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We consider the problem of localizing visitors in a cultural site from ego-
centric (�rst person) images. Localization information can be useful both
to assist the user during his visit (e.g., by suggesting where to go and what
to see next) and to provide behavioral information to the manager of the
cultural site (e.g., how much time has been spent by visitors at a given
location? What has been liked most?). To tackle the problem, we collected
a large dataset of egocentric videos using two cameras: a head-mounted
HoloLens device and a chest-mounted GoPro. Each frame has been labeled
according to the location of the visitor and to what he was looking at. �e
dataset is freely available in order to encourage research in this domain. �e
dataset is complemented with baseline experiments performed considering
a state-of-the-art method for location-based temporal segmentation of ego-
centric videos. Experiments show that compelling results can be achieved
to extract useful information for both the visitor and the site-manager.

CCS Concepts: •Computing methodologies→ Scene understanding;
Video summarization; Video segmentation;

Additional Key Words and Phrases: Egocentric Vision, First Person Vision,
Temporal Video Segmentation

1 INTRODUCTION
Cultural sites receive lots of visitors every day. To improve the
fruition of cultural objects, a site manager should be able to assist
the users during their visit by providing additional information and
suggesting what to see next, as well as to gather information to
understand the behavior of the visitors (e.g., what has been liked
most) in order to improve the suggested visit paths or the placement
of artworks. Traditional ways to achieve such goals include the
employment of professional guides, the installation of informative
panels, the distribution of printed material to the users (e.g., maps
and descriptions) and the collection of visitors’ opinions through sur-
veys. When the number of visitors grows large, the aforementioned
traditional tools tend to become less e�ective, which motivates the
employment of automated technologies. In order to assist visitors
in a scalable and interactive way, site managers have employed
technologies aimed at providing complementary information on
the cultural objects on demand. An example of such technologies
are audio guides, which allow to obtain spoken information about
a point of interest by dialling the appropriate number on the de-
vice. Similarly, the use of tablets or smartphones allows to obtain
audio-visual complementary information of an observed object of
the cultural site by interacting with a touch interface (e.g., inserting
the number of the cultural object of interest) or by taking a picture
of a QR Code. Although e�ective in some cases, the aforementioned
technologies are very limited by the following factors:

∗�is is the corresponding author

• they require the active intervention of the visitor, who
needs to specify the correct number or to take a picture of
the right QR Code;

• they require the site manager to install informative panels
reporting the number or QR Code corresponding to a given
cultural object (which is sometimes not possible due to the
nature of the site).

Moreover, traditional systems are unable to acquire any information
useful to understand the visitor’s habits or interests. To gather
information about the visitors (i.e., what they see and where they
are) in an automated way, past works have employed �xed cameras
and classic “third person vision” algorithms to detect, track, count
people and estimate their gaze [3]. However, systems based on third
person vision are capped by several limitations: 1) �xed cameras
need to be installed in the cultural site and this is not always possible,
2) the �xed viewpoint of third person cameras makes it di�cult
to estimate what the visitors are looking at (e.g., ambiguity on
estimation of what people see), 3) �xed cameras are easily a�ected
by occlusion and people re-identi�cation problems (e.g., di�culties
to follow a person from a room to another), 3) the system has to
work for several visitors at a time, making it di�cult to pro�le them
and to adapt its functioning to their speci�c needs (e.g., personal
recommendation). Moreover, systems based on third person vision
cannot easily communicate to the visitor in order to “augment his
visit” providing information on the observed cultural object or by
recommending what to see next.

Ideally, we would like to provide the user with an unobtrusive
wearable device capable of addressing both tasks: augmenting the
visit and inferring behavioral information about the visitors. We
would like to note that wearable devices are particularly suited to
solve this kind of tasks as they are naturally worn and carried by
the visitor. Moreover, wearable systems do not require the explicit
intervention of the visitor to deliver services such as localization,
augmented reality and recommendation. �e device should be aware
of the current location of the visitor and capable to infer what he
is looking at, and, ultimately, his behavior (e.g., what has already
been seen? for how long?). Such a system would allow to provide
automatic assistance to the visitor by showing him the current
location, guiding him to a given area of the site, giving information
about the currently observed cultural object, keeping track of what
has been already seen and for how long, and suggesting what is
yet to be seen by the visitor. Equipping multiple visitors with an
egocentric vision device, it would be possible to track a pro�le of the
di�erent visitors in order to provide: 1) recommendations on what
to see in the cultural site based on what has already been seen/liked
(e.g, considering how much time has been spent at a given location
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or for how long the user has observed a cultural object), 2) statistics
on the behaviors of the visitors within the site. Such statistics could
be of great use by the site manager to improve the services o�ered
by the cultural site and to facilitate the fruition of the cultural site.

As investigated by other authors [5, 6, 20, 25], wearable devices
equipped with a camera such as smart glasses (e.g., Google Glass,
Microso� HoloLens and Magic Leap) o�er interesting opportunities
to develop the aforementioned technologies and services for visitors
and site managers. Wearable glasses equipped with mixed reality
visualization systems (i.e., capable of displaying virtual elements on
images coming from the real world) such as Microso� HoloLens and
Magic Leap allow to provide information to the visitor in a natural
way, for example by showing a 3D reconstruction of a cultural
object or by showing virtual textual information next to a work of
art. In particular, a wearable system should be able to carry out at
least the following tasks: 1) localizing the visitor at any moment
of the visit, 2) recognizing the cultural objects observed by the
visitor, 3) estimating the visitor’s a�ention, 4) pro�ling the user, 5)
recommending what to see next.

In this work, we address egocentric visitor localization, the �rst
step towards the construction of a wearable system capable of assist-
ing the visitor of a cultural site and collect information useful for the
site management. In particular, we concentrate on the problem of
room-based localization of visitors in cultural sites from egocentric
visual data. As it is depicted in Figure 1, egocentric localization of
visitors already enables di�erent applications providing services to
both the visitor and the site manager. In particular, localization al-
lows to implement a “where am I” service, to provide the user which
his own location in the cultural site and a location-based recommen-
dation system. By collecting and managing localization information
over time, the site manager will be able to pro�le visitors and under-
stand their behavior. To study the problem we collected and labeled
a large dataset of egocentric videos in the cultural site “Monastero
dei Benede�ini”1, UNESCO World Heritage Site, which is located
in Catania, Italy. �e dataset has been acquired with two di�erent
devices and contains more than 4 hours of video. Each frame has
been labeled according to the location in which the user was located
at the moment of data acquisition, as well as with the cultural object
observed by the subject (if any). �e dataset is publicly available for
research purposes at h�p://iplab.dmi.unict.it/VEDI/.

We also report baseline results for the the problem of room-based
localization on the proposed dataset. Experimental results point out
that useful information such as the time spent in each location by
visitors can be e�ectively obtained with egocentric systems.

�e rest of the paper is organized as follows. In Section 2 we
discuss the related work. �e dataset proposed in this study is pre-
sented in Section 3. Section 4 revises the baseline approach for
room-based localization of visitors in a cultural site. �e experimen-
tal se�ings are reported in Section 5, while the results as well as a
graphical interface to allow the analysis of the egocentric videos by
the site manager are presented in Section 6. Section 7 concludes the
paper.

1www.monasterodeibenede�ini.it/en

2 RELATED WORK
�e use of Computer Vision to improve the fruition of cultural
objects has been already investigated in past studies. Cucchiara and
Del Bimbo discuss the use of computer vision and wearable devices
for augmented cultural experiences in [6]. In [5] it is presented
the design for a system to provide context aware applications and
assist tourists. In [25] it is described a system to perform real-time
object classi�cation and artwork recognition on a wearable device.
�e system makes use of a Convolutional Neural Network (CNN)
to perform object classi�cation and artwork classi�cation. In [17]
is discussed an approach for egocentric image classi�cation and
object detection based on Fully Convolutional Networks (FCN). �e
system is adapted to mobile devices to implement an augmented
audio-guide. In [9], it is proposed a method to exploit georeferenced
images publicly available on social media platforms to get insights
on the behavior of tourists. In [20] is addressed the problem of
creating a smart audio guide that adapts to the actions and interests
of visitors. �e system uses CNNs to perform object classi�cation
and localization and is deployed on a NVIDIA Jetson TK1. In [22] is
investigated multimodal navigation of multimedia contents for the
fruition of protected natural areas.

