
An Efficient Algorithm for the Approximate Median
Selection Problem

S. Battiato1, D. Cantone1, D. Catalano1, G. Cincotti1, and M. Hofri2

1 Dipartimento di Matematica e Informatica, Universit`a di Catania
Viale A. Doria 6, I–95125 Catania, Italy

fbattiato,cantone,catalano,cincotti g@cs.unict.it

2 Department of Computer Science, WPI
100 Institute Road, Worcester MA 01609-2280, USA

hofri@cs.wpi.edu

Abstract. We present an efficient algorithm for the approximate median selec-
tion problem. The algorithm worksin-place; it is fast and easy to implement.
For a large array it returns, with high probability, a very close estimate of the true
median. The running time is linear in the lengthn of the input. The algorithm per-
forms fewer than4

3
n comparisons and1

3
n exchanges on the average. We present

analytical results of the performance of the algorithm, as well as experimental
illustrations of its precision.

Keywords: Approximation algorithms, in-place algorithms, median selection,
analysis of algorithms.

1. Introduction

In this paper we present an efficient algorithm for thein-placeapproximate median
selection problem. There are several works in the literature treating the exact median
selection problem (cf. [BFP*73], [DZ99], [FJ80], [FR75], [Hoa61], [HPM97]). Various
in-place median finding algorithms have been proposed. Traditionally, the “comparison
cost model” is adopted, where the only factor considered in the algorithm cost is the
number of key-comparisons. The best upper bound on this cost found so far is nearly
3n comparisons in the worst case (cf. [DZ99]). However, this bound and the nearly-as-
efficient ones share the unfortunate feature that their nice asymptotic behaviour is “paid
for” by extremely involved implementations.

The algorithm described here approximates the median with high precision and
lends itself to an immediate implementation. Moreover, it is quite fast: we show that
it needs fewer than43n comparisons and13n exchanges on the average and fewer than
3
2n comparisons and12n exchanges in theworst-case. In addition to its sequential effi-
ciency, it is very easily parallelizable due to the low level of data contention it creates.

The usefulness of such an algorithm is evident for all applications where it is suffi-
cient to find an approximate median, for example in some heapsort variants (cf. [Ros97],
[Kat96]), or for median-filtering in image representation. In addition, the analysis of its
precision is of independent interest.

We note that the procedurepseudomedin [BB96, x7.5] is similar to performing just
one iteration of the algorithm we present (using quintets instead of triplets), as an aid in
deriving a (precise) selection procedure.

In a companion paper we show how to extend our method to approximate general
k-selection.

All the works mentioned above—as well as ours—assume the selection is from
values stored in an array in main memory. The algorithm has an additional property
which, as we found recently, has led to its being discovered before, albeit for solving a
rather different problem. As is apparent on reading the algorithms presented in Section
2, it is possible to perform the selection in this way “on the fly,” without keeping all
the values in storage. At the extreme case, if the values are read in one-by-one, the
algorithm only uses� 4 log3 n positions (includingblog3 nc loop variables). This way
of performing the algorithm is described in [RB90], in the context of estimating the
median of an unknown distribution. The authors show there that the value thus selected
is a consistent estimator of the desired parameter. They need pay no attention (and
indeed do not) to the relation between the value the algorithm selects and the actual
sample median. The last relation is the center point of interest for us. Curiously, Weide
notes in [Wei78] that this approach provides an approximation of the sample median,
though no analysis of the bias is provided. See [HM95] for further discussion of the
method of Rousseeuw and Bassett, and numerous other treatments of the statistical
problem of low-storage quantile (and in particular median) estimation.

In Section 2 we present the algorithm. Section 3 provides analysis of its run-time. In
Section 4, to show the soundness of the method, we present a probabilistic analysis of
the precision of its median selection. Since it is hard to glean the shape of the distribu-
tion function from the analytical results, we provide computational evidence to support
the conjecture that the distribution is asymptotically normal. In Section 5 we illustrate
the algorithm with a few experimental results, which also demonstrate its robustness.
Section 6 concludes the paper with suggested directions for additional research.

An extended version of this paper is available by anonymousftp from
ftp://ftp.cs.wpi.edu/pub/techreports/99-26.ps.gz .

