FIXED POINT THEOREMS IN COMPLETE METRIC SPACES

G. EMMANUELE
Seminar of Mathematics, University of Catania, Catania, Italy

(Received 4 February 1980; in revised form 30 June 1980)

Key words: Generalized contractions, fixed point theorems, convergence of sequence of iterates.

1. INTRODUCTION

The study in fixed point theory has generally developed in three main directions: generalization of conditions which ensure existence, and, if possible, uniqueness, of fixed points; investigation of the character of the sequence of iterates \(\{T^n x\}_{n=1}^{\infty} \), where \(T: X \to X \), \(X \) a complete metric space, is the map under consideration; study of the topological properties of the set of fixed points, whenever \(T \) has more than one fixed point. This note treats only some aspects of the first and second question, along a line followed by many other authors. We mention, in particular, De Blasi [3], Kannan [4], Opial [7], Reich [8–10].

More precisely we consider maps \(T: X \to X \), which satisfy conditions of the type

\[
d(Tx, Ty) \leq \varphi(d(x, y)) + \psi(d(Tx, x)) + \zeta(d(Ty, y))
\]

for each \(x, y \in X \), and for these mappings we prove, under suitable hypotheses, existence and uniqueness of fixed points.

The paper consists of four sections. In Section 1 we prove a fundamental lemma. In Section 2 we use this in order to establish the main fixed point theorems. In Section 3 we obtain some well-known results as corollaries of our theorems. Further results are presented in Section 4.

1. Through all the paper, \(X \) denotes a complete metric space and \(T: X \to X \), an asymptotically regular mapping (see [2]); i.e., a function satisfying \(\lim_{n \to \infty} d(T^n x, T^{n+1} x) = 0 \) for each \(x \in X \).

Furthermore, we suppose that there exist three functions \(\varphi, \psi, \chi \), from \([0, +\infty[\) into \([0, +\infty[\), which satisfy the assumptions:

\[
(I_1) \quad \varphi(r) < r \quad \text{if} \quad r > 0,
\]

\[
(I_2) \quad \text{there exists} \lim_{r \to \infty} \varphi(r) < \varphi(\bar{r}) \quad \text{for each} \quad \bar{r} \in [0, +\infty[.
\]

\[
(I_3) \quad \psi(0) = \chi(0) = 0.
\]

Moreover, we suppose that \(T, \varphi, \psi, \chi \) satisfy the inequality

\[
(I_4) \quad d(Tx, Ty) \leq \varphi(d(x, y)) + \psi(d(Tx, x)) + \chi(d(Ty, y)) \quad \text{for each} \quad x, y \in X.
\]

Lemma. Under the above assumptions on \(X \) and \(T \) and if, in addition, \(\psi \) and \(\chi \) are continuous at \(r = 0 \), then, for each \(x \in X \), there exists \(z \in X \) such that \(\{T^n x\}_{n=0}^{\infty} \) converges to \(z \).
Proof: Suppose that there exists \(x \in X \) such that the sequence of iterates is not a Cauchy sequence. Then, following [9] there exist \(\varepsilon > 0 \), \(\{m(j)\}_{j=0}^{\infty} \), \(\{n(j)\}_{j=0}^{\infty} \) which satisfy the conditions

\[
m(j) > n(j) \quad \text{for each } j \in \mathbb{N} \quad (1.1)
\]
\[
\lim_{j \to \infty} n(j) = +\infty \quad (1.2)
\]
\[
d(T^{m(j)}x, T^{n(j)}x) \geq \varepsilon \quad (1.3)
\]
\[
d(T^{m(j)-1}x, T^{n(j)}x) < \varepsilon. \quad (1.4)
\]

Then, we have

\[
\varepsilon \leq d(T^{m(j)}x, T^{n(j)}x) \leq d(T^{m(j)}x, T^{m(j)-1}x) + d(T^{m(j)-1}x, T^{n(j)}x) < \varepsilon + d(T^{m(j)}x, T^{m(j)-1}x)
\]

which implies

\[
\lim_{j \to \infty} d(T^{m(j)}x, T^{n(j)}x) = \varepsilon. \quad (1.5)
\]