Visitors’ localization can be tackled outdoor using Global Position-
ing System (GPS) devices. �ese systems, however, are not suitable
to localize the user in an indoor environment. �erefore, di�erent
Indoor Positioning Systems (IPS) have been proposed through the
years [7]. In order to retrieve accurate positions, these systems
rely on devices such as active badges [27] and WiFi networks [10],
which need to be placed in the environments and hence become part
of the infrastructure. �is operational way is not scalable since it
requires the installation of speci�c devices, which is expensive and
not always feasible, for instance, in the context of cultural heritage.
Visual localization can be used to overcome many of the considered
challenges. For instance, previous works addressed visual landmark
recognition with smartphones [1, 15, 28]. In particular, the use of
a wearable cameras allows to localize the user without relying on
speci�c hardware installed in the cultural site. Visual localization
can be performed at di�erent levels, according to the required lo-
calization precision and to the amount of available training data.
�ree common levels of localization are scene recognition [16, 30],
location recognition [2, 8, 24, 26] and 6-DOF camera pose estima-
tion [14, 19, 21]. Some works also investigated the combination of
classic localization based on non-visual sensors (such as bluetooth)
with computer vision [11, 12].

In this work, we concentrate on location recognition, since we
want to be able to recognize the environment (e.g., room) in which
the visitor is located. Location recognition is the ability to recognize
when the user is moving in a speci�c space at the instance level. In
this case the egocentric (�rst person) vision system should be able
to understand if the user is in a given location. Such location can
either be a room (e.g., o�ce 368 or exhibition room 3) or a personal
space (e.g., o�ce desk). In order to setup a location recognition
system, it is usually necessary to acquire a moderate amount of
visual data covering all the locations visited by the user. Visual
location awareness has been investigated by di�erent authors over
the years. In [24] has been addressed the recognition of basic tasks
and locations related to the Patrol game from egocentric videos in
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Where am I?

Visitor

Site Manager
Egocentric Vision for Cultural Sites

Understanding the Behaviour of Visitors

Localization System

CLUSTER A
CLUSTER B

Location-Based
Recommendation

Profiling of Visitors

Fig. 1. A diagram of a system which uses egocentric visitor localization to provide assistance to the user and augment his visit (le�) and to provide useful
information to the site manager (right).

order to assist the user during the game. �e system was able to rec-
ognize the room in which the user was operating using simple RGB
color features. An Hidden Markov Model (HMM) was employed
to enforce the temporal smoothness of location predictions over
time. In [2], it is proposed a system to recognize personal locations
from egocentric video using the approaching trajectories observed
by the wearable camera. At training time the system built a dic-
tionary of visual trajectories (i.e., collections of images) captured
when approaching each speci�c location. At test time, the observed
trajectory was matched to the dictionary in order to detect the cur-
rent location. In [26], it has been designed a context-based vision
system for place and scene recognition. �e system used an holistic
visual representation similar to GIST to detect the current location
at the instance level and recognize the scene category of previously
unseen environment. Other authors [29] proposed a way to provide
context-aware assistance for indoor navigation using a wearable
system. When it is not possible to acquire data for all the locations
which might be visited by the user, it is generally necessary to
explicitly consider a rejection option, as proposed in [8].

Some authors proposed datasets to investigate di�erent problems
related to cultural sites. For instance, In [17, 18], it is proposed
a dataset of images acquired by using classic or head-mounted
cameras. �e dataset contains a small number of images and is
intended to address the problem of image search (e.g., recognizing a
painting). In [3], is presented a dataset acquired inside the National
Museum of Bargello in Florence. �e dataset (acquired by 3 �xed
IPcameras) is intended for pedestrian and group detection, gaze
estimation and behavior understanding.

To the best of our knowledge, this paper introduces the �rst large
scale public dataset acquired in a cultural site using wearable cam-
eras which is intended for egocentric visitor localization research
purposes.

3 DATASET
We collected a large dataset of videos acquired in the Monastero dei
Benede�ini, located in Catania, Italy. �e dataset has been acquired
using two wearable devices: a head-mounted Microso� HoloLens
and a chest-mounted GoPro Hero4. �e considered devices repre-
sent two popular choices for the placement of wearable cameras.
Indeed, chest-mounted devices generally allow to produce be�er
quality images due to the reduced egocentric motion with respect to
head-mounted devices. On the other side, head-mounted cameras
allow to capture what the user is looking at and hence they are be�er
suited to model the a�ention of the user. Moreover, head-mounted
devices such as HoloLens allow for the use of augmented reality,
which can be useful to assist the visitor of a cultural site. �e two
devices are also characterized by two di�erent Field Of View (FOV).
In particular, the FOV of the HoloLens device is narrow-angle, while
the FOV of the GoPro device is wide-angle. �is is shown in Figure 2,
which reports some frames acquired with HoloLens along with the
corresponding images acquired with GoPro. Since we would like
to assess which device is be�er suited to address the localization
problem, we use the two devices simultaneously during the data
acquisition procedure in order to collect two separate and compliant
datasets: one containing only data acquired with HoloLens device
and the other one containing only data acquired using the GoPro
device. �e videos captured by HoloLens device have a resolution
equal to 1216 × 684 pixels and a frame rate of 24 fps, whereas the
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1. Cortile

Microsoft Hololens GoPro Hero 4

2. Scalone 

Monumentale

3. Corridoi

4. Coro di Notte

5. Antirefettorio

6. Aula Santo 

Mazzarino

7. Cucina

8. Ventre

9. Giardino dei 

Novizi

Fig. 2. The figure shows some frames for each considered environment, acquired with Microso� Hololens (le� column) and GoPro Hero4 (right column)
wearable devices.

videos recorded with GoPro Hero 4 have a resolution of 1280 × 720
pixels and a frame rate of 25 fps.

Each video frame has been labeled according to: 1) the location
of the visitor and 2) the “point of interest” (i.e. the cultural object)
observed by the visitor, if any. In both cases, a frame can be labeled as
belonging to a “negative” class, which denotes all visual information
which is not of interest. For example, a frame is labeled as negative
when the visitor is transiting through a corridor which has not been
included in the training set because is not a room (context) of interest
for the visitors or when he is not looking at any of the considered
points of interest. We considered a total of 9 environments and 57
points of interests. Each environment is identi�ed by a number from
1 to 9, while points of interest (i.e., cultural objects) are denoted by
a code in the form X .Y (e.g., 2.3), where X denotes the environment
in which the points of interest are located andY identify the point of
interest. Figure 2 shows some representative samples for each of the
9 considered environments. Table 1 shows the list of the considered
environments (le� column) and the related points of interest (right
column). In the case of class Cortile, the same video is used to
represent both the environment (1) and the related point of interest
(Ingresso - 1.1). Figure 3 shows some representative samples of the
57 points of interest acquired with HoloLens and GoPro Hero 4,

whereas Figure 4 reports some sample frames belonging to negative
locations and points of interest. As can be noted from the reported
samples, the GoPro device allow to acquire a larger amount of visual
information, due to its wide-angle �eld of view. On the contrary,
data acquired using the HoloLens device tends to exhibit more visual
variability, due to the head-mounted point of view, which suggests
its be�er suitability for the recognition of objects of interest and
behavioral understanding.

�e dataset is composed of separate training and test videos,
which have been collected following two di�erent modalities. To
collect the training set, we acquired a set of videos (at least one) for
each of the considered environments and a set of videos for each
of the considered points of interest. Environment-related training
videos have been acquired by an operator who had been instructed
to walk into the environment and look around to capture images
from di�erent points of view. A similar procedure is employed to
acquire training videos for the di�erent points of interest. In this
case, the operator has been instructed to walk around the object
and look at it from di�erent points of view. For each camera, we
collected a total of 12 training videos for the 9 environments and
68 videos for the 57 points of interest. �is accounts to a total of 80
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2.1 2.2 3.1 3.2 3.3 3.4 3.5

3.6 3.7 3.8 3.9 3.10 3.11 4.1

4.2 4.3 5.1 5.2 5.3 5.4 5.5

5.6 5.7 5.8 5.9 5.10 6.1 6.2

6.3 6.4 6.5 6.6 6.7 6.8 6.9

7.1 7.2 7.3 7.4 7.5 7.6 7.7

8.1 8.2 8.3 8.4 8.5 8.6 8.7

8.8 8.9 8.10 8.11 9.1 9.2 9.3

2.1 2.2 3.1 3.2 3.3 3.4 3.5

3.6 3.7 3.8 3.9 3.10 3.11 4.1

4.2 4.3 5.1 5.2 5.3 5.4 5.5

5.6 5.7 5.8 5.9 5.10 6.1 6.2

6.3 6.4 6.5 6.6 6.7 6.8 6.9

7.1 7.2 7.3 7.4 7.5 7.6 7.7

8.1 8.2 8.3 8.4 8.5 8.6 8.7

8.8 8.9 8.10 8.11 9.1 9.2 9.3

Fig. 3. The figure shows a sample frame for each of the 57 points of interest acquired with both Microso� Hololens (top) and GoPro (bo�om).
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Environments Points of Interest Environments Points of Interest
Cortile (1) Ingresso (1.1) PavimentoOriginale (6.3)

