Fedkiw [15]

and the review article by Smereka and Sethian [16]. The
unit normal to the interface is given by

n ¼ ru
jruj :

Therefore, if the normal velocity is a function of direc-

tion, vn = c(n), the time evolution of u is given by the le-

vel set equation

ou
ot

þ c
ru
jruj

� �
jruj ¼ 0: ð5Þ

In our model we are assuming that the normal velocity

vn is only a function of the normal n to the surface. This

assumption may be a good approximation in many
cases. There are some circumstances in which such

approximation is not a good one. For example, if the

crystals form a closed region containing vapor, then it

is clear that the crystal cannot grow, since chemical va-

por deposition is inhibited on the surface of such region.

Here we neglect such effect.

We note in Eq. (5) the interface velocity, vn = c(n), has
been extended into three dimensions. Therefore, Eq. (5)
can be solved on a fixed grid and the surface of the crys-

tal is found using iso-surface rendering graphics

software.

It is clear that if we wish to evolve a crystal in three

space dimensions, we must solve the level set equation

in three dimensions, even though its surface is two-

dimensional. This can be rather expensive in terms of

computer time and memory since we must update u at
every location whether it is needed or not. We defer
the discussion about how to efficiently use this method

to later in the paper. The major remaining issue is

how to implement the level set method to describe and

evolve faceted crystals.

3.2. Kinetic Wulff shape

If we know the surface velocity for all possible surface

normals, the location of the interface can be determined

from

_x ¼ cðnÞn: ð6Þ
This equation has a long history and the reader is re-

ferred to the articles by Taylor et al. [17], Osher and

Merriman [18], Peng et al. [19] and the references

therein. The important discovery made by Wulff [20]

and Frank [21] is that if the crystallite shape evolves
as described by Eq. (6), the shape will evolve asymp-

totically into the Wulff shape. The Wulff shape is the

Legendre transform of c or equivalently the inner con-

vex hull of c, as proved by Soravia [14] and Osher and

Merriman [18]. More precisely, Osher and Merriman

proved that the unique viscosity solution of Eq. (5)

asymptotically approaches the Wulff shape of c(n).
From a practical point of view this means that if
one solves Eq. (5) with an upwind method (see, for

example [13–16]), the zero level or contour will ap-

proach the Wulff shape. In particular, if we start with

a Wulff shape and evolve it using Eq. (5), its shape

will not change as it grows.

In order to use Eq. (5) for our purposes, we must

find a c function so that the Wulff shapes are those

as given in Fig. 1. This is a type of inverse problem,
which was solved by Russo and Smereka [12]. Suppose

we have a crystal and know the normal direction and

velocities of each of its facets, ni and wi, respectively.

Then we wish to find a c(n) so that when it evolves

as described by Eq. (5), the level set of u will be com-

posed of facets whose normal directions and velocities

are those prescribed above. This is done as follows:

first we define

kðnÞ ¼ argmax
j

n � nj,

then

cðnÞ ¼ wkðnÞ þ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðn � nkðnÞÞ2

q
, ð7Þ

where r P r0, and r0 is a geometric parameter that de-
pend on the Wulff shape. In our computations we

choose r = 1.1.

For initial conditions, we choose a u whose zero level

set is a polyhedron with normal directions as prescribed

above. We observe that when the system evolves as per

Eq. (5), the zero level set quickly evolves to the corre-

sponding Wulff shape. This is consistent with the predic-

tions of Osher and Merriman [18].
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3.2.1. Multiple grains

Since we are interested in modeling a polycrystalline

film, we must implement the method for many separate

grains. Therefore, we introduce a level set function, uj, to

describe the evolution of each grain j. We remind the

reader that uj < 0 inside the grain and uj > 0 outside of
that grain. This means that if both ui < 0 and uj < 0 at

the same physical location and i 6¼ j then the grains

would overlap. This is clearly unphysical. Thus, we

introduce the overlap function

gðx,tÞ ¼
0, if any of the uj’s overlap

1, otherwise :

�

The time evolution of the level set functions is then

ouj
ot

þ gðx,tÞcj
ruj
jrujj

� �
jrujj ¼ 0: ð8Þ

We note that each grain has its own cj function since

each grain has it own set of normals. We remark that

the interface of the entire polycrystalline film can easily

be computed from the individual level set functions as

follows:

uðx,tÞ ¼ min
j

ujðx,tÞ: ð9Þ

Finally we mention that if we evolve the system as per

Eq. (8) with g = 1 and use Eq. (9), the zero level set of u

will give the outer envelope of the individual grains

growing without restriction. The interaction of the crys-
tals is determined by the overlap function.

