Embedding path designs into a maximum packing of K_n with 4-cycles

Gaetano Quattrocchi
Dipartimento di Matematica e Informatica
Università di Catania
viale A. Doria 6
95125 Catania
ITALIA
quattrocchi@dmi.unict.it

Abstract

A packing of K_n with copies of C_4 (the cycle of length 4), is an ordered triple (V, C, L), where V is the vertex set of the complete graph K_n, C is a collection of edge-disjoint copies of C_4, and L is the set of edges not belonging to a block of C. The number n is called the order of the packing and the set of unused edges L is called the leave. If C is as large as possible, then (V, C, L) is called a maximum packing $MPC(n, 4, 1)$. We say that a path design $P(v, k, 1) (W, P)$ is embedded into an $MPC(n, 4, 1) (V, C, L)$ if there is an injective mapping $f : P \rightarrow C$ such that P is a subgraph of $f(P)$ for every $P \in P$. Let $SP(n, 4, k)$ denote the set of the integers v such that there exists an $MPC(n, 4, 1)$ which embeds a $P(v, k, 1)$. If $n \equiv 1 \pmod{8}$ then an $MPC(n, 4, 1)$ coincides with a 4-cycle system of order n and the related embedding problem is completely solved by Quattrocchi, *Discrete Math.*, 255 (2002).

The aim of the present paper is to determine $SP(n, 4, k)$ for every integer $n \not\equiv 1 \pmod{8}$, $n \geq 4$.

AMS classification: 05B05.
Keywords: Graph design; Embedding; Path.

1 Introduction

Let G be a subgraph of K_n, the complete undirected graph on n vertices. A G-design of K_n is a pair (V, B), where V is the vertex set of K_n and B is an edge-disjoint decomposition

*Supported by MIUR and by C.N.R. (G.N.S.A.G.A.), Italy.
of K_n into copies of the graph G. If $B \in \mathcal{B}$ we say that B is a block (or a G-block) of the G-design. The set \mathcal{B} is called the block-set. A G-design of K_n is also called a G-design of order n.

A path design $P(v, k, 1)$ [5] is a P_k-design of K_v, where P_k is the simple path with $k-1$ edges (k vertices) $[a_1, a_2, \ldots, a_k] = \{\{a_1, a_2\}, \{a_2, a_3\}, \ldots, \{a_{k-1}, a_k\}\}$. A G-design is balanced if each vertex belongs to the same number of blocks. Obviously not every G-design is balanced. An handcuffed design $H(v, k, 1)$ [4, 5] is a balanced P_k-design of order v and block size k.

Clearly a $P(v, 2, 1) (V, \mathcal{P})$ exists for every $v \geq 2$ and it is always balanced. Hung and Mendelsohn [4] proved that an $H(v, 2h+1, 1) (h \geq 1)$ exists if and only if $v \equiv 1 \pmod{4h}$, and an $H(v, 2h, 1) (h \geq 2)$ exists if and only if $v \equiv 1 \pmod{2h-1}$. Tarsi [12] proved that the necessary conditions for the existence of a $P(v, k, 1)$, $v \geq k$ (if $v > 1$) and $v(v-1) \equiv 0 \pmod{2(k-1)}$, are also sufficient.

A 4-cycle system of order n is a C_4-design of K_n, where C_4 is the 4-cycle (cycle of length 4) $(a_1, a_2, a_3, a_4) = \{\{a_1, a_2\}, \{a_2, a_3\}, \{a_3, a_4\}, \{a_1, a_4\}\}$. It is well-known [6] that the spectrum for 4-cycle systems is precisely the set of all $n \equiv 1 \pmod{8}$.

A packing of K_n with copies of C_4 is an ordered triple (V, \mathcal{C}, L), where V is the vertex set of K_n, \mathcal{C} is a collection of edge-disjoint copies of C_4, and L is the set of edges not belonging to a block of \mathcal{C}. The number n is called the order of the packing and the set of unused edges L is called the leave. If \mathcal{C} is as large as possible, then (V, \mathcal{C}, L) is called a maximum packing $\text{MPC}(n, 4, 1)$.