Scal. Monumentale (2) RampaS.Nicola (2.1) PavimentoRestaurato (6.4)
RampaS.Benede�o (2.2) BassorilieviMancanti (6.5)
SimboloTreBiglie (3.1) Aula S.Mazzarino (6) LavamaniSx (6.6)
ChiostroLevante (3.2) LavamaniDx (6.7)

Plastico (3.3) TavoloRelatori (6.8)
A�resco (3.4) Poltrone (6.9)

Finestra ChiostroLev. (3.5) Edicola (7.1)
Corridoi (3) PortaCorodiNo�e (3.6) PavimentoA (7.2)

TracciaPortone (3.7) PavimentoB (7.3)
StanzaAbate (3.8) Cucina (7) PassavivandePav.Orig. (7.4)

CorridoioDiLevante (3.9) AperturaPavimento (7.5)
CorridoioCorodiNo�e (3.10) Scala (7.6)

CorridoioOrologio (3.11) SalaMetereologica (7.7)
�adro (4.1) Doccione (8.1)

Coro di No�e (4) PavimentoOrig.Altare (4.2) VanoRaccoltaCenere (8.2)
BalconeChiesa (4.3) SalaRossa (8.3)

PortaAulaS.Mazzarino (5.1) ScalaCucina (8.4)
PortaIng.MuseoFabb. (5.2) CucinaProvv. (8.5)
PortaAntirefe�orio (5.3) Ventre (8) Ghiacciaia (8.6)

PortaIngressoRef.Piccolo (5.4) Latrina (8.7)
Antirefe�orio (5) Cupola (5.5) OssaeScarti (8.8)

AperturaPavimento (5.6) Pozzo (8.9)
S.Agata (5.7) Cisterna (8.10)

S.Scolastica (5.8) BustoPietroTacchini (8.11)
ArcoconFirma (5.9) NicchiaePavimento (9.1)

BustoVaccarini (5.10) Giardino Novizi (9) TraccePalestra (9.2)

Aula S.Mazzarino (6) �adro S.Mazzarino (6.1) PergolatoNovizi (9.3)
A�resco (6.2)

Table 1. The table reports the list of all environments and the related points of interest contained. In parenthesis, we report the unique numerical code of the
environment/point of interest.

Fig. 4. Example of frames belonging to the negative class, acquired with Microso� Hololens (le�) and GoPro (right).

training videos for each camera. Table 2 summarizes the number of
training videos acquired for each environment.

�e test videos have been acquired by operators who have been
asked to simulate a visit to the cultural site. No speci�c information
on where to move, what to look, and for how long have been given
to the operators. Test videos have been acquired by three di�erent

subjects. Speci�cally, we acquired 7 test video per wearable camera,
totaling 14 test videos. Each HoloLens video is composed by one or
more video fragments due to the limit of recording time imposed
by the default Hololens video capture application. Table 3 reports
the list of test videos acquired using HoloLens and GoPro devices.
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Environment #Videos #Frames
1 Cortile 1 1171
2 Scalone Monumentale 6 13464
3 Corridoi 14 31037
4 Coro di No�e 7 12687
5 Antirefe�orio 14 29918
6 Aula Santo Mazzarino 10 31635
7 Cucina 10 31112
8 Ventre 14 68198
9 Giardino dei Novizi 4 10852
Total 80 230074

Table 2. Training videos and total number of frames for each environment.

For each test video, we report the number of frames and the list of
environments the user visits during the acquisition of the video.

�e dataset, which we call UNICT-VEDI, is publicly available at
our website: h�p://iplab.dmi.unict.it/VEDI/. �e reader is referred
to the supplementary material at the same page for more details
about the dataset.

4 EGOCENTRIC LOCALIZATION IN A CULTURAL SITE
We perform experiments and report baseline results related to the
task of localizing visitors from egocentric videos. To address the
localization task, we consider the approach proposed in [8]. �is
method is particularly suited for the considered task since it can
be trained with a small number of samples and includes a rejection
option to determine when the visitor is not located in any of the
environments considered at training time (i.e., when a frame be-
longs to the negative class). Moreover, as detailed in [8], the method
achieves state of the art results on the task of location-based tem-
poral video segmentation, outperforming classic methods based on
SVMs and local feature matching. At test time, the algorithm seg-
ments an egocentric video into temporal segments each associated
to either one of the “positive” classes or, alternatively, the “negative”
class. �e approach is reviewed in the following section. �e reader
is referred to [8] for more details.

4.1 Method Review
At training time, we de�ne a set of M “positive” classes, for which
we provide labeled training samples. In our case, this corresponds
to the set of training videos acquired for each of the considered envi-
ronments. At test time, an input egocentric videoV = {F1, . . . , FN }
composed by N frames Fi is analyzed. Each frame of the video is
assumed to belong to either one of the considered M positive classes
or none of them. In the la�er case, the frame belongs to the “neg-
ative class”. Since, negative training samples are not assumed at
training time, the algorithm has to detect which frames do not be-
long to any of the positive classes and reject them. �e goal of the
system is to divide the video into temporal segment, i.e., to produce
a set of P video segments S = {si }1≤i≤P , each associated with a
class (i.e., the room-level location). In particular, each segment is
de�ned as si = {ssi , s

e
i , s

c
i }, where ssi represents the staring frame

of the segment, sei represents the ending frame of the segments
and sci ∈ {0, . . . ,M} represents the class of the segment (sci = 0 is

the “negative class”, while sci = 1, . . . ,M represent the “positive”
classes).

�e temporal segmentation of the input video is achieved in three
steps: discrimination, negative rejection and sequential modeling.
Figure 5 shows a diagram of the considered method, including
typical color-coded representations of the intermediate and �nal
segmentation output.

In the discrimination step, each frame of the video Fi is assigned
the most probable class y∗i among the considered M positive classes.
In order to perform such assignment, a multi-class classi�er trained
only on the positive samples is employed to estimate the posterior
probability distribution:

P(yi |Fi ,yi , 0) (1)

where yi , 0 indicates that the negative class is excluded from
the posterior probability. �e most probable class y∗i is hence as-
signed using the Maximum A Posteriori (MAP) criterion: y∗i =
arg maxyi P(yi |IF ,yi , 0). Please note that, at this stage, the nega-
tive class is not considered. �e discrimination step allows to obtain
a noisy assignment of labels to the frames of the input video, as it is
depicted in Figure 5.

�e negative rejection step aims at identifying regions of the video
in which frames are likely to belong to the negative class. Since in an
egocentric video locations are deemed to change smoothly, regions
containing negative frames are likely to be characterized by noisy
class assignments. �is is expected since the multi-class classi�er
used in the discrimination step had no knowledge of the negative
class. Moreover, consecutive frames of an egocentric video are likely
to contain uncorrelated visual content, due to fast head movements,
which would lead the multi-class classi�er to pick a di�erent class
for each negative frame. To leverage this consideration, the negative
rejection step quanti�es the probability of each frame to belong to
the negative class by estimating the variation ratio (a measure of
entropy) of the nominal distribution of the assigned labels in a
neighborhood of size K centered at the frame to be classi�ed. Let
YK
i = {yi−b K2 c , . . . ,yi+ b K2 c } be the set of positive labels assigned

to the frames comprised in a neighborhood of size K centered at
frame Fi . �e rejection probability for the frame Fi is computed as
the variation ratio of the sample YK

i :

P(yi = 0|Fi ) = 1 −

∑i+ b K2 c
k=i−b K2 c

[yk =mode(YK
i )]

K
(2)

where [·] is the Iverson bracket,yk ∈ YK
i andmode(YK

i ) is the most
frequent label ofYK

i . Sinceyi = 0 andyi , 0 are disjoint events, the
posterior probability de�ned in Equation (1) can be easily merged
to the probability de�ned in Equation (2) to estimate the posterior
probability P(yi |Fi ). Note that this is a posterior probability over
the M positive classes, plus the negative one. �e MAP criterion
can be used to assign each frame Fi the most probable class yi using
the posterior probability P(yi |Fi ) (see Figure 5). Please note that, in
this case, the assigned labels include the negative class.