3.3. Computational issues

In our approach, each grain has its own level set func-

tion. For problems with a large number of grains this

becomes very expensive both in terms of computer time

and memory. However, it is clear that we only need to
compute the level set function near grain surfaces. It is

possible to achieve this goal since we know where each

interface is located, i.e., at u = 0. Therefore, we only

compute the level set function in a narrow band around

each surface. This approach is called the narrow band

level set method. Although we have made several impor-

tant modifications specifically for this problem, we have

followed the spirit of this approach as outlined by Adal-
steinsson and Sethian [22] and Peng et al. [23]. To fur-

ther save memory we dynamically allocate memory for

multiple level set functions. This helps because as the

film grows some grains grow more than others and as

a consequence need more memory. In addition, the nar-

row band has an active part and an inactive part. The

active part is where the crystals are growing and the

inactive part is where the crystals have grown into each
other and no further growth occurs. The inactive parts

are removed from memory and stored on disk. In this

way, we are able to perform computations with over
200 level set functions on grids as large as

350 · 350 · 1200 on a computer with 1 GB of RAM.

In the simulation presented here, we employ peri-

odic boundary conditions on the edges of the compu-

tational cell in the direction parallel to the substrate

plane in order to reduce the effects of a finite size com-
putational domain. We have performed numerical con-

vergence studies and determined that a computational

mesh of size 250 · 250 produces solutions of sufficient

accuracy. For our initial conditions, we placed 121

very small grains (islands) at random locations on

the substrate with random orientations. This was done

as follows: each seed was rotated using the three Euler

angles, the first and last were taken uniformly in [0,2p]
whereas the second was such that its cosine is uniform

in [�1,1]. In this way the distribution of orientations

is isotropic. All the seeds were of the same size and

their centers were all at the same height. The average

height of the film, h, is expressed in terms of the aver-

age distance between the grains at the beginning of the

simulation, d0.

The results for average grain size, roughness of the
surface and orientation distribution are averaged over

a dozen runs.
4. Surface morphology and crystallographic texture

In this section and in the next two we report the re-

sults about macroscopic parameters concerning the
polycrystal. Most of them, such as texture, cross-sec-

tions, and grain size, are computed after the crystal is

grown, by cutting slides of the crystal at a given height

h, and by measuring the desired parameters from the

cross-section. Surface morphology and surface rough-

ness (see Section 6), however, are computed during the

run.

Figs. 2–6 show the surface morphology as a function
of film thickness, h, during the growth of the film. Since

the physics of the growth contains nothing to break the

in-plane (plan view) symmetry, we characterize the crys-

tallographic texture as a fiber texture. To this end, we fo-

cus specifically on the value of h for each grain,

weighting each grain according to the projection of the

surface area on the x–y plane, and constructing the cor-

responding fiber texture distribution functions. These
are shown beneath the corresponding surface morphol-

ogy in Figs. 2–6.

Examination of the texture distribution functions

shows that as the film thickens, the texture distribution

sharpens into a pronounced fiber texture. The distribu-

tion becomes sharply peaked at an orientation, hmax that

varies with a. To see this more clearly, we have plotted

hmax as a function of a in Fig. 8. hmax decreases from
52� to 5� as a increases from 1 to 2.9. Fig. 8 also shows



Fig. 2. Surface morphology (upper row) and orientation distribution function (lower row) evolution for a = 1. From left to right, h = 0.36d0,

h = 12.0d0, and h = 36.2d0.

Fig. 3. Surface morphology (upper row) and orientation distribution function (lower row) evolution for a = 1.1. From left to right, h = 0.55d0,

h = 8.0d0, and h = 27.0d0.
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the theoretical prediction of hmax (i.e. Eq. (2)). The sim-

ulation data are in very good agreement with the theo-

retical predictions (within the statistical error in the
simulations). This suggests that the orientation of the fi-

ber texture hmax is accurately characterized by the

assumption that hmax is simply the fastest growing direc-



Fig. 4. Surface morphology (upper row) and orientation distribution function (lower row) evolution for a = 2. From left to right, h = 0.50d0,

h = 11.0d0, and h = 40.0d0.

