The existence of 4×4 grid-block designs

Yukiyasu Mutoh

Nagoya University, Japan

email: yukiyasu@math.cm.is.nagoya-u.ac.jp

Fu, Hwang, Jimbo, Mutoh and Shiue (2004) introduced the notion of a grid-block design, which is defined as follows: For a v-set V, let \mathcal{A} be a collection of $k_1 \times k_2$ arrays with elements in V. Each array is called a grid-block. A pair (V, \mathcal{A}) is called a $k_1 \times k_2$ grid-block design if every two distinct points x and y in V occurs exactly once in the same row or in the same column. The necessary conditions for the existence of a $k_1 \times k_2$ grid-block design are (i) $v - 1 \equiv 0 \pmod{k_1 + k_2 - 2}$ and (ii) $v(v - 1) \equiv 0 \pmod{k_1 k_2 (k_1 + k_2 - 2)}$. They gave some general constructions and proved that the necessary conditions $v \equiv 1, 9 \pmod{36}$ for the existence of 3×3 grid-block designs are sufficient. Meanwhile, Mutoh, Morihara, Jimbo and Fu (2003) solved that the necessary condition $v \equiv 1 \pmod{32}$ for the existence of 2×4 grid-block designs is sufficient.

In this talk, we show that the necessary condition $v \equiv 1 \pmod{96}$ for the existence of 4×4 grid-block designs is sufficient except for $v = 865$ and 1057 whose existence have not been known, yet. The proof is similar to the case of 2×4. Some 4×4 grid-block designs are constructed by the constructions in Fu et al. (2004) and another construction given by finite fields. By these constructions, we can shown the existence of 4×4 grid-block designs. Moreover, we mention a partial result of 3×4 grid-block designs. The necessary conditions for the existence of 3×4 grid-block designs are $v \equiv 1, 16, 21, 36 \pmod{60}$. It can be shown that the necessary condition $v \equiv 1 \pmod{60}$ is sufficient by the same method of 4×4.