2. The Algorithm

It is convenient to distinguish two cases:

2.1 The size of the input is a power of 3:n = 3
r

Letn = 3r be the size of the input array, with an integerr. The algorithm proceeds inr
stages. At each stage it divides the input into subsets of three elements, and calculates
the median of each such triplet. The ”local medians” survive to the next stage. The algo-
rithm continues recursively, using the local results to compute the approximate median
of the initial set. To incur the fewest number of exchanges we do not move the chosen
elements from their original triplets. This adds some index manipulation operations, but
is typically advantageous. (While the order of the elements is disturbed, the contents of
the array is unchanged).

Approximate Median Algorithm (1)

Triplet Adjust(A, i, Step)
Let j= i+Stepandk= i+2 � Step; this procedure moves the median of a triplet of
terms at locationsi; j; k to the middle position.

if (A[i] < A[j])
then

if (A[k] < A[i]) then Swap(A[i]; A[j]);
else if (A[k] < A[j]) then Swap(A[j]; A[k]);

else
if (A[i] < A[k]) then Swap(A[i]; A[j]);
else if (A[k] > A[j]) then Swap(A[j]; A[k]);

Approximate Median(A, r)
This procedure returns the approximate median of the arrayA[0; :::; 3r � 1].

Step=1; Size=3r;

repeatr times
i=(Step�1)/2;
while i < Sizedo

Triplet Adjust(A, i, Step);
i=i+(3�Step);

end while;
Step= 3�Step;

end repeat;
returnA[(Size� 1)=2];

Fig. 1. Pseudo-code for the approximate median algorithm,n = 3r; r 2 N.

In Fig. 1 we show pseudo-code for the algorithm. The procedureTriplet Adjustfinds
the median of triplets with elements that are indexed by two parameters: one,i, denotes
the position of the leftmost element of triplet in the array. The second parameter,Step, is
the relative distance between the triplet elements. This approach requires that when the
procedure returns, the median of the triplet is in the middle position, possibly following
an exchange. TheApproximateMedianalgorithm simply consists of successive calls to
the procedure.

2.2 The extension of the algorithm to arbitrary-size input

The method described in the previous subsection can be generalized to array sizes which
are not powers of 3. The basic idea is similar. Letn be the input size at the current stage,
where

n = 3 � t+ k; k 2 f0; 1; 2g:

We divide the input into(t� 1) triplets and a(3+ k)-tuple. The(t� 1) triplets are pro-
cessed by the sameTriplet Adjustprocedure described above. The last tuple is sorted

(using an adaptation of selection-sort) and the median is extracted. The algorithm con-
tinues iteratively using the results of each stage as input for a new one. This is done
until the number of local medians falls below a small fixed threshold. We then sort the
remaining elements and obtain the median. To symmetrize the algorithm, the array is
scanned from left to right during the first iteration, then from right to left on the second
one, and so on, changing the scanning sense at each iteration. This should reduce the
perturbation due to the different way in which the medians from the(3 + k)-tuples are
selected and improve the precision of the algorithm. Note that we chose to select the
second element out of four as the median (2 out of 1..4). We show pseudo-code for the
general case algorithm in Fig. 2.

Approximate Median Algorithm (2)

SelectionSort (A, Left, Size, Step)
This procedure sortsSizeelements of the arrayA located at positionsLeft, Left+ Step,
Left+ 2 � Step; : : : ; Left+ (Size� 1) � Step.

for (i = Left ; i < Left+ (Size� 1) � Step; i = i+ Step)
Min = i;
for (j = i+ Step; j < Left+ Size� Step; j = j + Step)

if (A[j] < A[min]) thenmin = j;
end for;
Swap(A[i]; A[min]);

end for;

Approximate Median AnyN (A, Size)
This procedure returns the approximate median of the arrayA[0; :::; Size� 1].
LeftToRight= False; Left= 0; Step= 1;
while (Size> Threshold) do

LeftToRight= Not (LeftToRight);
Rem = (Sizemod3);
if (LeftToRight) theni = Left;

else i = Left+ (3 +Rem) � Step;
repeat(Size=3� 1) times

Triplet Adjust (A, i, Step);
i = i+ 3 � Step;

end repeat;
if (LeftToRight) thenLeft= Left+ Step;

else i = Left;
Left= Left+ (1 +Rem) � Step;