Fig. 5. Surface morphology (upper row) and orientation distribution function (lower row) evolution for a = 2.9. From left to right, h = 0.70d0,

h = 11.0d0, and h = 43.0d0.
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tion in the idiomorph (kinetic Wulff shape) and that

direction is oriented normal to the substrate. In other

words, hmax corresponds to the crystallographic direc-

tion specified in Eq. (4).
We now consider the observed polycrystalline surface

morphology seen in Figs. 2–6 in more detail. Fig. 2

shows the case of a = 1, where the kinetic Wulff shape

(Fig. 1) is a cube. The fastest growing direction (longest



Fig. 6. Surface morphology (upper row) and orientation distribution function (lower row) evolution for a = 3. From left to right, h = 0.40d0,

h = 10.0d0, and h = 37.0d0.
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vector from the center of the kinetic Wulff shape) is

Æ111æ in this case. Indeed, the surface morphology
evolves such that the grains with Æ111 æ-directions are

normal to the plane of the surface. hmax for this case

(a = 1) is 52�, while the analytical prediction based on

the kinetic Wulff shape analysis (Eq. (2)) is

tan�1
ffiffiffi
2

p
¼ 54:73�. Further, the surface morphology ap-

pears as if it is composed of cubes viewed along the body

diagonal - three flat surfaces meet at a point and each

pair of planes meet at 90�. These planes are all {001}-
planes, as predicted by the kinetic Wulff shape.

Fig. 3 shows the surface morphology for the a = 1.1

case. The surface morphology changes dramatically with

the change in a from 1.0 (Fig. 2) to 1.1. This may be sur-

prising because the location of the peak in the orienta-

tion distribution only suffered a small shift upon this

change in a. For a = 1.1, the surface is largely composed

of triangular facets that are nearly parallel with the
mean surface and no corners point out of the surface,

as they did for a = 1. The triangular facets are of the

{111}-type and the facets bounding the triangles are

of the {001}-type. Such surface morphologies were pre-

viously observed in CVD diamond films; see for example

Barrat and Bauer-Grosse [25] and May [26]. To under-

stand this surface morphology, we return to the kinetic

Wulff shapes of Fig. 1. For a infinitesimally larger than
1, the Æ111æ corners present in the a = 1 cubic kinetic

Wulff shapes are replaced with small triangular {111}

facets. These facets are nearly perpendicular to the fast-

est growing direction (slightly off of Æ111æ:
h ¼ tan�1
ffiffiffi
2

p
¼ 54:73�, / = p/4) and hence they are

nearly parallel to the substrate. The {001} facets bound-
ing the triangles in the surface morphology can be traced

to the {001} surfaces of the kinetic Wulff shape that

bounds the {111} surface. Comparison of the orienta-

tion distribution plots in Figs. 2 and 3 demonstrates that

the texture sharpens more quickly for a = 1.1 than for

a = 1.0.

Fig. 4 shows the surface morphology and orientation

distribution function for the a = 2 case. The morphology
is characterized by corners that poke out from the mean

surface plane. Although it is not obvious from this fig-

ure, the surface is composed of both {111} and {001}

facets- two {111} and one {001} facet meet at each cor-

ner. This morphology is consistent with the predictions

drawn from the kinetic Wulff shape, as discussed above.

The orientation distribution plots and Fig. 8 demon-

strate that hmax � 27� from the simulations, which is in
reasonable agreement with the prediction of

hmax = 26.6� from Eq. (2). This corresponds to a Æ012æ
fiber texture.

