Rita Capodaglio considers in [1] the following situation. Let o, a, b be three non collinear points of an absolute plane. Then one can associate a fourth point c in the two following ways such that (o, a, c, b) becomes a convex quadrilateral with:

1. $(o, a) \equiv (b, c) \land (o, b) \equiv (a, c)$ (if $\tilde{a}b$ denotes the reflection in the midpoint of a, b then $c = \tilde{a}b(o)$).
2. $(o, a) \equiv (b, c) \land \angle(a, o, b) \equiv \angle(c, b, \tilde{b}(o))$ where \tilde{b} denotes the reflection in the point b (c is given by $c := \tilde{b}o \circ \tilde{o}(a)$).

In the Euclidean plane both constructions result in the same point but not so in the hyperbolic plane. In this way a hyperbolic plane can be furnished with two binary operations turning the point set into two loops. These actions called Ca(podaglio)- and K-derivation can be applied on the more general structures, the symmetric permutation sets. Their properties and interactions will be studied with regard to various types of symmetric permutation sets. Also the question how such algebraic structures can be utilized for coordinatizations of hyperbolic geometry will be considered.

References