Minimal covering of all chords of a conic in $PG(2, q)$, q even

A. Aguglia

Dipartimento di Matematica,
Politecnico di Bari
Via Amendola, 126/B
70126 Bari
Italy
E–mail: aguglia@dm.uniba.it

Joint work with Alessandro Siciliano, Gábor Korchmáros

In this paper we determine the minimal blocking sets of chords of an irreducible conic C in the desarguesian projective plane $PG(2, q)$, q even. The procedure for the construction of minimal blocking sets of chords is the following.

Assume that the conic C has (affine) equation $Y = X^2$, that is, C is a parabola in the affine plane $AG(2, q)$. For every $a \in GF(q)$, $\varphi_a : (X, Y) \rightarrow (X + a, Y + a^2)$, is a translation of the affine plane $AG(2, q)$. The center of φ_a, viewed as an elation in the projective closure $PG(2, q)$ of $AG(2, q)$, is the infinite point $B_a = (1, a, 0)$.

The translation group of C is $T = \{\varphi_a \mid a \in GF(q)\}$ and it is isomorphic to the additive group $(GF(q), +)$ of $GF(q)$. Take a subgroup $G = \{\varphi_a \mid a \in H\}$ of T where H is a subgroup in $(GF(q), +)$, and define Γ to be the set of the centers of all nontrivial translations in G. If $P = (u, u^2)$ is an affine point in C, the orbit of P under G is $\Delta_u = \{(a + u, (a + u)^2) \mid a \in H\}$. Then, $B(G, u) = (C \setminus \Delta_u) \cup \Gamma$ is a blocking set of chords of C. We prove the following theorem.

Theorem. Let C be an irreducible conic of $PG(2, q)$, with $q = 2^h$, and let \mathcal{L} be the set of all chords of C. Any pointset B of $PG(2, q)$ meeting every line of \mathcal{L} has size at least q. If equality holds then $B = B(G, u)$ for some $B(G, u)$ arising from an additive subgroup H of $GF(q)$ as in the above construction.