If the service a job receives is incomplete or unsatisfactory, the job feeds back.

Completion of service and departure now have different meanings.
When feedback occurs the job joins the queue consistent with the queue discipline.

The decision to depart or feed back is random with feedback probability β.

λ is the arrival rate

ν is the service rate
Feedback is independent of past history
In theory, a job may feed back arbitrarily many times
Typically β is close to 0.0

GetFeedback Method

```c
int GetFeedback(double beta) /* 0.0 <= beta < 1.0 */
{
    SelectStream(2);
    if (Random() < beta)
        return (1); /* feedback occurs */
    else
        return (0); /* no feedback */
}
```
Index $i = 1, 2, 3, \ldots$ counts jobs that enter the service node. fed-back jobs are not recounted.

Using this indexing, all job-averaged statistics remain valid. We must update delay times, wait times, and service times for each feedback. (The new service for the same job increases times but it must not cause an increase of #jobs)

Jobs from outside the system are merged with jobs from the feedback process.

The steady-state request-for-service rate is larger than λ by the positive additive factor $\beta \bar{x} \nu$ [beta is the prob. of feedback, nu is the service rate, x is the time-avg no of jobs]

Note that \bar{s} increases with feedback but $1/\nu$ is the average service time per request.
Example 3.3.1

<table>
<thead>
<tr>
<th>job index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>…</th>
<th>6</th>
<th>…</th>
<th>7</th>
<th>8</th>
<th>…</th>
<th>9</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrival/feedback</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>19</td>
<td>24</td>
<td>26</td>
<td>30</td>
<td>…</td>
</tr>
<tr>
<td>service</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>…</td>
</tr>
<tr>
<td>completion</td>
<td>10</td>
<td>13</td>
<td>15</td>
<td>19</td>
<td>26</td>
<td>31</td>
<td>37</td>
<td>40</td>
<td>44</td>
<td>50</td>
<td>53</td>
<td>60</td>
<td>…</td>
</tr>
</tbody>
</table>

- At the computational level, some algorithm and data structure is necessary.
Example 3.3.2

- Program ssq2 was modified to incorporate immediate feedback
 - Interarrivals = \textit{Exponential}(2.0)
 - Service times = \textit{Uniform}(1.0, 2.0)

- It appears saturation is achieved as $\beta \rightarrow 0.25$
Jobs flow into the service node at the average rate of λ.

To remain flow balanced, jobs must flow out of the service node at the same average rate.

The average rate at which jobs flow out of the service node is

$$\bar{x}(1 - \beta) \nu$$

Flow balance is achieved when $\lambda = \bar{x}(1 - \beta) \nu$.

Saturation occurs when $\bar{x} = 1$ or as $\beta \to 1 - \lambda/\nu = 0.25$

(see prev. slide)
- **Delivery lag** or **lead time** occurs when orders are not delivered immediately.
- Lag is assumed to be random and independent of order size.
- Without lag, inventory jumps occur only at inventory review times.

Without delivery lag: discontinuity when orders to suppliers occurs to re-fill to the value s.

Discrete-Event Simulation: A First Course

Section 3.3: Discrete-Event Simulation Examples
With delivery lag, inventory jumps occur at arbitrary times

The last order is assumed to have no lag

We assume that orders are delivered before the next inventory review

With this assumption, there is no change to the specification model
If \(l_{i-1} \geq s \) the equations for \(\bar{l}^+_i \) and \(\bar{l}^-_i \) remain correct.

When delivery lag occurs, the time-averaged holding and shortage intervals must be modified.

- The delivery lag for interval \(i \) is \(0 < \delta_i < 1 \)

\[
\begin{align*}
\bar{l}^+_i &= \text{time-averaged holding value} \\
\bar{l}^-_i &= \text{time-averaged shortage level}
\end{align*}
\]

The inventory level drop at constant rate to \([l_{i-1} - \delta_i \cdot d_i]\), where \(d_i \) is the demand at time \(i \) (note that \(\delta_i < 1 \))

The area of each figures must be determined differently.
Consistency Checks

- It is fundamentally important to verify extended models with the parent model
 - Set system parameters to special values
 - Set $\beta = 0$ for the SSQ with feedback [same results of SSQ without feedback]
 - Verify that all statistics agree with parent
- Using the library \texttt{rngs} facilitates this kind of comparison
- It is a good practice to check for intuitive “small-perturbation” consistency
 - Use a small, but non-zero β and check that appropriate statistics are slightly larger
For the SIS with delivery lag, $\delta_i = 0.0$ iff no order during i^{th} interval, $0 < \delta_i < 1.0$ otherwise

The SIS is lag-free iff $\delta_i = 0.0$ for all i

If (S, s) are fixed then, even with small delivery lags:
- \bar{o}, \bar{d}, and \bar{u} are the same regardless of delivery lag
- Compared to the lag-free system, \bar{I}^+ will decrease
- Compared to the lag-free system, \bar{I}^- will increase or remain unchanged

$o = \text{average orders}$
$d = \text{average demands}$
$u = \text{order frequency} = (\text{no. orders / n})$
Example 3.3.4

sis3.c

- Delivery lags are independent \textit{Uniform}(0.0, 1.0) random variates

- Delivery lag causes \bar{I}^+ to decrease and \bar{I}^- to increase or remain the same

- $C_{\text{hold}} = \$25$ and $C_{\text{short}} = \$700$ cause shift up and to the left
The machine shop model is closed because there are a finite number of machines in the system.

Assume repair times are $Uniform(1.0, 2.0)$ random variates.

There are M machines that fail after an $Exponential(100.0)$ random variate.
Program ssms

Two random streams:
- repair times
- failures

Similar to ssq2, but..

- Program ssms simulates a single-server machine shop
- The library rngs is used to uncouple the random processes
- The failure process is defined by the array failures
 - A $O(M)$ search is used to find the next failure
 - Alternate data structures can be used to increase computational efficiency
Example 3.3.5

The time-averaged number of working machines is $M - \bar{l}$

For small values of M the time-averaged number of operational machines is essentially M

For large values of M this value is essentially constant at approximately 67

For small values of M the time-averaged number of working machines is $M - \bar{l}$.