An $\text{MPC}(n, 4, 1)$ can be considered as the natural generalization of a 4-cycle system of order n when $n \not\equiv 1 \pmod{8}$. For, an $\text{MCP}(n, 4, 1)$ with $n \equiv 1 \pmod{8}$ coincides with a 4-cycle system of order n. The existence of an $\text{MPC}(n, 4, 1)$ has been proved by Schöneim and Bialostocki [11].

Theorem 1.1 ([11]) *For every integer $n \geq 4$ there exists an $\text{MPC}(n, 4, 1) (V, \mathcal{B})$ and it is:*

- $|\mathcal{B}| = \left\lceil \frac{n}{4} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil$ if $n \not\equiv 5$ or $7 \pmod{8}$,
- $|\mathcal{B}| = \left\lceil \frac{n}{4} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil - 1$ otherwise.

If $n \equiv 1 \pmod{8}$ then the leave L does not contain any edge. If $n \not\equiv 1 \pmod{8}$ then the non-packed edges may be chosen so that the leave L is isomorphic to a one-factor if n is even, a 3-cycle if $n \equiv 3 \pmod{8}$, two 3-cycles having a common vertex if $n \equiv 5 \pmod{8}$ and a 5-cycle if $n \equiv 7 \pmod{8}$.

Let G_1 be a subgraph of G_2. We say that a G_1-design (V, \mathcal{P}) of order v is embedded into a G_2-design (W, \mathcal{C}) of order n if there is an injective mapping $f : \mathcal{P} \rightarrow \mathcal{C}$ such that P is a subgraph of $f(P)$ for every $P \in \mathcal{P}$.

2
The following embedding problem arises: for every admissible integer \(n \) determine the set of the integers \(v \) such that there exists a \(G_2 \)-design of order \(n \) which embeds some \(G_1 \)-design of order \(v \).

This embedding problem has been investigated in many cases [1, 2, 3, 8, 10]. Quattrocchi [7] gives a complete answer to the embedding problem of a \(\mathcal{P}(v, k, 1) \) into a 4-cycle system of order \(n \).

In this paper we study the embedding problem of a \(\mathcal{P}(v, k, 1) \) into an \(\text{MPC}(n, 4, 1) \). This problem could be seen as the natural generalization of the embedding problem of a \(\mathcal{P}(v, k, 1) \) into a 4-cycle system of order \(n \).

Definition 1.1 A \(\mathcal{P}(v, k, 1) \) is embedded into an \(\text{MPC}(n, 4, 1) \) if there is an injective mapping

\[
f : \mathcal{P} \to \mathcal{C}
\]

such that \(P \) is a subgraph of \(f(P) \) for every \(P \in \mathcal{P} \).

Example 1.1 A \(\mathcal{P}(4, 3, 1) \) on vertex set \(V = \{0, 1, 2, 3\} \) embedded into an \(\text{MPC}(7, 4, 1) \) on vertex set \(W = V \cup \{5, 6, 7\} \). Let \(L = (4, 1, 5, 2, 6) \) and \(\mathcal{C} = \{(0, 1, 2, 4), (0, 2, 3, 5), (0, 3, 1, 6), (4, 5, 6, 3)\} \).

Example 1.2 A \(\mathcal{P}(4, 3, 1) \) on vertex set \(V = \{1, 2, 3, 4\} \) embedded into an \(\text{MPC}(8, 4, 1) \) on vertex set \(W = V \cup \{5, 6, 7, 8\} \). Let \(L = \{[i, 4 + i] \mid i = 1, 2, 3, 4\} \) and \(\mathcal{C} = \{(1, 2, 3, 6), (1, 3, 4, 7), (1, 4, 2, 8), (5, 6, 7, 2), (5, 7, 8, 3), (5, 8, 6, 4)\} \).

Example 1.3 A \(\mathcal{P}(8, 3, 1) \) on vertex set \(V = \{0, 1, \ldots, 7\} \) embedded into an \(\text{MPC}(13, 4, 1) \) on vertex set \(W = V \cup \{8, 9, \ldots, 12\} \). Let \(L = \{(9, 10, 8), (8, 11, 12)\} \) and \(\mathcal{C} = \{(0, 1, 2, 10), (0, 2, 3, 11), (0, 3, 1, 12), (4, 5, 6, 10), (4, 6, 7, 11), (4, 7, 5, 12), (4, 0, 5, 8), (4, 1, 5, 9), (6, 2, 7, 8), (6, 3, 7, 9), (0, 6, 1, 8), (0, 7, 1, 9), (2, 4, 3, 8), (2, 5, 3, 9), (11, 9, 12, 10), (10, 1, 11, 5), (11, 2, 12, 6), (10, 3, 12, 7)\} \).

