Graph decompositions with some symmetry

Arrigo BONISOLI

Dipartimento di Scienze Sociali, Cognitive, Quantitative
Università di Modena e Reggio Emilia
via Giglioli Valle 9, 42100 Reggio Emilia (Italy)
e-mail: bonisoli.arrigo@unimore.it

A Γ–decomposition of the complete graph K_v, is a collection of subgraphs of K_v, all isomorphic to the given graph Γ, with the property that each edge of K_v is to be found in precisely one subgraph of the collection.

Decompositions of various kinds are available in the literature. Here I want to assume that the automorphism group of such a decomposition is sufficiently rich. A typical assumption would be primitivity or multiple transitivity on vertices. It is clear for example that a bowtie or a kite decomposition of K_v cannot admit an automorphism group acting doubly transitively on vertices (that would be true more generally for any Γ–decomposition in which Γ is not a regular graph).

The idea of applying powerful classification theorems from finite group theory has been pursued in various situations with various degrees of success.

If one is happy with constructions, difference methods may be of help. I discuss the possibility of decomposing K_v into Petersen graphs in such a way that the resulting decomposition admits an elementary abelian group of automorphisms acting transitively on vertices (here v is a prime power).