A subset H of points of a projective plane is **semiperspective** if the following properties hold.

(i) **There exist at least three non-collinear points in H, and for every point $P \in H$ there exists at least a tangent t_P to H at P (a tangent to H is a line meeting H in exactly one point).**

(ii) **There exist two points, say A and B, in H such that the line AB contains no more points of H. Furthermore for any point C in H, C different from A and B, let t_A, t_B, t_C be tangents at A, B, C respectively, and set $A' = t_B \cap t_C$, $B' = t_A \cap t_C$, $C' = t_A \cap t_B$; then the lines AA', BB', CC' contain a common point.**

Ovals in Galois planes are examples of semiperspective sets.

In this talk, a characterization of ovals in a Galois plane of even order in terms of semiperspective sets is presented.