Example 1.4 A \(\mathcal{P}(12, 3, 1) \) on vertex set \(V = \{0, 1, \ldots, 11\} \) embedded into an \(\text{MPC}(19, 4, 1) \) on vertex set \(W = V \cup \{a_0, a_1, \ldots, a_6\} \). Let \(L = (a_0, a_1, a_2) \) and \(\mathcal{C} = \{(0, 1, 2, a_4), (0, 2, 3, a_5), (0, 3, 1, a_6), (4, 0, 5, a_2), (4, 1, 5, a_3), (6, 2, 7, a_2), (6, 3, 7, a_3), (0, 6, 1, a_0), (0, 7, 1, a_1), (2, 4, 3, a_0), (2, 5, 3, a_1), (4, 5, 6, a_4), (4, 6, 7, a_5), (4, 7, 5, a_6), (8, 0, 9, a_0), (8, 1, 9, a_1), (10, 2, 11, a_0), (10, 3, 11, a_1), (0, 10, 1, a_2), (0, 11, 1, a_3), (2, 8, 3, a_2), (2, 9, 3, a_3), (8, 9, 10, a_4), (8, 10, 11, a_5), (8, 11, 9, a_6), (8, 4, 9, a_2), (8, 5, 9, a_3), (10, 6, 11, a_2), (10, 7, 11, a_3), (4, 10, 5, a_0), (4, 11, 5, a_1), (6, 8, 7, a_0), (6, 9, 7, a_1), (a_0, a_3, a_1, a_4), (a_0, a_5, a_1, a_6), (a_2, a_3, a_4, a_5), (a_4, a_2, a_6, 3), (a_5, a_3, a_6, 2), (a_4, a_6, a_5, 1), (a_4, 5, a_5, 9), (a_5, 6, a_6, 10), (a_4, 7, a_6, 11)\} \).

Definition 1.2 Denote by \(\mathcal{SP}(n, 4, k) \) the set of the integers \(v, v \geq k \), such that there exists a \(\mathcal{P}(v, k, 1) \) embedded into an \(\text{MPC}(n, 4, 1) \).

Quattrocchi [9] determined the spectrum \(\mathcal{SH}(n, 4, k), k = 2, 3 \), of the integers \(v \geq k \) such that there exists an handcuffed design of order \(v \) and block size \(k \) embedded into an \(\text{MPC}(n, 4, 1) \). The aim of the present paper is to determine \(\mathcal{SP}(n, 4, k) \) for every integer \(n \geq 4 \). We resume in the next two theorems the known results about \(\mathcal{SP}(n, 4, k) \) .
Theorem 1.2 ([7]) For every \(n \equiv 1 \pmod{8}, \ n \geq 9, \ SP(n, 4, 3) = \{v \mid 4 \leq v \leq \frac{2n-t(n)}{3}, \ v \equiv 0, 1 \pmod{4}\}, \) where \(t(n) = 2 \) if \(n \equiv 1 \pmod{24}, \ t(n) = 3 \) if \(n \equiv 9 \pmod{24} \) and \(t(n) = 7 \) if \(n \equiv 17 \pmod{24} \).

Theorem 1.3 ([9]) For every even integer \(n, \ n \geq 4, \ \cal{SH}(n, 4, 2) = \{v \mid 2 \leq v \leq \frac{n}{2}\}. \) For every odd \(n, \ n \geq 5, \ \cal{SH}(n, 4, 2) = \{v \mid 2 \leq v \leq \frac{n+1}{2}\}. \) Let

\[
\theta(n) = \begin{cases}
\frac{n-6}{2} & \text{if } n \equiv 0 \pmod{8}, \ n \geq 16; \\
\frac{n}{2} & \text{if } n \equiv 2 \pmod{8}, \ n \geq 10; \\
\frac{n-2}{2} & \text{if } n \equiv 4 \pmod{8}, \ n \geq 12; \\
\frac{n-4}{2} & \text{if } n \equiv 6 \pmod{8}, \ n \geq 14; \\
\frac{2n-11}{3} & \text{if } n \equiv 1 \pmod{6}, \ n \geq 13; \\
\frac{2n-3}{3} & \text{if } n \equiv 3 \pmod{6}, \ n \geq 9; \\
\frac{2n-7}{3} & \text{if } n \equiv 5 \pmod{6}, \ n \geq 11.
\end{cases}
\]