SelectionSort (A, i, 3 +Rem, Step);
if (Rem = 2) then

if (LeftToRight) then Swap(A[i+ Step], A[i+ 2 � Step])
else Swap(A[i+ 2 � Step], A[i+ 3 � Step]);

Step= 3 � Step; Size= Size=3;
end while;
SelectionSort (A, Left, Size, Step);
returnA[Left+ Step� b(Size� 1)=2c];

Fig. 2. Pseudo-code for the approximate median algorithm, anyn 2 N.

Note:The reason we use a terminating tuple of size 4 or 5, rather than 1 or 2, is to keep
the equal spacing of elements surviving one stage to the next.

The procedureSelection Sort takes as input four parameters: the arrayA, its size
and two integers,Left andStep. At each iterationLeft points to the leftmost element
of the array which is in the current input, andStepis the distance between any two
successive elements in this input.

There are several alternatives to this approach for arbitrary-sized input. An attractive
one is described in [RB90], but it requiresadditional storageof approximately4 log3 n
memory locations.

3. Run-time Analysis: Counting Moves and Comparisons

Most of the work of the algorithm is spent inTriplet Adjust, comparing values and ex-
changing elements within triplets to locate their medians. We compute now the number
of comparisons and exchanges performed by the algorithmApproximateMedian.

Like all reasonable median-searching algorithms, ours has running-time which is
linear in the array size. It is distinguished by the simplicity of its code, and hence it is
extremely efficient. We consider first the algorithm described in Fig. 1.

Let n = 3r, r 2 N , be the size of a randomly-ordered input array. We have the
following elementary results:

Theorem 1. Given an input of sizen, the algorithmApproximateMedianperforms
fewer than43n comparisons and13n exchanges on the average. ut

Proof: Consider first theTriplet Adjustsubroutine. In the following table we show the
number of comparisons and exchanges,C3 andE3, for each permutation of three distinct
elements:

A[i] A[i+Step] A[i+2*Step] Comparisons Exchanges
1 2 3 3 0
1 3 2 3 1
2 1 3 2 1
2 3 1 2 1
3 1 2 3 1
3 2 1 3 0

Clearly, assuming all orders equally likely, we find Pr(C3 = 2) = 1 � Pr(C3 =
3) = 1=3, and similarly Pr(E3 = 0) = 1 � Pr(E3 = 1) = 1=3, with expected values
E[E3] = 2=3 andE[C3] = 8=3.

To find the work of the entire algorithm with an input of sizen, we multiply the
above byT (n), the number of times the subroutineTriplet Adjust is executed. This
number is deterministic. We haveT (1) = 0 and T (n) = n

3 + T (n3), for n > 1; for n
which is a power of 3 the solution is immediate:T (n) = 1

2 (n� 1).
Let �n be the number of possible inputs of sizen and let�n be the total number

of comparisons performed by the algorithm on all inputs of sizen.

The average number of comparisons for all inputs of sizen is:

C(n) =
�n

�n
=

16 � T (n) � n!=3!

n!
=

4

3
(n� 1):

To get�n we count all the triplets considered for all the�n inputs, i.e.n! � T (n); for
each triplet we consider the cost over its3! permutations (the factor16 is the cost for
the3! permutations of each triplet1).

The average number of exchanges can be shown analogously, since two out of three
permutations require an exchange.

By picking the “worst” rows in the table given in the proof of Theorem 1, it is straight-
forward to verify also the following:

Theorem 2. Given an input of sizen = 3r, the algorithmApproximateMedianper-
forms fewer than32n comparisons and12n exchanges in the worst-case. ut

For an input size which is a power of 3, the algorithm of Fig. 2 performs nearly
the same operations as the simpler algorithm – in particular, it makes the same key-
comparisons, and selects the same elements. Forlog3 n =2 N, their performance only
differs on one tuple per iteration, hence the leading term (and its coefficient) in the
asymptotic expression for the costs is the same as in the simpler case.

The non-local algorithm described in [RB90] performs exactly the same number of
comparisons as above but always moves the selected median. The overall run-time cost
is very similar to our procedure.