�e label assignment obtained in the negative rejection step is still
a noisy one (see Figure 5). �e sequential modeling step smooths
the segmentation result enforcing temporal coherence among neigh-
boring predictions. �is is done employing a Hidden Markov Model

7
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HoloLens GoPro
Name #Frames Environments Name #Frames Environments
Test1.0 7202 1 - 2 - 3 - 4 - 5 - 6 Test1 14788 1 - 2 - 3 - 4
Test1.1 7202 Test2 10503 1 - 2 - 3 - 5
Test2.0 7203 1 - 2 - 3 - 4 Test3 14491 1 - 2 - 3 - 5 - 9
Test3.0 7202 Test4 36808 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9
Test3.1 7203 Test5 18788 1 - 2 - 3 - 5 - 7 - 8
Test3.2 7201 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 Test6 12661 2 - 3 - 4 - 8 - 9
Test3.3 7202 Test7 38725 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9
Test3.4 5694 Total 146764
Test4.0 7204
Test4.1 7202
Test4.2 3281 1 - 2 - 3 - 4 - 5 - 7 - 8 - 9
Test4.3 7202
Test4.4 4845
Test5.0 6590

1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9Test5.1 7202
Test5.2 7202
Test5.3 7201
Test6.0 7202 1 - 2 - 3
Test7.0 7202 1 - 2 - 3 - 5Test7.1 2721
Total 131163

Table 3. The list of test videos acquired using HoloLens (le�) and GoPro (right). For each video, we report the number of frames and the list of environments
visited by the user during the acquisition. The last rows report the total number of frames.

input video

Multiclass
Classifier

Training Set

1. Discrimination

2. Negative Rejection

3. Sequential Modelling

temporal sliding window

Fig. 5. Diagram of the considered room-based localization method consisting in three steps: 1) Discrimination, 2) Negative Rejection, 3) Sequential Modeling.
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(HMM) [4] with M+1 states (M “positive” classes plus the “negative”
one). �e HMM models the conditional probability of the labels
L = {y1, . . . ,yN } given the videoV:

P(L|V) ∝
N∏
i=2

P(yi |yi−1)
N∏
i=1

P(yi |Fi ) (3)

where P(yi |Ii ) models the emission probability (i.e., the probability
of being in state yi given the frame Fi ). �e state transition proba-
bilities P(yi |yi−1) are modeled de�ning an “almost identity matrix”
which encourages the model to rarely allow for state changes:

P(yi |yi−1) =
{
ε, if yi , yi−1
1 −Mε, otherwise

(4)

�e de�nition above depends on a parameter ε which controls the
amount of smoothing in the predictions. �e optimal set of labels
L according to the de�ned HMM can be obtained using the Viterbi
algorithm (see Figure 5 - 3. Sequential Modeling). �e segmentation
S is �nally obtained by considering the connected components of
the optimal set of labels L.

5 EXPERIMENTAL SETTINGS
In this section, we discuss the experimental se�ings used for the
experiments. To assess the potential of the two considered devices,
we perform experiments separately on data acquired using HoloLens
and GoPro by training and testing two separate models.

To setup the method reviewed in Section 4, it is necessary to
train a multi-class classi�er to discriminate between the M positive
classes (i.e., environments). We implement this component �ne-
tuning a VGG19 Convolutional Neural Network (CNN) pre-trained
on the ImageNet dataset [23] to discriminate between the 9 consid-
ered classes (Cortile, Scalone Monumentale, Corridoi, Coro di No�e,
Antirefe�orio, Aula Santo Mazzarino, Cucina, Ventre e Giardino dei
Novizi). To compose our training set, we �rst considered all image
frames belonging to the training videos collected for each environ-
ment (Figure 2). We augment the frames of each of the considered
environments including also frames from the training videos col-
lected for the points of interest contained in the environment. We
�nally select exactly 10000 frames for each class, except for the
“Cortile” (1) class which contained only 1171 frames (in this case all
frames have been considered). As previously discussed, the same
video is used for both the environment “Cortile” (1) and point of
interest Ingresso (1.1). �erefore, it was not possible to gather more
frames from videos related to the points of interest. To validate
the performances of the classi�er, we randomly select 30% of the
training samples to obtain a validation set. Please note that the
CNN classi�er is trained solely on positive data and no negatives
are employed at this stage. To select the optimal values for the pa-
rameters K (neighborhood size for negative rejection) and ε (HMM
smoothing parameter), we carry out a grid search on one of the test
videos, which is used as “validation video”. Speci�cally, we consider
K ∈ {50, 100, 300} and ε ∈ [10−300, 10−2] for the grid search. We
select “Test 3” as a validation video for the algorithms trained on
data acquired with HoloLens and “Test 4” for the experiments re-
lated to data acquired using the GoPro camera. �ese two videos
are selected since they contain all the classes and, overall, similar

Class Test1 Test2 Test4 Test5 Test6 Test7 AVG
1 Cortile 0.94 0.00 0.93 0.00 0.95 0.77 0.59
2 Scalone Monumentale 0.99 0.98 0.99 0.95 0.98 0.85 0.96
3 Corridoi 0.93 0.93 0.95 0.85 0.99 0.85 0.92
4 Coro Di No�e 0.94 0.94 0.89 0.87 / / 0.91
5 Antirefe�orio 0.94 / 0.96 0.94 / 0.94 0.95
6 Aula Santo Mazzarino 0.99 / / 0.98 / / 0.99
7 Cucina / / 0.65 0.75 / / 0.70
8 Ventre / / 0.92 0.99 / / 0.96
9 Giardino dei Novizi / / 0.95 0.71 / / 0.83
Negatives 0.56 0.50 0.26 0.37 / / 0.42

mFF1 0.90 0.67 0.83 0.74 0.97 0.85 0.82
Table 4. Frame-based F F1 scores of the considered method on data acquired
using the HoloLens device. The “/” sign indicates that no samples from that
class were present in the test video.

Class Test1 Test2 Test4 Test5 Test6 Test7 AVG
1 Cortile 0.89 0.00 0.86 0.00 0.90 0.62 0.48
2 Scalone Monumentale 0.97 0.95 0.97 0.86 0.97 0.74 0.90
3 Corridoi 0.85 0.87 0.84 0.69 0.99 0.58 0.79
4 Coro Di No�e 0.81 0.90 0.78 0.31 / / 0.66
5 Antirefe�orio 0.88 / 0.93 0.66 / 0.90 0.83
6 Aula Santo Mazzarino 0.99 / / 0.96 / / 0.96
7 Cucina / / 0.48 0.57 / / 0.53
8 Ventre / / 0.85 0.99 / / 0.92
9 Giardino dei Novizi / / 0.90 0.66 / / 0.78
Negatives 0.50 0.39 0.12 0.3 / / 0.27

mASF1 0.84 0.62 0.71 0.60 0.95 0.71 0.71
Table 5. Segment-based ASF1 scores of the considered method on data
acquired using the HoloLens device. The “/” sign indicates that no samples
from that class were present in the test video.

content (see Table 3). Moreover, the two videos have been acquired
simultaneously by the same operator to provide similar material
for validation. �e grid search led to the selection of the following
parameter values: K = 50; ε = 10−152 in the case of the experi-
ments performed on HoloLens data and K = 300; ε = 10−171 for
the experiments performed on the GoPro data. We used the Ca�e
framework [13] to train the CNN models. All the data, code and
trained models useful to replicate the work are publicly available
for download at our web page h�p://iplab.dmi.unict.it/VEDI/.