Then for every integer \(n, \ n \geq 9, \ \cal{SH}(n, 4, 3) = \{v \mid 5 \leq v \leq \theta(n), \ v \equiv 1 \pmod{4}\}. \)

By Theorem 1.3, \(SP(n, 4, 2) = \cal{SH}(n, 4, 2) \) (note that every \(P(v, 2, 1) \) is balanced). Moreover \(\cal{SH}(n, 4, 3) \subseteq \cal{SP}(n, 4, 3) \). In next section we completely determine \(\cal{SP}(n, 4, 3) \).

2 \(\cal{SH}(n, 4, 3) \)

Let

\[
\tau(n) = \begin{cases}
\frac{n}{2} & \text{if } n \equiv 0, 2 \pmod{8}, \ n \geq 8; \\
\frac{n}{2} & \text{if } n \equiv 4 \pmod{8}, \ n \geq 12; \\
\frac{n-4}{2} & \text{if } n \equiv 6 \pmod{8}, \ n \geq 14; \\
\frac{2n-2}{3} & \text{if } n \equiv 1 \pmod{6}, \ n \geq 7; \\
\frac{2n-3}{3} & \text{if } n \equiv 3 \pmod{6}, \ n \geq 9; \\
\frac{2n-7}{3} & \text{if } n \equiv 5 \pmod{6}, \ n \geq 11.
\end{cases}
\]

Lemma 2.1 \(SP(n, 4, 3) \subseteq \{v \mid 4 \leq v \leq \tau(n), \ v \equiv 0, 1 \pmod{4}\}. \)

Proof. Let \((V, W) \) be a \(P(v, 3, 1), \ v \geq 4, \) embedded into an \(MPC(n, 4, 1) \ (W, C, L). \)

Let \(n \) be even. The leave \(L \) is a one-factor not covering any edge of \(K_v. \) Then \(n \geq 2v \) and the proof follows from the condition \(v \equiv 0, 1 \pmod{4}. \)

Let \(n \) be odd. Then \(v(n-v) \geq \binom{v}{2} \) and the proof follows from Theorems 1.2, 1.3 and the condition \(v \equiv 0, 1 \pmod{4}. \)

Lemma 2.2 Let \((W, C, L) \) be an \(MPC(n, 4, 1) \) with \(n \) even, \(n \geq 4. \) Then there exists an \(MPC(n + 2, 4, 1) \ (W, \bar{C}, \bar{L}) \) such that \(W \subset \bar{W}, \ C \subset \bar{C} \) and \(L \subset \bar{L}. \)

Proof. Let \(\bar{W} = W \cup \{\infty_1, \infty_2\}, \ \bar{L} = L \cup \{\infty_1, \infty_2\}. \) Let \(B \) be an edge-disjoint decomposition of the complete bipartite graph \(K_{\bar{W}, \{\infty_1, \infty_2\}} \) into subgraphs isomorphic to a 4-cycle. Let \(\bar{C} = C \cup B. \)

4
Lemma 2.3 Let \(v \equiv 0 \pmod{4} \). If \(v \in \mathcal{SP}(2v, 4, 3) \) then \(v + 4 \in \mathcal{SP}(2v + 8, 4, 3) \).

Proof. Let \((V, \mathcal{P})\) be an \(P(v, 3, 1) \) embedded into an \(MPC(2v, 4, 1) \) \((W, \mathcal{C}, L)\). Let \(v = 4k, k \geq 1 \). Let \(A_i = \{a^1_i, a^2_i, a^3_i, a^4_i\} \), \(B_i = \{b^1_i, b^2_i, b^3_i, b^4_i\} \), \(V = \bigcup_{i=1}^{k} A_i \), \(B = \bigcup_{i=1}^{k} B_i \), \(D = \bigcup_{i=1}^{k} \{b^3_i, b^4_i\} \), \(W = V \cup B \). Let \((X, \mathcal{D})\) be a \(P(4, 3, 1) \) embedded into an \(MPC(8, 4, 1) \) \((X \cup Y, B, L_1)\) with \(X = \{1, 2, 3, 4\}, Y = \{5, 6, 7, 8\} \) (see Example 1.2). In order to construct an \(MPC(2v + 8, 4, 1) \), put \(\overline{W} = W \cup X \cup Y \), \(\overline{L} = L \cup L_1 \) and assign to \(\overline{\mathcal{C}} \) the following 4-cycles:

- the blocks of \(\mathcal{C} \cup \mathcal{B} \);
- \((1, a^1_i, 2, b^1_i), (1, a^2_i, 2, b^2_i), (3, a^3_i, 4, b^3_i), (3, a^4_i, 4, b^4_i), (a^3_i, 1, a^4_i, 5), (a^3_i, 2, a^4_i, 6), (a^1_i, 3, a^2_i, 5), (a^1_i, 4, a^2_i, 6) \) for \(i = 1, 2, \ldots, k \);

\((\overline{W}, \overline{\mathcal{C}}, \overline{L})\) is an \(MPC(2v + 8, 4, 1) \) which embeds an \(H(v + 4, 3, 1) \) on vertex set \(V \cup \{1, 2, 3, 4\} \).

Lemma 2.4 Let \(n \equiv 3, 5, 7 \pmod{8} \) and \(v \equiv 0 \pmod{4} \). If \(v \in \mathcal{SP}(n, 4, 3) \) then \(v + 4 \in \mathcal{SP}(n + 4, 4, 3) \).

Proof. Let \((V, \mathcal{P})\) be a \(P(v, 3, 1) \) embedded into an \(MPC(n, 4, 1) \) \((V \cup W, \mathcal{C}, L)\). Let \(v = 4k, k \geq 1 \), \(A_i = \{a^1_i, a^2_i, a^3_i, a^4_i\} \), \(V = \bigcup_{i=1}^{k} A_i \), \(W = \{\infty\} \cup \{b^i_j \mid j = 1, 2, \ldots, n - 4k - 1\} \) (note that \(n - 4k - 1 \geq 2k \)). By Theorem 1.2, there exists a \(P(4, 3, 1) \) \((V_1, \mathcal{P}_1)\) embedded into a 4-cycle system of order 9 \((W_1, \mathcal{C}_1)\). Let \(V_1 = \{1, 2, 3, 4\} \) and \(W_1 = V_1 \cup \{\infty, 5, 6, 7, 8\} \). Now we construct an \(MPC(n + 8, 4, 1) \). Let \(\overline{V} = V \cup V_1 \), \(\overline{W} = W \cup \overline{V} \cup W_1 \), \(\overline{L} = L \). Assign to \(\overline{\mathcal{C}} \) the following 4-cycles:

- the blocks of \(\mathcal{C} \cup \mathcal{C}_1 \);
- \((1, a^1_i, 2, b^1_{2i-1}), (1, a^2_i, 2, b^2_{2i}), (3, a^3_i, 4, b^3_{2i-1}), (3, a^4_i, 4, b^4_{2i}), (a^3_i, 1, a^4_i, 5), (a^3_i, 2, a^4_i, 6), (a^1_i, 3, a^2_i, 5), (a^1_i, 4, a^2_i, 6) \) for \(i = 1, 2, \ldots, k \);

the blocks of an edge-disjoint decomposition of \(K_{A_i(7,8)}, K_{W \backslash \{\infty\}, \{5,6,7,8\}} \) and, if \(n - 4k - 1 > 2k \), \(K_{\{b_{2i+1}, b_{2i+2}, \ldots, b_{n-4k-1}\}, \{1,2,3,4\}} \), into 4-cycles.

It is easy to see that \((\overline{W}, \overline{\mathcal{C}}, \overline{L})\) is an \(MPC(n + 8, 4, 1) \) which embeds a \(P(v + 4, 3, 1) \) on vertex set \(\overline{V} \).