The results for a = 2.9 are shown in Fig. 5. This sur-

face shows pronounced square {001} facets, as com-

pared with the previous figure (a = 2). This surface

morphology is similar to that seen in the experiments

of, for example, May [26], and von Kaenel et al. [27]
on CVD diamond. The square facets are parallel to

the substrate and are consistent with the kinetic Wulff

shape (Fig. 1). In this case, the fastest growing direction

(and hence the mean surface normal) is close to Æ001æ
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Fig. 8. hmax as a function of a. The data points represent the average

value of h computed from our simulations and the curve is the

theoretical prediction of [7].
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and, not surprisingly, the {001} surfaces are nearly per-

pendicular to the fastest growing directions. In general,

as the fastest growing direction in the kinetic Wulff

shape becomes closer to an existing facet normal, the

shape of that facet in the kinetic Wulff shape becomes

more prominent in the overall surface morphology.
Fig. 6 shows the surface morphology for the a = 3

case. The surface morphologies for a = 2.9 and 3.0 are

quite different. Unlike in the a = 2.9 case, this surface

exhibits no square facets and no three-fold corners

(i.e., points where three facets meet). The lack of square

facets is attributable to the fact that the only facets seen

are of the {111} type. The corners are all junctions of

four {111} facets. This is consistent with the bipyramid
kinetic Wulff shape for a = 3 (see Fig. 1). As the film

thickens, the orientation distribution sharpens and hmax

decreases. By the end of the simulation, hmax � 8� which
is close to the predicted value of hmax = 0. However, hmax

is still decreasing and we expect that hmax ! 0 as h ! 1.

Finally, Fig. 7 presents the surface morphology at

fixed film thickness for a = 1.45, a = 1.5, and a = 1.55.

a = 1.5 is a bifurcation point in the kinetic Wulff shape
(see Fig. 1). As a increases from below 1.5 to above

1.5 the {111} facets change from equilateral triangles

to 6-sided polygons and the {001} facets change from

octagonal to square. This transition in the kinetic Wulff

shape is manifested in the film surface morphology,

although it is not as striking as the changes that occur

when a increases from 1 to 1.1 or 2.9 to 3. For

a = 1.45 the surface of the film has ‘‘roof-shaped struc-
Fig. 7. Surface morphology (upper row) and orientation distribution function

to right) at h = 20d0.
tures’’ [3] (two sides are {001} facets and the other is

a {111} facet), whereas when a = 1.55 the film is com-

posed of 3-sided peak-like structures (one side is a

{001} facet and the other two are {111} facets). It is

evident from Fig. 7 that the distribution of h changes lit-

tle as a is varied from 1.45 to 1.55. The peak occurs for
h � 45�; this corresponds to a Æ011æ fiber texture. The

present a = 1.45 surface morphology is very similar to

that observed in experiment by Wild et al. [3] and the

surface morphology computed for a = 1.5 was seen in
(lower row) corresponding to a = 1.45, a = 1.5, and a = 1.55 (from left
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the experimental work of Barrat and Bauer-Grosse [25]

in diamond.
5. Cross-sections

The level set film growth algorithm also gives us the

ability to view cross-sections of the grown film and

thereby examine the polycrystalline microstructure

through the film thickness. Fig. 9 shows three different

cross-sections of films grown with different values of a.
In all cases, the mean grain size increases with height,

the grains are very elongated in the direction of growth

(i.e., columnar growth) and new grains appear and dis-
appear in the cross-section (above the substrate/film

interface). These are all commonly observed features

of cross-sections in a very wide variety of films, includ-

ing diamond. The disappearance of grains is, in some

cases, the result of growth competition, where a growing

grain is overgrown by its neighbors. In other cases, the

grain may appear to disappear simply because the grain

boundary is extending into a direction with a compo-
nent normal to the plane of the cross-section. The same

visual effect explains the apparent ‘‘nucleation’’ of new

grains above the substrate/film interface (i.e. a boundary
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Fig. 9. Cross-sectional view of the film, showing the grain boundaries in the p

grain size increases with thickness and that the microstructure is columnar. Th
of a grain that is behind the cross-section extends into a

direction with a component normal to the plane of the

cross-section of observation).

It is interesting to compare these cross-sections with

the results of the two-dimensional simulations of Pari-

tosh et al. [7]. Overall, the main features of the present
cross-sections of the three-dimensional films are quite

similar to those from the two-dimensional simulations.