4. Probabilistic Performance Analysis

4.1 Range of Selection

It is obvious that not all the input array elements can be selected by the algorithm —
e.g., the smallest one is discarded in the first stage. Let us consider first the algorithm of
Fig. 1 (i.e.whenn is a power of 3). Letv(n) be the number of elements from the lower
end (alternatively – upper end, since theApproximateMedianalgorithm has bilateral
symmetry) of the input whichcannot be selectedout of an array ofn elements. It is easy
to verify (by observing the tree built with the algorithm) thatv(n) obeys the following
recursive inequality:

v(3) = 1 ; v(n) � 2v(n=3) + 1: (1)

Moreover, whenn = 3r, the equality holds. The solution of the recursiveequation,

fv(3) = 1; v(n) = 2v(n=3) + 1g

1 Alternatively, we can use the following recurrence:C(1) = 0 andC(n) = n

3
� c+C(n

3
), for

n > 1, wherec = 16

6
is the average number of comparisons ofTriplet Adjust (because all the

3! permutations are equally likely).

is the following function

v(n) = nlog3 2 � 1 = 2log3 n � 1:

Let x be the output of the algorithm over an input ofn elements. From the definition of
v(n) it follows that

v(n) < rank(x) < n� v(n) + 1: (2)

The second algorithm behaves very similarly (they perform the same operations
whenn = 3r) and the range functionv(n) obeys the same recurrence.

Unfortunately not many entries get thus excluded. The range of possible selection,
as a fraction of the entire set of numbers, increases promptly withn. This is simplest to
illustrate withn that is a power of 3. Sincev(n) can be written as2log3 n � 1, the ratio
v(n)=n is approximately(2=3)log3 n. Thus, forn = 33 = 27, where the smallest (and
largest) 7 numbers cannot be selected, 52% of the range is excluded; the comparable
restriction is 17.3% forn = 36 = 729 and only 1.73% forn = 312 = 531441.

The true state of affairs, as we now proceed to show, is much better: while the pos-
sible range of choice is wide, the algorithm zeroes in, with overwhelming probability,
on a very small neighborhood of the true median.

4.2 Probabilities of Selection

The most telling characteristic of the algorithms is their precision, which can be ex-
pressed via the probability function

P (z) = Pr[zn < rank(x) < (1� z)n+ 1]; (3)

for 0 � z � 1=2, which describes the closeness of the selected value to the true median.
The purpose of the following analysis is to show the behavior of this distribution.

We considern which is a power of 3.

Definition 1. Letq(r)a;b be the number of permutations, out of then! = 3r! possible ones,

in which the entry which is theath smallest in the set is: (1) selected, and (2) becomes
thebth smallest in the next set, which hasn3 = 3r�1 entries.

It turns out that this quite narrow look at the selection process is all we need to
characterize it completely.

It can be shown that

q
(r)
a;b = 2n(a� 1)!(n� a)!

�n
3 � 1

b� 1

�
3a�b�1 �

X
i

�
b� 1

i

�� n
3 � b

a� 2b� i

�
1

9i
(4)

(for details, see [BCC*99]).
It can also be seen thatq(r)a;b is nonzero for0 � a � 2b � n

3 � 1 only. The sum is

expressible as a Jacobi polynomial,
�
8
9

�a�2b
P
(u;v)
a�2b

�
5
4

�
, whereu = 3b � a � 1; v =

n
3 + b� a, and a simpler closed form is unlikely.

Let p(r)a;b be the probability that itema gets to be thebth smallest among those se-
lected for the next stage. Since then! = 3r! permutations are assumed to be equally
likely, we havep(r)a;b = q

(r)
a;b=n!:

p
(r)
a;b =

2

3

3�b
�n
3
�1

b�1

�
3�a
�
n�1
a�1

� �X
i

�
b� 1

i

�� n
3 � b

a� 2b� i

�
1

9i

=
2

3

3�b
�n
3
�1

b�1

�
3�a
�
n�1
a�1

� � [za�2b](1 +
z

9
)b�1(1 + z)

n
3
�b: (5)

This allows us to calculate the center of our interest: The probabilityP
(r)
a , of starting

with an array of the firstn = 3r natural numbers, and having the elementa ultimately
chosen as approximate median. It is given by

P (r)
a =

X
br

p
(r)
a;br

P
(r�1)
br

=
X

br;br�1;���;b3

p
(r)
a;br

p
(r�1)
br;br�1

� � � p
(2)
b3;2

; (6)

where2j�1 � bj � 3j�1 � 2j�1 + 1, for j = 3; 4; : : : ; r.