Lemma 2.5 Let \(n \equiv 3, 5, 7 \pmod{8} \) and \(v \equiv 0 \pmod{4} \). If \(v \in \mathcal{SP}(n, 4, 3) \) then \(v + 16 \in \mathcal{SP}(n + 24, 4, 3) \).
Proof. Let \((V, \mathcal{P})\) be a \(P(v, 3, 1)\) embedded into an \(MPC(n, 4, 1)\) \((WC, L)\). Let \(v = 4k, V = \{0, 1, \ldots, 4k - 1\}\) and \(W = V \cup \{4k, 4k + 1, \ldots, n - 1\}\) (note that \(n - 4k \geq 2k + 1\)).

Let \(A_i = \{a_i^1, a_i^2, a_i^3, a_i^4\}\), \(B_i = \{a_i^1, A_i, B = \cup_{i=1}^{\rho} B_i\} \text{ and } W = W \cup A \cup B\). In order to construct an \(MPC(n + 24, 4, 1)\) assign to \(C\) the following 4-cycles:

- the blocks of \(C\);
- \((a_i^1, a_i^2, a_i^3, 4k), (a_i^1, a_i^2, a_i^4, 4k + 1), (a_i^1, a_i^3, a_i^4, 4k + 2), (a_i^1, 0, a_i^2, a_i^4), (a_i^1, 1, a_i^2, a_i^4), (a_i^2, 0, a_i^4, a_i^1), (a_i^2, 3, a_i^4, 4k + 2), (2, a_i^3, 3, a_i^1), (2, a_i^3, 2, a_i^4), (0, a_i^3, 1, a_i^4), (0, a_i^3, 1, a_i^2)\) for every \(i = 1, 2, 3, 4\);
- \((a_i^1, a_i^2, a_i^3, 4k), (a_i^1, a_i^2, a_i^4, a_i^3), (a_i^2, a_i^3, a_i^4, a_i^1), (a_i^2, a_i^3, a_i^4, a_i^2), (a_i^3, a_i^4, a_i^1, a_i^2), (a_i^3, a_i^4, a_i^2, a_i^1)\) for every \(i, j = 1, 2, 3, 4, i < j\);
- if \(k \geq 2\) then, for every \(i = 1, 2, 3, 4, j = 2, 3, \ldots, k\), add the blocks of an edge-disjoint decomposition of \(K_{\{a_i^1, a_i^2\}}\) into 4-cycles and the following 4-cycles \((a_i^1, 4(j - 1), a_i^2, 4k + 2j - 1), (a_i^1, 1 + 4(j - 1), a_i^2, 4k + 2j), (a_i^1, 2 + 4(j - 1), a_i^2, 4k + 2j - 1), (a_i^1, 3 + 4(j - 1), a_i^2, 4k + 2j), (2 + 4(j - 1), a_i^4, 3 + 4(j - 1), a_i^1)\);
- if \(n > 6k + 1\) then, for every \(i = 1, 2, 3, 4\), add the blocks of an edge-disjoint decomposition into 4-cycles of \(K_{\{6k + 1, 6k + 2, \ldots, n - 1\}}\) and \(K_{\{6k + 1, 6k + 2, \ldots, n - 1\}}\) \(\{a_i^1, a_i^2\}\);

\[
(a_i^1, a_i^2, a_i^3, a_i^4), (a_i^1, a_i^3, a_i^2, a_i^4), (a_i^2, a_i^4, a_i^1, a_i^3), (a_i^2, a_i^4, a_i^1, a_i^3), (a_i^3, a_i^4, a_i^1, a_i^2), (a_i^3, a_i^4, a_i^1, a_i^2), (4k, a_i^4, a_i^1, a_i^3), (4k, a_i^4, a_i^1, a_i^3), (4k + 1, a_i^3, a_i^2, a_i^1), (4k + 1, a_i^3, a_i^2, a_i^1), (4k + 1, a_i^3, a_i^2, a_i^1), (4k + 1, a_i^3, a_i^2, a_i^1).
\]

It is easy to check that \((W, C, L)\) is an \(MPC(n + 24, 4, 1)\) which embeds a \(P(v + 16, 3, 1)\) on vertex set \(V \cup A\).

Remark 2.1 If in Lemma 2.5 we suppose that the path design \((V, \mathcal{P})\) embeds a \(P(4\rho, 3, 1)\) \((V, \mathcal{P})\) for every \(\rho = 1, 2, \ldots, \frac{v - 4}{4}\), then the produced \(P(v + 16, 3, 1)\) on vertex set \(V \cup A\) embeds a path design of order \(4\rho\) for every \(\rho = 1, 2, \ldots, \frac{v - 12}{4}\).