All experiments have been evaluated according to two comple-
mentary measures: FF1 and ASF1 [8]. �e FF1 is a frame-based
measure obtained computing the frame-wise F1 score for each class.
�is measure essentially assesses how many frames have been cor-
rectly classi�ed without taking into account the temporal structure
of the prediction. A high FF1 score indicates that the method is able
to estimate the number of frames belonging to a given class in a
video. �is is useful to assess, for instance, how much times has been
spent at a given location, regardless the temporal structure. To as-
sess how well the algorithm can split the input videos into coherent
segments, we also use theASF1 score, which measures how accurate
the output segmentation is with respect to ground truth. FF1 and
ASF1 scores are computed per class. We also report overallmFF1 and
mASF1 scores obtained by averaging class-related scores. �e reader
is referred to [8] for details on the implementation of such scores.
An implementation of these measures is available at the following
link: h�p://iplab.dmi.unict.it/PersonalLocationSegmentation/.
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6 RESULTS
Table 4 and Table 5 report the mFF1 and mASF1 scores obtained
using data acquired using the HoloLens device. Please note that
all algorithms have been trained using only training data acquired
with the HoloLens device (no GoPro data has been used). “Test
3” is excluded from the table since it has been used for validation.
�e tables report the FF1 and ASF1 scores for each class and each
test video, average per-class FF1 and ASF1 scores across videos,
overallmFF1 and mASF1 scores for each test video and the average
mFF1 andmASF1 scores which summarize the performances over
the whole test set. As can be noted from both tables, some envi-
ronments such as “Cortile”, “Cucina” and “Giardino dei Novizi” are
harder to recognize than others. �is is due to the greater variability
characterizing such environments. In particular, “Cortile” and “Gia-
rdino dei Novizi” are outdoor environments, while all the others are
indoor environments. It should be noted that, as discussed before,
the two considered measures (mFF1 andmASF1) capture di�erent
abilities of the algorithm. For instance, some environments (e.g.,
“Corridoi” and “Coro di No�e”) report highmFF1, and lowermASF1.
�is indicates that the method is able to quantify the overall amount
of time spent at the considered location, but temporal structure of
the segments is not correctly retrieved. �e averagemASF1 of 0.71
and mFF1 of 0.83 obtained over the whole test set indicate that the
proposed approach can be already useful to provide localization
information to the visitor or for later analysis, e.g., to estimate how
much time has been spent by a visitor at a given location, how many
times a given environment has been visited, or what are the paths
preferred by visitors.

Figure 6 reports the confusion matrix of the system on the HoloLens
test set. �e confusion matrix does not include frames from the
“Test 3” video, which has been used for validation. �e matrix con-
�rms how some distinctive environments are well recognized, while
others are more challenging. �e matrix also suggests that most
of the error is due to the challenging rejection of negative samples.
Other minor source of errors are the “Giardino dei Novizi - Corridoi”,
“Cortile - Scalone Monumentale” and “Coro di No�e - Corridoi” class
pairs. We note that the considered pairs are neighboring locations,
which suggests that the error is due to small inaccuracies in the
temporal segmentation.

We also report experiments performed on the GoPro data. To com-
pare the e�ects of using di�erent acquisition devices and wearing
modalities, we replicate the same pipeline used for the experiments
reported in the previous section. Hence, we trained and tested the
same algorithms on data acquired using the GoPro device.

Table 6 and Table 7 report themFF1 andmASF1 scores for the test
videos acquired using the GoPro device. Results related to the “Test
4” validation video are excluded from the tables. �e method allows
to obtain overall similar performances for the di�erent devices (an
averagemFF1 score of 0.81 in the case of GoPro, vs 0.82 in the case
of HoloLens and an averagemASF1 score of 0.71 vs 0.71). However,
mFF1 performances on the single test videos are distributed di�er-
ently (e.g., “Test 1” has amFF1 score of 0.90 in the case of HoloLens
data and amFF1 score of 0.67 in the case of GoPro data).

Figure 7 reports the confusion matrix of the method over the
GoPro test set, excluding the “Test 4” video (used for validation).
Also in this case, errors are distributed di�erently with respect to

Fig. 6. Confusion matrix of the considered method trained and tested on
the HoloLens data.

Class Test1 Test2 Test3 Test5 Test6 Test7 AVG
1 Cortile 0.00 0.97 0.95 0.92 / 0.00 0.57
2 Scalone Monumentale 0.92 0.92 0.99 0.99 0.96 0.90 0.95
3 Corridoi 0.90 0.97 0.99 0.99 0.97 0.98 0.97
4 Coro Di No�e 0.89 / / / 0.98 0.88 0.92
5 Antirefe�orio / 0.99 0.98 0.96 / 0.87 0.95
6 Aula Santo Mazzarino / / / / / 0.90 0.90
7 Cucina / / / 0.89 / 0.83 0.86
8 Ventre / / / 0.99 0.67 0.97 0.88
9 Giardino dei Novizi / / 0.99 / 0.95 0.52 0.82
Negatives 0.47 / / 0.52 0.00 0.21 0.30

mFF1 0.67 0.96 0.98 0.90 0.76 0.71 0.81
Table 6. Frame-based F F1 scores of the considered method on data acquired
using the GoPro device. The “/” sign indicates that no samples from that
class were present in the test video.

Class Test1 Test2 Test3 Test5 Test6 Test7 AVG
1 Cortile 0.00 0.94 0.91 0.85 / 0 0.68
2 Scalone Monumentale 0.85 0.65 0.98 0.97 0.92 0.73 0.85
3 Corridoi 0.86 0.60 0.97 0.99 0.92 0.93 0.88
4 Coro Di No�e 0.76 / / / 0.96 0.2 0.58
5 Antirefe�orio / 0.97 0.96 0.92 / 0.66 0.88
6 Aula Santo Mazzarino / / / / / 0.81 0.81
7 Cucina / / / 0.79 / 0.68 0.74
8 Ventre / / / 0.99 0.5 0.48 0.66
9 Giardino dei Novizi / / 0.97 / 0.91 0.61 0.83
Negatives 0.48 / / 0.45 0.00 0.24 0.23

mASF1 0.59 0.79 0.96 0.85 0.70 0.53 0.71
Table 7. Segment-based ASF1 scores of the considered method on data
acquired using the GoPro device. The “/” sign indicates that no samples
from that class were present in the test video.

the case of HoloLens data. In particular, the confusion between
“Cortile” and “Scalone Monumentale” is much larger than in the
case of HoloLens data, while other classes such as “Cucina” report
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Fig. 7. Confusion matrix of the results of the considered method on the
GoPro test set.

be�er performance on the GoPro data. Moreover, the rejection of
negatives is much worse performing in the case of GoPro data. �ese
di�erences are due to the di�erent way the GoPro camera captures
the visual data. On the one hand, GoPro is characterized by a larger
�eld of view, which allows to gather supplementary information for
location recognition. On the other hand, the dynamic �eld of view
of the head-mounted HoloLens device, allows to capture diverse
and distinctive elements of the environment and allows for be�er
rejection of negative frames increasing the amount of discrimination
entropy in unknown environments.

Table 8 and Table 9 summarize and compare the results obtained
training the algorithm on the two sets of data. Speci�cally, the tables
report the average FF1 and ASF1 scores obtained in the three steps
of the algorithm. As can be noted, signi�cantly be�er discrimination
is overall obtained using GoPro data (0.88mFF1 vs 0.73mFF1). �is
is probably due to the wider Field Of View of the GoPro camera,
which allows to capture more information about the surrounding
environment (see Figure 2). Rejecting negative frames is a challeng-
ing task, which leads to degraded performances both in the case of
frame-based measures (Table 8) and segment-based ones (Table 9).
Interestingly, the negative rejection step works best on HoloLens
data (0.66mFF1 vs 0.54mFF1, and 0.24FF1 vs 0.18FF1 for the neg-
ative class). �is result con�rms the aforementioned observation
that HoloLens data allows to acquire more distinctive details about
the scene, thus allowing for more entropy when in the presence
of unknown environments. �e sequential modeling step, �nally
balances out the results, allowing HoloLens and GoPro to achieve
similar performances.

Figure 8 reports a qualitative comparison of the proposed method
on ”Test3” video (acquired by HoloLens) and ”Test4” video (acquired
by GoPro) used as validation videos. Please note that the two videos
have been acquired simultaneously and so present similar content.

Discrimination Rejection Seq. Modeling
Class HoloLens GoPro HoloLens GoPro HoloLens GoPro
1 Cortile 0.50 0.84 0.45 0.25 0.59 0.57
2 Scalone Monumentale 0.81 0.93 0.84 0.91 0.96 0.95
3 Corridoi 0.77 0.92 0.69 0.83 0.92 0.97
4 Coro Di No�e 0.71 0.91 0.67 0.64 0.91 0.92
5 Antirefe�orio 0.66 0.83 0.73 0.62 0.95 0.95
6 Aula Santo Mazzarino 0.69 0.81 0.65 0.23 0.99 0.90
7 Cucina 0.72 0.90 0.60 0.11 0.70 0.86
8 Ventre 0.97 0.99 0.94 0.86 0.96 0.88
9 Giardino dei Novizi 0.79 0.82 0.79 0.78 0.83 0.82
Negatives / / 0.24 0.18 0.42 0.30

mFF1 0.73 0.88 0.66 0.54 0.82 0.81
Table 8. Comparative table of average F F1 scores for the considered method
trained and tested on HoloLens and GoPro data. The table reports scores
for the overall method (seq. modeling column), as well as for the two
intermediate steps of Discrimination and Rejection.