On the other hand

\[
d(T^{m(j)}x, T^{n(j)}x) \leq d(T^{m(j)}x, T^{m(j)+1}x) + d(T^{n(j)}x, T^{n(j)+1}x)
\]
\[
T^{m(j)+1}x \leq d(T^{m(j)}x, T^{m(j)+1}x) + d(T^{n(j)}x, T^{n(j)+1}x) + \varphi(d(T^{m(j)}x, T^{n(j)}x))
\]
\[
+ \psi(d(T^{m(j)+1}x, T^{m(j)}x)) + \chi(d(T^{n(j)+1}x, T^{m(j)}x))
\]

that is

\[
d(T^{m(j)}x, T^{n(j)}x) - \varphi(d(T^{m(j)}x, T^{n(j)}x)) \leq d(T^{m(j)}x, T^{m(j)+1}x) + d(T^{n(j)}x, T^{n(j)+1}x) + \psi(d(T^{m(j)+1}x, T^{m(j)}x)) + \chi(d(T^{n(j)+1}x, T^{m(j)}x))
\]

and, letting \(j \to +\infty \)

\[
\varepsilon - \lim_{j \to \infty} \varphi(d(T^{m(j)}x, T^{n(j)}x)) \leq 0.
\]

Hence, by (1.3) and (1.5) it follows that \(\varepsilon = 0 \), a contradiction. Since \(X \) is a complete metric space, the proof is complete.

2. In this section we shall prove two fixed point theorems: the first for noncontinuous, the second for continuous mappings.

Theorem 1. Let \(X, T, \varphi, \psi, \chi \) be as in the Lemma. Furthermore, we suppose that \(\chi(r) < r \) if \(r > 0 \). Then \(T \) has a unique fixed point.

Proof. Uniqueness is obvious by virtue of hypotheses \((I_1), (I_2)\) and \((I_4)\). So let us show existence. From the Lemma there is a \(z \in X \) such that \(T^n x \to z \), as \(n \to +\infty \), for each \(x \in X \). Since

\[
d(z, Tz) \leq d(z, T^n x) + d(T^n x, T^{n+1}x) + d(T^{n+1}x, Tz) \leq d(z, T^n x) + d(T^n x, T^{n+1}x)
\]
\[
+ \varphi(d(T^n x, z)) + \chi(d(Tz, z)) + \psi(d(T^n x, T^{n+1}x))
\]
we have
\[d(z, Tx) - \chi(d(z, Tz)) \leq 2d(z, T^n x) + d(T^n x, T^{n+1} x) + \psi(d(T^n x, T^{n+1} x)) \]
and, letting \(n \to +\infty \), we have
\[0 \leq d(z, Tz) - \chi(d(z, Tz)) \leq 0; \]
thus, \(z = Tz \) follows.

Remark 1. Obviously, the role of the functions \(\psi \) and \(\chi \) can be reversed.

For continuous functions, we can prove the following result.

Theorem 2. Let \(X, T, \phi, \psi, \chi \) be as in the Lemma. If, in addition, \(T \) is continuous, then it has a unique fixed point.

Proof. Uniqueness follows as in Theorem 1. Let \(z \in X \) be such that \(T^n x \to z \), as \(n \to +\infty \). From continuity of \(T \) we obtain
\[\lim_n T^{n+1} x = Tz \]
and, since \(T \) is asymptotically regular, we have \(z = Tz \).

Remark 2. If \(X \) is a closed, non-void, subset of a Banach space \(B \), Theorem 2 is still true under the assumption: "\(T \) is a strongly–weakly continuous mapping from \(X \) into \(X \)."

Remark 3. From the Lemma, Theorem 1 and Theorem 2, there follows that the sequence of iterates \(\{ T^n x \}_{n=0}^\infty \) converges to the unique fixed point of \(T \), for each \(x \in X \).

Remark 4. In [3] the author puts the following question: "Let \(T \) be an asymptotically regular, continuous mapping and let \(S \) be a non-void, weakly closed subset of a Hilbert space \(X \). If \(T, T:S \to S \), satisfies the condition
\[\| Tx - Ty \| \leq p\| x - y \| + q(\| Tx - x \| + \| Ty - y \|), \quad p^2 + q^2 = 1, \quad p, q \neq 0, \]
for each \(x, y \in S \), does the sequence \(\{ T^n x \}_{n=0}^\infty \) converge to the unique fixed point of \(T \), if it exists?"