Some telescopic cancellation occurs when the explicit expression forp
(r)
a;b is used

here, and we get

P (r)
a =

�
2

3

�r
3a�1�
n�1
a�1

� X
br;br�1;���;b3

rY
j=2

X
ij�0

�
bj � 1

ij

��
3j�1 � bj

bj+1 � 2bj � ij

�
1

9ij
: (7)

As above, eachbj takes values in the range[2j�1:::3j�1 � 2j�1 + 1], b2 = 2 and
br+1 � a (we could let allbj take all positive values, and the binomial coefficients

would produce nonzero values for the required range only). The probabilityP
(r)
a is

nonzero forv(n) < a < n� v(n) + 1 only.
This distribution has so far resisted our attempts to provide an analytic characteriza-

tion of its behavior. In particular, while the examples below suggest very strongly that
as the input array grows, it approaches the normal distribution, this is not easy to show
analytically. (See Section 4.4 of [BCC*99] for an approach to gain further information
about the large-sample distribution.)

4.3 Examples

We computedP (r)
a for several values ofr. Results for a small array (r = 3; n = 27)

are shown in Fig.3. By comparison, with a larger array (r = 5; n = 243, Fig. 4) we
notice the relative concentration of the likely range of selection around the true median.
In terms of these probabilities the relation (3) is:

X
bznc<a<d(1�z)ne+1

P (r)
a (8)

where0 � z < 1
2 .

0

0.05

0.1

0.15

0.2

0.25

8 10 12 14 16 18 20

Fig. 3.Plot of the median probability distribution for n=27.

We chose to present the effectiveness of the algorithm by computing directly from
equation (7) the statistics of the absolute value of the bias of the returned approximate
median,Dn � jXn � Md(n)j (whereMd(n) is the true median,(n + 1)=2). We
compute its mean (Avg.) and standard deviation, denoted by�d.

A measure of the improvement of the selection effectiveness with increasing (initial)
array sizen is seen from the variance ratio�d=Md(n). This ratio may be viewed as a
measure of the expected relative error of the approximate median selection algorithm.

Numerical computations produced the numbers in Table 1; note the trend in the
rightmost column. (This trend is the basis for the approach examined in Section 4.4 of
[BCC*99].)

n r = log3 n Avg. �d �d=
p
n

9 2 0.428571 0.494872 0.164957
27 3 1.475971 1.184262 0.227911
81 4 3.617240 2.782263 0.309140

243 5 8.096189 6.194667 0.397388
729 6 17.377167 13.282273 0.491958

2187 7 36.427027 27.826992 0.595034

Table 1.Statistics of the median selection as function of array size.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

20 40 60 80 100 120 140 160 180 200 220

Fig. 4. Plot of the median probability distribution for n=243.

5. Experimental Results

In this section we present empirical results, demonstrating the effectiveness of the algo-
rithms – also for the cases which our analysis does not handle directly. Our implemen-
tation is in standard C (GNU C compiler v2.7). All the experiments were carried out on
a PC Pentium II 350Mhz with the Linux (Red Hat distribution) operating system. The
lists were permuted using the pseudo-random number generator suggested by Park and
Miller in 1988 and updated in 1993 [PM88]. The algorithm was run on random arrays
of sizes that were powers of 3,n = 3r, with r 2 f3; 4; : : : ; 11g, and others. The entry
keys were always the integers1; : : : ; n.