Discrimination Rejection Seq. Modeling
Class HoloLens GoPro HoloLens GoPro HoloLens GoPro
1 Cortile 0.01 0.15 0.02 0.03 0.48 0.68
2 Scalone Monumentale 0.01 0.05 0.01 0.03 0.90 0.85
3 Corridoi 0.00 0.02 0.00 0.01 0.79 0.88
4 Coro Di No�e 0.00 0.00 0.01 0.01 0.66 0.58
5 Antirefe�orio 0.00 0.02 0.01 0.01 0.83 0.88
6 Aula Santo Mazzarino 0.00 0.00 0.00 0.00 0.96 0.81
7 Cucina 0.00 0.01 0.00 0.00 0.52 0.74
8 Ventre 0.00 0.32 0.00 0.03 0.92 0.66
9 Giardino dei Novizi 0.01 0.15 0.01 0.04 0.78 0.83
Negatives / / 0.01 0.00 0.27 0.23

mASF1 0.00 0.08 0.01 0.02 0.71 0.71
Table 9. Comparative table of average AF F1 scores for the considered
method trained and tested on HoloLens and GoPro data. The table re-
ports scores for the overall method (seq. modeling column), as well as for
the two intermediate steps of Discrimination and Rejection.

�e �gure illustrates how the discrimination step allows to obtain
more stable results in the case of GoPro data. For this reason, nega-
tive rejection tends to be more pronounced in the case of HoloLens
data. �e �nal segmentations obtained a�er the sequential modeling
step are in general equivalent.

We would like to note that, even if the �nal results obtained
using HoloLens and GoPro are equivalent in quantitative terms,
the data acquired using the HoloLens device is deemed to carry
more relevant information about what the user is actually looking
at (see Figure 3). Such additional information can be leveraged in
applications which go beyond localization, such as a�ention and
behavioral modeling. Moreover, head-mounted devices such as
HoloLens are be�er suited then chest-mounted cameras to provide
additional services (e.g., augmented reality) to the visitor. �is makes
in our opinion HoloLens (and head-mounted devices in general)
preferable. A series of demo videos to assess the performance of the
investigated system are available at our web page h�p://iplab.dmi.
unict.it/VEDI/video.html.

We also implemented a Manager Visualization Tool (MVT) as a
web interface. �e tool allows the manager to analyze the output of
the system which automatically localizes the visitor in each frame of
the video. �e GUI allows the manager to select the video to be an-
alyzed. A video player allows to skim through the video by clicking
on a graphical representation of the inferred video segmentation.
�e GUI also presents the estimated time spent at each location
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HOLOLENS TEST3 GOPRO TEST4

1 Cortile
2 Scalone Monumentale
3 Corridoi

4 Coro di Notte
5 Antirefettorio
6 Aula Santo Mazzarino

7 Cucina
8 Ventre
9 Giardino dei Novizi

Negatives

Discrimination Discrimination

Rejection Rejection

Seq. Modeling Seq. Modeling

Ground Truth Ground Truth

Fig. 8. Color-coded segmentations for two corresponding test video ac-
quired using HoloLens (le�) and GoPro (right).

and highlights the location of the visitor in a 2D map. Giving the
opportunity to explore the video in a structured way, the system can
provide useful information to the site manager. For instance, the
site manager can infer which locations a�ract more the a�ention
of the visitor, which can help improve the design of visit paths and
pro�ling visitors. Figure 9 illustrates the di�erent components of the
developed tool. A video demo of the developed interface is available
at h�p://iplab.dmi.unict.it/VEDI/demogui.html.

7 CONCLUSION
�is work has investigated the problem of localizing visitors in a
cultural site using egocentric (�rst person) cameras. To study the
problem of room-level localization, we proposed and publicly re-
leased a dataset containing more than 4 hours of egocentric video,
labeled according to the location of the visitor and to the observed
cultural object of interest. �e localization problem has been inves-
tigated reporting baseline results using a state-of-the-art method on
data acquired using a head-mounted HoloLens and a chest-mounted
GoPro device. Despite the larger �eld of view of the GoPro device,
HoloLens allows to achieve similar performance in the localization
task. We believe that the proposed UNICT-VEDI dataset will encour-
age further research on this domain. Future works will consider the
problem of understanding which cultural objects are observed by
the visitors. �is will allow to provide more detailed information
on the behavior and preferences of the visitors to the site manager.
Moreover, the analysis will be extended and generalized to other
cultural sites.
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[19] Torsten Sa�ler, Bastian Leibe, and Leif Kobbelt. 2017. E�cient & e�ective pri-
oritized matching for large-scale image-based localization. IEEE transactions on
pa�ern analysis and machine intelligence 39, 9 (2017), 1744–1756.

[20] Lorenzo Seidenari, Claudio Baecchi, Tiberio Uricchio, Andrea Ferracani, Marco
Bertini, and Alberto Del Bimbo. 2017. Deep Artwork Detection and Retrieval
for Automatic Context-Aware Audio Guides. ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM) 13, 3s (2017), 35.

[21] Jamie Sho�on, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi,
and Andrew Fitzgibbon. 2013. Scene coordinate regression forests for camera
relocalization in RGB-D images. In Proceedings of the IEEE Conference on Computer
Vision and Pa�ern Recognition. 2930–2937.

[22] Giovanni Signorello, Giovanni Maria Farinella, Giovanni Gallo, Luciano Santo, An-
tonino Lopes, and Emanuele Scuderi. 2015. Exploring Protected Nature �rough
Multimodal Navigation of Multimedia Contents. In International Conference on
Advanced Concepts for Intelligent Vision Systems. 841–852.

[23] K. Simonyan and A. Zisserman. 2014. Very Deep Convolutional Networks for
Large-Scale Image Recognition. CoRR abs/1409.1556 (2014).

[24] T. Starner, B. Schiele, and A. Pentland. 1998. Visual contextual awareness in
wearable computing. In International Symposium on Wearable Computing. 50–57.

[25] Giovanni Taverriti, Stefano Lombini, Lorenzo Seidenari, Marco Bertini, and Al-
berto Del Bimbo. 2016. Real-time Wearable Computer Vision System for Improved
Museum Experience. In Proceedings of the 2016 ACM on Multimedia Conference.

12

http://iplab.dmi.unict.it/VEDI/demogui.html
https://doi.org/10.1016/j.jvcir.2018.01.019


Fig. 9. The GUI to allow the site manager to analyze the captured videos.

ACM, 703–704.
[26] Antonio Torralba, Kevin P Murphy, William T Freeman, and Mark A Rubin. 2003.

Context-based vision system for place and object recognition. In Computer Vision,
2003. Proceedings. Ninth IEEE International Conference on. IEEE, 273–280.

[27] Roy Want and Andy Hopper. 1992. Active badges and personal interactive
computing objects. IEEE Transactions on Consumer Electronics 38, 1 (1992), 10–20.

[28] Tobias Weyand and Bastian Leibe. 2015. Visual landmark recognition from
Internet photo collections: A large-scale evaluation. Computer Vision and Image
Understanding 135 (2015), 1 – 15. h�ps://doi.org/10.1016/j.cviu.2015.02.002

[29] Qianli Xu, Liyuan Li, Joo Hwee Lim, Cheston Yin Chet Tan, Michal Mukawa, and
Gang Wang. 2014. A wearable virtual guide for context-aware cognitive indoor
navigation. In Proceedings of the 16th international conference on Human-computer
interaction with mobile devices & services. ACM, 111–120.

[30] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. 2014. Learning deep
features for scene recognition using places database. In Advances in Neural Infor-
mation Processing Systems. 487–495.

13

https://doi.org/10.1016/j.cviu.2015.02.002


Table 10. Summary of the collected training videos. On the le�, we report the number of videos collected for the points of interest. On the right, we report
the informations for the videos of collected for the environments. The values in the Time (s) and MB columns are related to the average time and occupied
memory respectively.

Points of interest Environments
# Videos Time (s) MB # Videos Time (s) MB

Hololens 68 104 103 12 190 196
GoPro 68 93 233 12 186 455

Table 11. Summary of the acquired test videos . The values on the Time and MB columns are average values.