By using Theorem 2, with \(\phi(r) = pr, \psi(r) = \chi(r) = qr \) for each \(r \in [0, +\infty[\), we answer, positively, to this question. Furthermore, if we use Theorem 1, we can dispense with the continuity of \(T \).

3. In this section we obtain some well-known results, as corollaries of our previous theorems.

Corollary 1 [6]. Let \(T \) be a function from \(X \) into \(X \). We suppose that there exists a map \(f, f: [0, +\infty[\to [0, +\infty[\), continuous from the right for each \(r \in [0, +\infty[\), such that
\[d(Tx, Ty) \leq f(d(x, y)), \quad \text{for each } x, y \in X. \]
If \(f(r) < r \), for \(r > 0 \), then the sequence \(\{ T^n x \}_{n=0}^\infty \) converges to the unique fixed point of \(T \).
Proof. We use Theorem 2. In this theorem let \(\varphi(r) = f(r) = 0 \), \(\psi(r) = \chi(r) = 0 \) be, for each \(r \in [0, +\infty] \). Moreover, if \(\nu \in \mathbb{N} \) exists such that \(T^{n+1}x = T^nx \), for each \(x \in X \), \(T \) is a asymptotically regular mapping. On the contrary, one has, for each \(x \in X \) such that this \(\nu \) doesn't exist,

\[
d(T^{n+1}x, T^nx) \leq f(d(T^nx, T^{n-1}x)) < d(T^nx, T^{n-1}x) \quad \text{for each } n \in \mathbb{N}.
\]

Put \(d = \lim d(T^{n+1}x, T^nx) \), we have \(d \leq f(d) \leq d \) and so \(d = 0 \).

COROLLARY 2 [1]. Let \(X, T \) be as in Corollary 1. Suppose that \(f \), from \([0, +\infty] \) into \([0, +\infty] \) is a non-decreasing function, continuous from the right such that

\[
d(Tx, Ty) \leq f(d(x, y)), \quad \text{for each } x, y \in X.
\]

If \(f(r) < r \) \((r > 0) \) and if \(X \) is bounded, then \(T \) has a unique fixed point.

COROLLARY 3 [3]. Let \(T \) be an asymptotically regular and continuous function, such that \(T \) maps \(S \) into \(S \), with \(S \) a non-void weakly closed subset of a Hilbert space \(H \). Also, we suppose that \(T \) satisfies

\[
\|Tx - Ty\| \leq \|Tx - x\| + \|Ty - y\|, \quad \text{for each } x, y \in X.
\]

Then, for each \(x \in S \), the sequence \(\{T^n x\}_{n=0}^{\infty} \) converges to the unique fixed point of \(T \).

Proof. In Theorem 2, we take \(\varphi(r) = 0 \), \(\psi(r) = \chi(r) = r \) for each \(r \geq 0 \).

COROLLARY 4 [3]. Let \(T \) be, \(T : S \to S \), \(S \) a non-void weakly closed subset of a Hilbert space \(H \), an asymptotically regular and continuous mapping, such that

\[
\|Tx - Ty\| \leq p\|x - y\| + q(\|Tx - x\| + \|Ty - y\|), \quad \text{for each } x, y \in X,
\]

with \(p^2 + q^2 < 1 \). Then, the thesis of Corollary 3 is true.

Proof. In Theorem 1, we put \(\varphi(r) = pr \), \(\psi(r) = \chi(r) = qr \), for each \(r \geq 0 \). We observe that, by using Theorem 1, we can dispense with the continuity of \(T \).

COROLLARY 5 [8]. Let \((X, d) \) be a complete metric space and let \(a, b, c \) be nonnegative numbers, with \(a + b + c < 1 \). Furthermore, suppose that \(T : X \to X \) satisfies

\[
d(Tx, Ty) \leq ad(x, y) + bd(Tx, x) + cd(Ty, y), \quad \text{for each } x, y \in X.
\]

Then, \(T \) has a unique fixed point.

Proof. We can take, in Theorem 1, \(\varphi(r) = ar \), \(\psi(r) = br \), \(\chi(r) = cr \), for each \(r \in [0, +\infty] \). Since, for each \(n \in \mathbb{N} \), we have

\[
d(T^{n+1}x, T^nx) \leq ad(T^nx, T^{n-1}x) + bd(T^{n+1}x, T^nx) + cd(T^nx, T^{n-1}x), \quad x \in X,
\]

if follows that

\[
d(T^{n+1}x, T^nx) \leq \left(\frac{a + c}{1 - b} \right)^n d(Tx, x), \quad x \in X.
\]
This fact implies that T is asymptotically regular, being $a + b + c < 1$.