Lemma 2.6 Let \(n \neq 1 \pmod{8}, n \geq 7\). Then

- \(\{v \mid 4 \leq v \leq \frac{n - 2u}{2}, v \equiv 0 \pmod{4}\} \subseteq \mathcal{SP}(n, 4, 3)\) if \(n \equiv 2\mu \pmod{8}\), \(\mu = 0, 1, 2, 3\);
- \(\{v \mid 4 \leq v \leq \frac{2n - 6}{3}, v \equiv 0 \pmod{4}\} \subseteq \mathcal{SP}(n, 4, 3)\) if \(n \equiv 3, 15, 21 \pmod{24}\);
- \(\{v \mid 4 \leq v \leq \frac{2n - 10}{3}, v \equiv 0 \pmod{4}\} \subseteq \mathcal{SP}(n, 4, 3)\) if \(n \equiv 5, 11, 23 \pmod{24}\);
- \(\{v \mid 4 \leq v \leq \frac{2n - 2}{3}, v \equiv 0 \pmod{4}\} \subseteq \mathcal{SP}(n, 4, 3)\) if \(n \equiv 7, 13, 19 \pmod{24}\).
Proof. If \(n \) is even then apply Lemmas 2.2 and 2.3 to the Example 1.2. If \(n \equiv 3, 5, 7 \) (mod 8) then apply Lemmas 2.4, 2.5 and Remark 2.1 to the Examples 1.1, 1.3 and 1.4.

From Theorems 1.2, 1.3 and Lemmas 2.1, 2.6 it follows our main result.

Theorem 2.1

\[\mathcal{S}\mathcal{P}(n, 4, 3) = \{ v \mid 4 \leq v \leq \tau(n), v \equiv 0, 1 \text{ (mod 4)} \} \text{ for every integer } n \geq 7. \]

3 Concluding remark

Let \((V, C, L)\) be an \(MPC(n, 4, 1)\) with \(n \not\equiv 1 \text{ (mod 8)}\). Clearly \((V, C, L)\) induces an edge-disjoint graph decomposition \((V, C \cup L)\) of \(K_n\) into

- \(\frac{n(n-2)}{8} \) copies of \(C_4\) and \(\frac{n}{2} \) copies of \(P_{2n}\) if \(n \equiv 0 \text{ (mod 2)}\);
- \(\frac{1}{3} \left(\binom{n}{2} - 3 \right) \) copies of \(C_4\) and one copy of \(C_5\) if \(n \equiv 3 \text{ (mod 8)}\);
- \(\frac{1}{3} \left(\binom{n}{2} - 6 \right) \) copies of \(C_4\) and either two copies of \(C_3\) or one copy of a bowtie \(B (V(B) = \{a_0, a_1, \ldots, a_4\}, E(B) = \{\{a_0, a_1\}, \{a_1, a_2\}, \{a_0, a_2\}, \{a_0, a_3\}, \{a_3, a_4\}, \{a_0, a_4\}\}) \)
 if \(n \equiv 5 \text{ (mod 8)}\);
- \(\frac{1}{3} \left(\binom{n}{2} - 5 \right) \) copies of \(C_4\) and one copy of \(C_5\) if \(n \equiv 7 \text{ (mod 8)}\).

It is possible to change the embedding definition given in Definition 1.1 into the following definition.

Definition 3.1

A \(P(v, k, 1) (V, \mathcal{P})\) is embedded into the graph decomposition induced by an \(MPC(n, 4, 1) (W, C, L)\) if there is an injective mapping

\[f : \mathcal{P} \rightarrow C \cup L \]

such that \(P\) is a subgraph of \(f(P)\) for every \(P \in \mathcal{P}\).

Example 3.1

A \(P(7, 3, 1)\) on vertex set \(V = \{0, 1, \ldots, 4\}\) embedded into the graph decomposition induced by an \(MPC(7, 4, 1)\) on vertex set \(W = V \cup \{a_0, a_1\}\) where \(L = (0, 1, 4, a_1, a_0), C = \{(1, 2, 0, a_1), (2, 3, 1, a_0), (3, 4, 2, a_1), (4, 0, 3, a_0)\}\).