Test Videos
Number of videos Time (s) Storage (MB)

Hololens 7 780 730
GoPro 7 828 2062

Table 12. List of training videos of environments acquired using Hololens. For each video we show: time, amount of occupied memory, number of frames,
percentage of frames with respect to the total number of frames of the training set.

Name Time (s) Storage (MB) #frames %frames
1.0 Cortile 48 48.145 1171 0,24%
2.0 Scalone 81 80.085 1947 0,40%
2.0 Scalone1 116 113.173 2747 0,56%
2.0 Scalone2 38 37.758 917 0,19%
4.0 CoroDiNo�e 169 167.614 4068 0,83%
4.0 CoroDiNo�e1 44 44.068 1067 0,22%
5.0 Antirefe�orio 247 244.500 5933 1,21%
5.0 Antirefe�orio1 263 260.395 6315 1,29%
6.0 SantoMazzarino 241 239.007 5800 1,18%
7.0 Cucina 239 237.268 5753 1,17%
8.0 Ventre 679 832.844 20385 4,15%
9.0 GiardinoNovizi 116 113.949 2788 0,57%
AVG 175.46 201.57 4908 1,00%

SUPPLEMENTARY MATERIAL
�e dataset has been acquired using two devices (HoloLens and GoPro) and hence comprises two device-specifc training/testing sets. Video
frames are labelled according to: 1) the environment of the visitor, 2) the point of interest he is looking at. Figure 2 reports some sample
frames related to the di�erent environments, whereas Figure 3 reports some sample frames related to the di�erent points of interest. Table 10
summarizes the number of training videos acquired using HoloLens and GoPro devices. Table 11 summarizes the acquired test videos. In the
following sections, we report additional material related to the data acquired using the HoloLens and GoPro devices.

7.1 HoloLens
Table 12 details the training videos acquired to represent each of the considered environments. For each class, we report the total duration
of the videos, the required storage, the number of frames and the percentage of frames, with respect to the total number of frames in the
training set. Table 13 details the training videos acquired to represent each of the considered points of interest. For each class, we report the
total duration of the videos, the required storage, the number of frames and the percentage of frames, with respect to the total number of
frames in the training set. Table 14 reports a list of all test videos acquired using HoloLens. For each video, we report: Time, Storage, number
of frames and percentage of frames with respect to the total number of frames of the training dataset.

Table 13. List of training videos of points of interest acquired with Hololens. For each video we show: Time, Storage, number of frames and
percentage of frames with respect to the total number of frames of the training dataset. The table continues in the next page.

Name Time (s) Storage (MB) #frame %frame
2.1 Scalone RampaS.Nicola 163 161.776 3926 0,80%
2.2 Scalone RampaS.Benede�o 14 14.471 354 0,07%
2.2 Scalone RampaS.Benede�o1 148 147.226 3573 0,73%
3.1 Corridoi TreBiglie 75 74.261 1804 0,37%
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3.2 Corridoi ChiostroLevante 55 54.500 1328 0,27%
3.3 Corridoi Plastico 80 79.179 1927 0,39%
3.4 Corridoi A�resco 74 74.023 1800 0,37%
3.5 Corridoi Finestra ChiostroLev. 84 83.102 2035 0,41%
3.6 Corridoi PortaCoroDiNo�e 53 53.255 1291 0,26%
3.6 Corridoi PortaCoroDiNo�e1 60 59.411 1446 0,29%
3.6 Corridoi PortaCoroDiNo�e2 58 57.901 1406 0,29%
3.7 Corridoi TracciaPortone 53 53.118 1291 0,26%
3.8 Corridoi StanzaAbate 81 79.773 1948 0,40%
3.9 Corridoi CorridoioDiLevante 89 88.173 2142 0,44%
3.10 Corridoi CorridoioCorodiNo�e 122 121.321 2945 0,60%
3.10 Corridoi CorridoioCorodiNo�e1 103 101.796 2472 0,50%
3.11 Corridoi CorridoioOrologio 300 296.488 7202 1,47%
4.1 CoroDiNo�e �adro 71 70.245 1716 0,35%
4.2 CoroDiNo�e Pav.Orig.Altare 73 72.358 1759 0,36%
4.3 CoroDiNo�e BalconeChiesa 39 39.331 957 0,19%
4.3 CoroDiNo�e BalconeChiesa1 49 48.550 1185 0,24%
4.3 CoroDiNo�e BalconeChiesa2 80 79.861 1935 0,39%
5.1 Antirefe�orio PortaA.S.Mazz.Ap. 67 67.001 1630 0,33%
5.1 Antirefe�orio PortaA.S.Mazz.Ch. 74 73.589 1785 0,36%
5.2 Antirefe�orio PortaMuseoFab.Ap. 50 49.840 1211 0,25%
5.2 Antirefe�orio PortaMuseoFab.Ch. 62 61.846 1503 0,31%
5.3 Antirefe�orio PortaAntiref. 51 58.557 1537 0,31%
5.4 Antirefe�orio PortaRef.Piccolo 54 53.767 1306 0,27%
5.5 Antirefe�orio Cupola 57 56.089 1377 0,28%
5.6 Antirefe�orio AperturaPavimento 55 54.586 1322 0,27%
5.7 Antirefe�orio S.Agata 48 47.820 1165 0,24%
5.8 Antirefe�orio S.Scolastica 58 57.919 1407 0,29%
5.9 Antirefe�orio ArcoconFirma 62 76.700 1864 0,38%
5.10 Antirefe�orio BustoVaccarini 65 64.298 1563 0,32%
6.1 SantoMazzarino �adroS.Mazz. 71 70.401 1716 0,35%
6.2 SantoMazzarino A�resco 213 211.424 5124 1,04%
6.3 SantoMazzarino PavimentoOr. 99 98.691 2397 0,49%
6.4 SantoMazzarino PavimentoRes. 69 69.148 1675 0,34%
6.5 SantoMazzarino BassorilieviManc. 117 115.348 2823 0,57%
6.6 SantoMazzarino LavamaniSx 151 149.882 3637 0,74%
6.7 SantoMazzarino LavamaniDx 93 92.928 2256 0,46%
6.8 SantoMazzarino TavoloRelatori 150 148.661 3603 0,73%
6.9 SantoMazzarino Poltrone 108 107.374 2604 0,53%
7.1 Cucina Edicola 369 437.219 11086 2,26%
7.2 Cucina PavimentoA 52 52.163 1268 0,26%
7.3 Cucina PavimentoB 52 52.244 1266 0,26%
7.4 Cucina PassavivandePavim.Orig. 81 80.733 1961 0,40%
7.5 Cucina AperturaPav.1 57 57.170 1385 0,28%
7.5 Cucina AperturaPav.2 53 52.875 1280 0,26%
7.5 Cucina AperturaPav.3 62 62.320 1509 0,31%
7.6 Cucina Scala 77 76.587 1856 0,38%
7.7 Cucina SalaMetereologica 156 154.394 3748 0,76%
8.1 Ventre Doccione 103 102.683 2492 0,51%
8.2 Ventre VanoRacc.Cenere 126 124.837 3026 0,62%
8.3 Ventre SalaRossa 300 296.792 7202 1,47%
8.4 Ventre ScalaCucina 214 212.372 5152 1,05%
8.5 Ventre CucinaProvv. 148 146.379 3553 0,72%
8.6 Ventre Ghiacciaia 69 68.562 1668 0,34%
8.6 Ventre Ghiacciaia1 266 263.817 6398 1,30%
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8.7 Ventre Latrina 102 100.542 2468 0,50%
8.8 Ventre OssaScarti 154 152.861 3713 0,76%
8.8 Ventre OssaScarti1 36 36.345 886 0,18%
8.9 Ventre Pozzo 300 297.167 7209 1,47%
8.10 Ventre Cisterna 57 56.572 1384 0,28%
8.11 Ventre BustoP.Tacchini 110 109.520 2662 0,54%
9.1 GiardinoNovizi NicchiaePav. 106 105.004 2555 0,52%
9.2 GiardinoNovizi TraccePalestra 63 62.464 1525 0,31%
9.3 GiardinoNovizi Pergolato 166 164.150 3984 0,81%
AVG 102.6 103.26 2517 0,51%
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Table 14. List of test videos acquired using HoloLens. For each video we report the length in seconds, the amount of occupied memory, the number of frames,
the number of environments included in the video, the number of points of interest included in the video, the sequence of environments as navigated by the
visitor, and the sequence of points of interest, as navigated by the visitor.