Remark 5. Under the assumptions of Corollary 5, we have, by virtue of Remark 3, that the sequence $\{T^nx\}_{n=0}^\infty$ converges to the unique fixed point of T.

Corollary 6 [5]. Let $T: X \to X$, be a mapping satisfying the condition

$$d(Tx, Ty) \leq (x, y) - \Delta(d(x, y)),$$

for each $x, y \in X$ where $\Delta, \Delta: [0, + \infty[\to [0, + \infty[$, is a continuous function such that $\Delta(r) > 0$, if $r > 0$. Then, for each $x \in X$, the sequence $\{T^nx\}_{n=0}^\infty$ converges to the unique fixed point of T.

Proof. Asymptotical regularity follows as in Corollary 1. By putting, in Theorem 1, $\phi(r) = r - \Delta(r), \psi(t) = \chi(r) = 0$ for each $r \in [0, + \infty[$ one obtains the thesis. We observe that we can dispense with the continuity of Δ. In fact it suffices that Δ is a right continuous or a monotonically nondecreasing function.

4. In this section, we consider mappings $T, T: X \to X$, satisfying all assumptions of n. 1, with the exception of (I_4), which is replaced with

$$(I_4') \quad d(Tx, Ty) \leq \phi(d(x, y)) + p(d(x, y)) \psi(d(Tx, x)) + q(d(x, y)) \chi(d(Ty, y))$$

for each $x, y \in X$. Here $p, p: [0, + \infty[\to [0, + \infty[$, is a function such that

$$(I_3) \quad \lim_{s \to s^+} p(s) < + \infty, \text{ for each } s \in [0, + \infty[;$$

and $q, q: [0, + \infty[\to [0, + \infty[$, is a function such that

$$(I_4) \quad \lim_{s \to 0^+} q(s) < 1 \text{ and } \lim_{s \to s^+} q(s) < + \infty, \text{ for each } s \in [0, + \infty[.$$

Before proving the announced fixed point theorems, we observe that in this case the Lemma is still true if we suppose that ψ, χ are continuous functions as $r \to 0^+$. Then, with standard arguments, we prove

Theorem 3. If $X, T, \phi, \psi, \chi, p, q$ satisfy all previous assumptions and, in addition, $\chi(r) < r$ for each $r \in [0, + \infty[$, then T has a unique fixed point. Moreover, the sequence $\{T^nx\}_{n=0}^\infty$ converges to the unique fixed point of T.

This last Theorem 3 generalizes the following result of [10].

"Let (X, d) be a complete metric space. If $T, T: X \to X$, satisfies

$$d(Tx, Ty) \leq a(d(x, y))d(x, y) + b(x, y)d(Tx, x) + c(d(x, y))d(Ty, y),$$

where $x, y \in X, x \neq y$, and a, b, c are monotonically decreasing functions from $[0, + \infty[$ into $[0, 1]$ such that $a(s) + b(s) + c(s) < 1$, the T has a unique fixed point".

To this end, we observe, first of all, that T is an asymptotically regular mapping (see [10]). Moreover, we can take

$$\phi(r) = \begin{cases} 0 & r = 0; \\ 0 & r \neq 0 \end{cases}, \quad \psi(r) = \chi(r) = r \text{ for each } r \in [0, + \infty[; \quad p(s) = 1$$
for each $s \in [0, +\infty[$; since we may assume $c(s) < \frac{1}{2}$ (see [9])
\[
q(s) = \begin{cases}
\frac{1}{2} & s = 0 \\
c(s) & s \neq 0
\end{cases}
\]

By using Theorem 3 we obtain that T has a unique fixed point in X and, furthermore, that the sequence of iterates converges to this unique fixed point.

Finally, if T is a continuous mapping satisfying assumptions as in the Lemma we may prove a result as Theorem 2, without assumptions $\lim_{s \to 0^+} p(s) < +\infty$ and $\lim_{s \to 0^+} q(s) < 1$.

REFERENCES