The following tables present results of such runs. They report the statistics ofDn,
the absolute value of the bias of the approximate median. For each returned result we
compute its distance from the correct median+1

2 . The units we use in the tables are
“normalized” values ofDn, denoted byd%; these are percentiles of the possible range
of error of the algorithm:d% = 100 � Dn

(n�1)=2 . The extremes ared% = 0 when the
true median is returned – and it would have been 100 if it were possible to return the
smallest (or largest) elements. (But relation (2) shows thatd% can get arbitrarily close
to 100 asn increases, but never quite reach it). Moreover, the probability distributions
of the last section suggest, as illustrated in Figure 4, that such deviations are extremely
unlikely. Table 2 shows selected results, using a threshold value of 8. All experiments
used a sample size of 5000, throughout.

n Avg. � Avg. + 2� Rng(95%) (Min-Max)
50 10.27 7.89 26.05 24.49 0.00–44.90
100 8.45 6.63 21.70 20.20 0.00–48.48
35 6.74 5.13 17.00 16.53 0.00–38.02
500 5.80 4.41 14.63 14.03 0.00–29.06
36 4.83 3.71 12.26 12.09 0.00–24.73

1000 4.70 3.66 12.02 11.61 0.00–23.62
37 3.32 2.54 8.41 8.05 0.00–16.83

5000 2.71 2.10 6.91 6.72 0.00–17.20
38 2.31 1.75 5.81 5.67 0.00–11.95

10000 2.53 1.86 6.24 6.04 0.00–11.38
39 1.58 1.18 3.94 3.86 0.00–6.78

Table 2.Simulation results ford%, fractional bias of approximate median. Sample size = 5000.

The columns are:n – array size; Avg. – the average ofd% over the sample;� – the
sample standard-error ofd%; Rng. (95%) – the size of an interval symmetric around
Avg. that contains 95% of the returned values; the last column gives the extremes ofd%
that were observed. In the rows that correspond to those of Table 1, the agreement of the
Avg. and� columns is excellent (the relative differences are under0:5%). Columns 4
and 5 suggest the closeness of the median distribution to the Gaussian, as shown above.

All the entries show the critical dependence of the quality of the selection on the
size of the initial array. In the following table we report the data for different values of
n with sample size of 5000, varying the threshold.

t=8 t=26 t=80
n Avg. � Rng. (95%) Avg. � Rng. (95%) Avg. � Rng. (95%)

100 8.63 6.71 22.22 6.80 5.31 16.16 4.64 3.61 12.12
500 5.80 4.41 14.43 4.40 3.30 10.82 3.22 2.40 7.62

1000 4.79 3.67 12.01 3.80 2.88 9.41 2.98 2.27 7.41
10000 2.54 1.87 6.05 1.67 1.28 4.14 1.40 1.06 3.44

Table 3.Quality of selection as a function of threshold value.

As expected, increasing the threshold—the maximal size of an array which is sorted,
to produce the exact median of the remaining terms—provides better selection, at the
cost of rather larger processing time. For largen, threshold values beyond 30 provide
marginal additional benefit. Settling on a correct trade-off here is a critical step in tuning
the algorithm for any specific application.

Finally we tested for the relative merit of using quintets rather than triplets when
selecting for the median. In this casen = 1000, Threshold=8, and sample size=5000.

Avg. � Avg. + 2� Rng(95%) (Min-Max)
Triplets 4.70 3.66 12.02 11.61 0.00–23.62
Quintets 3.60 2.74 9.08 9.01 0.00–16.42

Table 4.Comparing selection via triplets and quintets.

6. Conclusion

We have presented an approximate median finding algorithm, and an analysis of its
characteristics. Both can be extended. In particular, the algorithm can be adapted to
select an approximatekth-element – for anyk 2 [1; n]. The analysis of Section 4 can be
extended to show how to compute with the exact probabilities, as given in equation (7).
Also, the limiting distribution of the biasD with respect to the true median – while we
know it is extremely close to a gaussian distribution, we have no efficient representation
for it yet.

Acknowledgments

The derivations of Section 4.4 in [BCC*99] are largely due to Svante Janson. The refer-
ences [HM95], [RB90], and [Wei78] were provided by Reza Modaress. We are grateful
for their contributions.

The authors wish also to thank an anonymous referee for some useful comments.

References

[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman.The Design and Analysis of Computer
algorithms. Addison Wesley, Reading, MA 1974.

[BB96] G. Brassard and P. Bratley.Fundamentals of Algorithmics. Prentice-Hall, Englewood
Cliffs, NJ 1996.

