Università di Catania

Corso di laurea in Matematica

Prima prova in itinere di Geometria I assegnata l' 8/02/2017

- Non si può uscire dall'aula prima di aver consegnato definitivamente il compito.
- Non si possono consultare i libri di testo e appunti.
- Usare solo la carta fornita dai Docenti.

Ι

In \mathbb{R}^4 sia dato il sottospazio

$$V_h = \{(x, y, z, t) \in \mathbb{R}^4 \mid 3x - (h+2)y + (h+1)z + t = (h-2)x + y - t = 0\},\$$

con h parametro reale.

- 1. Determinare una base di V_h e di V_h^{\perp} al variare di $h \in \mathbb{R}$.
- 2. Determinare i sottospazi $\sum\limits_h V_h,\ \bigcap\limits_h V_h$ e trovarne una base.

H

In \mathbb{R}^3 siano dati i seguenti vettori $v_1 = (1, 2, 0), v_2 = (0, 1, 1), v_3 = (2, 0, 1)$. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo definito da

$$f(v_1) = (3h, 2, 2h)$$
 $f(v_2) = (h, 2 - h, 3h)$ $f(v_3) = (2h, 1 - h, 2h)$

con h parametro reale.

- 1. Trovare la matrice $M_{\mathcal{E}}^{\mathcal{E}}(f)$ associata ad f rispetto alla base canonica \mathcal{E} di \mathbb{R}^3 . Studiare f al variare del parametro h trovando una base e le equazioni cartesiane per Imf e Kerf.
- 2. Studiare la semplicità di f al variare di $h \in \mathbb{R}$. Nei casi in cui è semplice, trovare una base di autovettori di f.
- 3. Trovare $f^{-1}(0,1,1)$ al variare di $h \in \mathbb{R}$.

III

Sia $f: \mathbb{R}[x]_2 \to \mathbb{R}[x]_2$ l'applicazione lineare definita da:

$$f(1+x^2) = 1+x^2$$
 $f(1-x^2) = -x^2 + 2x + 3$ $f(1+x) = x^2 + 2x + 5$.

Verificare che tale applicazione lineare è ben definita, cioè che i vettori $1+x^2$, $1-x^2$, 1+x formano una base per $\mathbb{R}[x]_2$. Determinare inoltre la dimensione e una base per Imf e Kerf.

IV

Sia U sottospazio di \mathbb{R}^4 , dimU = 3. Sia $\mathcal{B} = \{u_1, u_2, u_3\}$ una base di U, con $u_1 = (1, 1, 0, -1), u_2 = (1, 2, 1, 0), u_3 = (0, 0, 1, 1).$

- 1. Determinare una base ortonormale $\overline{\mathcal{B}}$ di U utilizzando il procedimento di Gram-Schmidt a partire dalla base \mathcal{B} .
- 2. Determinare la matrice associata al prodotto scalare euclideo (ristretto al sottospazio U di \mathbb{R}^4) rispetto alla base $\mathcal B$ di U.

V

Sia $f:V\to V$ un endomorfismo e sia A la matrice ad esso associata rispetto a una base di V. Dimostrare che se $\underline{\alpha}$ è soluzione del sistema $A\underline{x}=\underline{b}$, allora ogni $\underline{y}\in\underline{\alpha}+Kerf$ è soluzione del sistema $A\underline{x}=\underline{b}$.