The most striking difference between the three-dimen-

sional and the two-dimensional cross-sections is the

apparent grain ‘‘nucleation’’ events in the three-dimen-

sional case which are completely absent in the two-

dimensional case. This difference is simply that the grain

boundaries cannot extend in the direction perpendicular
to the plane of the cross-section in two-dimensions,

while this effect can (and does) occur in three

dimensions.
6. Grain size and roughness

The evolution of the average grain size (as mea-
sured in plan view) with film thickness, h, is shown

in a double logarithmic plot in Fig. 10. The precise

definition of grain size, and surface roughness are re-
1 1 0 1
0

1

2

3

4

5

6

7

8

olycrystalline structure and the growth front. This figure shows that the

e three micrographs corresponds to a = 1, 2 and 2.9, from left to right.
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comparisons with theory.
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ported in Appendix A. Following an initial transient

associated with the growth of the seeds to impinge-

ment, the average grain size, d, increases with h as

d � hb, where the best fit value of the large thickness

data is b = 0.42 ± 0.03. The two-dimensional simula-

tion data [7] suggest that b � 0.5. Theoretical predic-

tions by Kolmogorov [8] and Thijssen et al. [9]

indicate that b = 0.5 in two dimensions and Thijssen
[10] predicted d � h2/5 in three dimensions. The present

results are consistent with Thijssen�s three-dimensional

predictions to within the fitting error.

Fig. 10 also shows how the root mean square surface

roughness, w, evolves with film thickness for several val-

ues of a. We first focus on the a = 1 and 3 cases. The

roughness, w, grows with film thickness as w � hb, where

b ¼ 2
5
(cf. the curves with the straight line in the figure).

This is to be expected since the grain size grows as hb.

Similar behavior was observed by Paritosh et al. [7] in
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Fig. 11. The figure on the left shows the grain size distribution and the figu

mean film height.
two dimensions. The a = 2 data in Fig. 10 yield the same

value of b as do the a = 1 and 3 cases. However, this

curve is shifted to greater thicknesses. This too is ex-

pected since the grain size evolves slowly for a = 2. Only

the a = 1.1 data show significant differences as compared

to those for the other a�s. The initial evolution of the

roughness in this case is the same as for the other values

of a, but the slope (exponent) decreases to near zero at
larger film thickness. The origin of this decrease in slope

is not fully understood, but similar behavior was ob-

served in the two-dimensional simulation of Paritosh

et al. [7] for a near the end points of the range (1–2 in

two dimensions). We note that for a = 1.1 the fastest

growing direction is approximately normal to the

{111} facet, which should produce a low roughness sur-

face (as observed – see Fig. 3). On this basis, we should
expect similar behavior for a = 2.9, where the fastest

growing direction is approximately normal to the
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re on the right shows the grain size distribution scaled by the evolving
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{001} facet. However, this is not observed in Fig. 10.

Nevertheless, it is possible that such an effect would be

seen for thicker films.

Fig. 11 shows the grain size distribution at several

different film heights for the a = 2.9 case. This distri-

bution clearly evolves during film growth. However,
if we scale the grain size by the mean film thickness,

the distributions collapse onto one another. This indi-

cates that the grain size distribution is self-similar

when scaled by the average grain size. Similar behav-

ior was found for the other values of a. Similar results

were reported by Paritosh et al. [7] in two dimensions.

This is the first demonstration that the scaling law ob-

served in two dimensions is also valid in three
dimensions.

7. Discussion and conclusions

Although the present report focused mainly on the

application of the level-set method for faceted, polycrys-

talline film growth to the growth of diamond, both the
method and the conclusions are much more general.

Application to diamond was motivated by the existence

of an extensive experimental literature of growth mor-

phologies, texture and grain size versus growth condi-

tions (a). The only choice made in these simulations

specifically for diamond was the limitation of consider-

ation to {111} and {001} facets. The results should

be equally applicable to other cubic materials exhibiting
these types of facets. Extensions of the model to include

other facets, e.g., {011}, is straightforward, but requires

the introduction of another variable for each new type

of facet corresponding to its relative velocity,

a1 � V 0 0 1

V 1 1 1
, a2 � V 0 1 1

V 1 1 1
,. . . The method is also readily appli-

cable to cases where grain nucleation is non-random, the

surface contains overhangs (forbidden in many other

models, such as solid-on-solid), and other crystal struc-
tures. For example, Fig. 12 shows a case of the growth

of a polycrystalline film of a tetragonal crystal structure

where only {001} facets are possible and the ratio of the

growth rate of the {001} facet is much faster than the
Fig. 12. Evolution of n
{100} facets (i.e., V0 0 1�V100 = V010). This results in a

complex microstructure of needle-like grains – complete

with overhangs.