The related embedding problem is to determine the set \(\mathcal{I}\mathcal{S}(n, 4, k)\) of the integers \(v\) such that there exists a \(P(v, k, 1)\) embedded into the graph decomposition induced by an \(MPC(n, 4, 1)\). Next theorem gives a complete solution to this problem.

Theorem 3.1

\(\mathcal{I}\mathcal{S}(n, 4, 2) = \mathcal{S}\mathcal{P}(n, 4, 2)\) for every integer \(n \geq 4\). \(\mathcal{I}\mathcal{S}(n, 4, 3) = \mathcal{S}\mathcal{P}(n, 4, 3)\) for every integer \(n \geq 8\). \(\mathcal{I}\mathcal{S}(7, 4, 3) = \{4, 5\}\).
Proof. Clearly \(\mathcal{SP}(n, 4, k) \subseteq \mathcal{IS}(n, 4, k) \). Let \((V, \mathcal{P})\) be a \(P(v, k, 1) \) embedded into the graph decomposition induced by an \(MPC(n, 4, 1) \) \((W, \mathcal{C}, L)\). Denote by \(E(G) \) the edge set of the graph \(G \).

Case \(k = 2 \) and \(n \equiv 0 \pmod{2} \). Suppose \(|E(L) \cap E(K_V)| = \mu, 0 \leq \mu \leq n/2 - 2\). Then \(|E(L) \cap E(K_{V,W})| = v - 2\mu\) and \(|E(L) \cap E(K_{W,V})| = \frac{n}{2} - v + \mu\). Let \(\mathcal{D} \) denote the set of blocks \(C \in \mathcal{C} \) such that \(|E(C) \cap E(K_V)| = 1\). Since \(|E(C) \cap E(K_{W,V})| = 1\) for every \(C \in \mathcal{D} \), \(\binom{n-v}{2} = |E(K_{W,V})| \geq |\mathcal{D}| + |E(L) \cap E(K_{W,V})| \geq \binom{v}{2} - v\). So \(n \geq 2v \) and, by \(v \equiv 0, 1 \pmod{4}, \mathcal{IS}(n, 4, 2) \subseteq \mathcal{SP}(n, 4, 2) \).

Case \(k = 3 \). Let \(\mathcal{L} \) be the set of \(P \in \mathcal{P} \) such that \(P \) is a subgraph of \(L \). It is easy to see that \(|\mathcal{L}| = 0 \). If \(|\mathcal{L}| = 0\), then \(\mathcal{IS}(n, 4, 3) \subseteq \mathcal{SP}(n, 4, 3) \). Let \(|\mathcal{L}| = 1\). Then \(n \equiv 5, 7 \pmod{8} \) and \(L \) is a bowtie for \(n \equiv 5 \pmod{8} \) and a \(C_5 \) for \(n \equiv 7 \pmod{8} \). It is easy to see that \(|E(K_{V,W})| \geq 2(|\mathcal{P}| - 1) + |E(L) \cap E(K_{V,W})|\) and \(|E(L) \cap E(K_{W,V})| = x\) with \(x = 2\) if \(L \) is a \(C_5 \) or \(x = 4\) if \(L \) is a bowtie. We obtain \(v \leq \frac{2n+1}{2} \). Suppose \(v = \frac{2n+1}{2} \). Let \(\mathcal{D} \) denote the set of blocks of \(\mathcal{C} \) having a path of \(\mathcal{P} \) as a subgraph. Then \((W \setminus V, \mathcal{C} \setminus \mathcal{D}, E(L) \cap E(K_{W,V}))\) is a packing of \(K_{W,V} \). Since \(|E(L) \cap E(K_{W,V})| = 1\), then \(|\mathcal{C} \setminus \mathcal{D}| = 0\) and \(n - v = |W \setminus V| = 2\). It follows \(n = 7 \) and \(v = 5\). So, for \(n \equiv 5, 7 \pmod{8} \) and \(n \neq 7\), \(v < \frac{2n+1}{2} \) and, by \(v \equiv 0, 1 \pmod{4}, \mathcal{IS}(n, 4, 2) \subseteq \mathcal{SP}(n, 4, 2) \). Examples 1.1 and 3.1 imply \(\mathcal{IS}(7, 4, 3) = \{4, 5\} \).

References