[BCC*99] S. Battiato, D. Cantone, D. Catalano, G. Cincotti, and M. Hofri.An Effi-
cient Algorithm for the Approximate Median Selection Problem. Technical Report
WPI-CS-TR-99-26, Worcester Polytechnic Institute, October 1999. Available from
ftp://ftp.cs.wpi.edu/pub/techreports/99-26.ps.gz .

[BFP*73] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R. Tarjan. Time bounds for selection.
Journal of Computer and Systems Sciences, 7(4):448–461, 1973.

[CS87] S. Carlsson, M. Sundstrom. Linear-time In-place Selection in Less than 3n Com-
parisons - Division of Computer Science, Lulea University of Technology, S-971 87
LULEA, Sweden.

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest.Introduction to Algorithms. McGraw-
Hill, 1990.

[CM89] W. Cunto and J.I. Munro. Average case selection.Journal of the ACM, 36(2):270–279,
1989.

[Dra67] Alvin W. Drake.Fundamentals of Applied Probability Theory. McGraw-Hill, 1967.
[DZ99] D. Dor, and U. Zwick. Selecting the Median.SIAM Jour. Comp., 28(5):1722–1758,

1999.

[FJ80] G.N. Frederickson, D.B. Johnson. Generalized Selection and Ranking.Proceedings
STOC-SIGACT, Los Angeles CA, 12:420–428, 1980.

[Fre90] G.N. Frederickson. The Information Theory Bound is Tight for selection in a heap.
Proceedings STOC-SIGACT, Baltimore MD, 22:26–33, 1990.

[FR75] R.W. Floyd, R.L. Rivest. Expected time bounds for selection.Communications of the
ACM, 18(3):165–172, 1975.

[Hoa61] C.A.R. Hoare. Algorithm 63(partition) and algorithm 65(find).Communications of the
ACM, 4(7):321–322, 1961.

[Hof95] M. Hofri, Analysis of Algorithms: Computational Methods & Mathematical Tools,
Oxford University Press, New York (1995).

[HM95] C. Hurley and Reza Modarres: Low-Storage quantile estimation,Computational
Statistics, 10:311–325, 1995.

[HPM97] P. Kirschenhofer, C. Martinez, and H. Prodinger. Analysis of Hoare’s Find algorithm
with median-of-three partition.Random Structures and Algorithms, 10:143–156, 1997.

[Kat96] J. Katajainen.The Ultimate Heapsort, DIKU Report 96/42, Department of Computer
Science, Univ. of Copenhagen, 1996.

[Knu98] D.E. Knuth.The Art of Computer Programming, volume 3: Sorting and Searching.
Addison-Wesley, 2nd Ed. 1999.

[LW88] T.W. Lai, and D. Wood. Implicit Selection.Scandinavian Workshop on Algorithm The-
ory (SWAT88):18–23, LNCS 38 Springer-Verlag, 1988.

[Meh84] K. Mehlhorn.Sorting and Searching, Data Structures and Algorithms, volume 1.
Springer-Verlag, 1984.

[Noz73] A. Nozaky. Two Entropies of a Generalized Sorting Problems.Journal of Computer
and Systems Sciences, 7(5):615–621, 1973.

[PM88] S. K. Park and K. W. Miller. Random number generators: good ones are hard to find.
Communications of the ACM, 31(10):1192–1201, 1988. Updated inCommunications
of the ACM, 36(7):108–110, 1993.

[Ros97] L. Rosaz.Improving Katajainen’s Ultimate Heapsort, Technical Report N.1115, Lab-
oratoire de Recherche en Informatique, Universit´e de Paris Sud, Orsay, 1997.

[RB90] P.J. Rousseeuw and G.W. Bassett: The remedian: A robust averaging method for large
data sets.Jour. Amer. Statist. Assoc, 409:97–104, 1990.

[SJ99] Savante Janson – Private communication, June 1999.
[SPP76] A. Schonhage, M. Paterson, and N. Pippenger. Finding the median.Journal of Com-

puter and Systems Sciences, 13:184–199, 1976.
[Wei78] B. W. Weide. Space efficient on-line selection algorithm.Proceedings of the 11th sym-

posium of Computer Science and Statistics, on the interface, 308–311. (1978).