The main results of the present simulation study may

be summarized as follows. Faceted, polycrystalline film

growth produces a microstructure of columnar grains
and a surface morphology that compare favorably to a

wide range of experimental observations of diamond

film growth. The film develops a fiber texture that sharp-

ens as it grows. The axis of this fiber texture is oriented

perpendicular to the substrate and is determined by the

relative growth rates of the facets. These texture obser-

vations are also consistent with experiment. The mean

grain size, d, scales with film thickness, h as d � h2/5.
In most cases, the roughness scales with thickness with

the same exponent.

Many of the main features observed in the surface

morphology and crystallographic texture can be under-

stood in terms of the kinetic Wulff shape or idiomorph,

as suggested by others [3,4]. This approach was ex-

tended by Paritosh et al. [7] and here. We note that

the grain size and roughness exponent is different in
two and three dimensions, i.e., 1/2 and 2/5, respec-

tively. This is consistent with the predictions of Thij-

ssen [10]. These results, together with the differences

between the kinetic Wulff shape in two and three

dimensions demonstrate the need to perform such sim-

ulations of film growth (and microstructure/morphol-

ogy evolution) in the same number of dimensions as

the real physical problem (i.e., usually three). While
previous methods have been proposed to simulate

polycrystalline, faceted film growth in three dimen-

sions, the present simulations is the only one, to our

knowledge, that is fully consistent with the underlying

van der Drift model. Of these major results, we expect

the existence of a faceted, fiber textured, columnar film

structure and the grain size and roughness scaling rela-

tions to be a general feature of polycrystalline, faceted
film growth, independent of the detailed assumptions

of which facets appear, the crystal structure, and the

relative facet growth rates.
eedle-like crystals.
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Appendix A. Definition of statistical observables

A.1. Grain size

The total height of the crystal is a function of time,

and of two spatial coordinates. Let us express this in

the form hs = hs(t,x,y).

We measure the grain size by taking a cross-section of

the crystal at a given height h. We shall make sure that

the cross-section will not contain empty regions. This is
guaranteed if h < hs(tmax), where tmax is the final time of

computation.

The cross-section is therefore formed by a tessellation

of regions, corresponding to grains. Let us say that a gi-

ven cross-section is formed by Ng two-dimensional

grains. Then we define

di ¼
ffiffiffiffiffi
Ai

p
, i ¼ 1, . . . ,N g,

where Ai is the area of the ith grain of the cross-sec-

tion. For a given h, the grain size distribution is ob-
tained by plotting the histogram of the quantities di
defined above.

The average grain size is defined as the square root of

the average area of the grain. For one realization, at a

given height h, it is

d ¼
ffiffiffiffiffiffiffi
hAi

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N g

XNg

i¼1

Ai

vuut ¼
ffiffiffiffiffiffi
A
N g

s
,

where A is the area of the computational domain. In all

our calculation it was A = 4. For N realization of the

process, then we define

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NAPN
j¼1N

ðjÞ
g

s
,

where N ðjÞ
g is the number of seeds at the jth realization of

the process (for a given height h).

All information about the grain size distribution can

be obtained by a post-processing, at the end of the runs,

from the information about the polycrystal stored in

files. We assume that at the height we measure the grain

size distribution the whole computational domain is
occupied by grains, which is true if the cross-section

does not intersects the surface of the polycrystal.
A.2. Surface roughness

For a given time, the average height, �hðtÞ, is given by

�hðtÞ ¼
R
X hsðt,x,yÞ dx dy

A
,

where X is the computational domain (with periodic

boundary conditions), A = |X|. The roughness of the sur-
face is defined as the root mean square of the deviation

of the height of the crystal surface from its average:

roughness ¼ xðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
Xðhsðt; x; yÞ � �hðtÞÞ2

A

s
:

Of course the integrals are approximated on the compu-

tational grid by the midpoint rule. The plot of roughness

versus thickness are obtained by plotting x versus �h (on
a logarithmic scale).

At variance with the information about grain size,

surface roughness has to be computed during the run,

since it depends on the actual surface of the polycrystal,

and not on its cross-sections.
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