Video Time MB #frames %frames #env. #p.int. seq.environments seq. p.interest

Test1 300 296.896 7202 5,49% 4 10 1->2->3->4 1.1->2.2->3.1->3.9->3.10->3.4->
3.6->4.1->4.2->4.3

Test1.1 300 297.031 7202 5,49% 4 11 4->3->5->6 4.3->3.11->5.6->5.7->5.1->6.1->
6.4->6.9->6.3->6.6->6.2

Test2.0 300 296.993 7203 5,49% 4 9 1 >2->3->4 1.1->2.1->3.9->3.10->3.5->3.10->
3.5->3.10->3.6->4.1->4.2->4.3

Test3.0 300 296.959 7202 5,49% 4 8 1->2->3->4 1.1->2.1->3.9->3.10->3.4->3.11->
3.6->4.1

Test3.1 300 296.913 7203 5,49% 3 5 4->3->5 4.2->4.3->4.2->3.11->5.5->5.6

Test3.2 300 297.083 7201 5,49% 4 17 5->6->5->7

5.6->5.1->5.3->5.10->5.9->5.1->
6.2->6.1->6.4->6.9->6.5->6.4->
6.3->6.8->6.5->6.7->6.6->6.5->
5.2->7.1

Test3.3 300 297.160 7202 5,49% 2 12 7->8 7.2.>7.6->7.5->7.4->7.7->7.1->
8.1->8.6->8.2->8.8->8.4->8.10

Test3.4 237 234.744 5694 4,34% 3 5 8->9->3 8.9->8.11->8.3->9.1->9.2

Test4.0 300 296.979 7204 5,49% 4 10 1->2->3->5 1.1->2.2->3.9->3.10->3.4->3.11->
->3.7->3.11->5.10->5.9->5.1

Test4.1 300 296.654 7202 5,49% 3 16 5->7->8

5.6->5.5->5.8->5.4->5.2->7.1->
7.3->7.2->7.1->7.4->7.1->7.5->
7.7->7.1->8.1->8.5->8.2->8.4->
8.7

Test4.2 136 135.143 3281 2,50% 1 3 8 8.10->8.9->8.11

Test4.3 300 296.853 7202 5,49% 4 7 8->9->3->4 8.3->9.1->9.3->9.2->3.11->3.6->
4.2

Test4.4 201 199.585 4845 3,69% 3 4 4->3->2 4.2->3.10->3.9->2.1

Test5.0 274 271.524 6590 5,02% 4 11 1->2->3->2->3->4
1.1->3.1->3.3->3.2->2.1->3.9->
3.10->3.5->3.10->3.5->3.10->3.4->
3.7->3.4->3.6

Test5.1 300 296.801 7202 5,49% 4 11 4->3->9->3->5 4.1->4.2->3.6->3.11->9.2->3.11->
->5.5->5.3->5.9->5.7->5.8->5.2

Test5.2 300 296.921 7202 5,49% 2 13 7->8

7.1->7.2->7.3->7.1->7.5->7.1->
7.1->7.4->7.6->7.7->7.4->7.7->
8.1->8.5->8.4->8.5->8.6->8.2->
8.8->8.4

Test5.3 300 297.063 7201 5,49% 4 17 8->7->5->6

8.11->8.9->8.3->8.4->8.5->8.6->
7.1->7.5->7.2->5.1->6.2->6.4->
6.1->6.5->6.3->6.5->6.2->6.7->
6.9

Test6.0 300 296.880 7202 5,49% 3 9 1->2->3 1.1->2.2->2.1->3.9->3.10->3.4->
3.11->3.6->3.11->3.7->3.11

Test7.0 300 296.945 7202 5,49% 3 7 1->2->3 1.1->2.2->3.9->3.10->3.4->3.6->
3.11

Test7.1 113 112.030 2721 2,07% 3 3 3->5->3 3.11->5.9->5.10->3.11
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Table 15. List of training videos of environments acquired using GoPro. For each video we show: time, amount of occupied memory, number of frames,
percentage of frames with respect to the total number of frames of the training set.

Name Time (s) Storage (MB) #frames %frames
1.0 Cortile 47 116.798 1187 0,24%
2.0 Scalone 81 201.194 2044 0,42%
2.0 Scalone1 111 274.094 2785 0,57%
2.0 Scalone2 36 90.250 918 0,19%
4.0 CoroDiNo�e 168 413.702 4205 0,86%
4.0 CoroDiNo�e1 43 107.968 1097 0,22%
5.0 Antirefe�orio 191 471.275 4790 0,97%
5.0 Antirefe�orio1 262 644.852 6554 1,33%
6.0 SantoMazzarino 240 591.177 6009 1,22%
7.0 Cucina 241 592.907 6027 1,23%
8.0 Ventre 699 1719.352 17478 3,56%
9.0 GiardinoNovizi 116 427.472 6965 1,42%
AVG 186.25 242.62 5005 1,02%

7.2 GoPro
Table 15 details the training videos acquired to represent each of the considered environments. For each class, we report the total duration
of the videos, the required storage, the number of frames and the percentage of frames, with respect to the total number of frames in the
training set. Table 16 details the training videos acquired to represent each of the considered points of interest. For each class, we report the
total duration of the videos, the required storage, the number of frames and the percentage of frames, with respect to the total number of
frames in the training set. Table 17 reports a list of all test videos acquired using GoPro. For each video, we report: Time, Storage, number of
frames and percentage of frames with respect to the total number of frames of the training dataset.

Table 16. List of training videos of environments acquired using GoPro. For each video we show: time, amount of occupied memory, number
of frames, percentage of frames with respect to the total number of frames of the training set.

Name Time (s) Storage (MB) #frame %frame
2.1 Scalone RampaS.Nicola 160 394,844 4013 0,82%
2.2 Scalone RampaS.Benede�o 14 35,758 363 0,07%
2.2 Scalone RampaS.Benede�o1 147 361,856 3678 0,75%
3.1 Corridoi TreBiglie 72 178,313 1812 0,37%
3.2 Corridoi ChiostroLevante 54 202,165 3295 0,67%
3.3 Corridoi Plastico 79 195,673 1989 0,40%
3.4 Corridoi A�resco 74 182,106 1850 0,38%
3.5 Corridoi Finestra ChiostroLev. 81 300,474 4896 1,00%
3.6 Corridoi PortaCoroDiNo�e 50 123,34 1253 0,26%
3.6 Corridoi PortaCoroDiNo�e1 60 148,97 1514 0,31%
3.6 Corridoi PortaCoroDiNo�e2 58 142,747 1451 0,30%
3.7 Corridoi TracciaPortone 55 136,484 1387 0,28%
3.8 Corridoi StanzaAbate 58 122,859 1755 0,36%
3.9 Corridoi CorridoioDiLevante 85 211,539 2148 0,44%
3.10 Corridoi CorridoioCorodiNo�e 120 297,325 3022 0,62%
3.10 Corridoi CorridoioCorodiNo�e1 100 246,769 2509 0,51%
3.11 Corridoi CorridoioOrologio 176 434,081 4412 0,90%
4.1 CoroDiNo�e �adro 69 171,551 1743 0,35%
4.2 CoroDiNo�e Pav.Orig.Altare 72 178,448 1813 0,37%
4.3 CoroDiNo�e BalconeChiesa 39 96,281 978 0,20%
4.3 CoroDiNo�e BalconeChiesa1 48 119,512 1214 0,25%
4.3 CoroDiNo�e BalconeChiesa2 80 197,29 2004 0,41%
5.1 Antirefe�orio PortaA.S.Mazz.Ap. 66 164,644 1673 0,34%
5.1 Antirefe�orio PortaA.S.Mazz.Ch 74 183,481 1864 0,38%
5.2 Antirefe�orio PortaMuseoFab.Ap 50 124,991 1270 0,26%
5.2 Antirefe�orio PortaMuseoFab.Ch 62 154,254 1567 0,32%
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5.3 Antirefe�orio PortaAntiref. 52 128,695 1306 0,27%
5.4 Antirefe�orio PortaRef.Piccolo 54 133,494 1356 0,28%
5.5 Antirefe�orio Cupola 55 135,594 1378 0,28%
5.6 Antirefe�orio AperturaPavimento 57 141,647 1439 0,29%
5.7 Antirefe�orio S.Agata 49 120,611 1225 0,25%
5.8 Antirefe�orio S.Scolastica 56 137,79 1400 0,28%
5.9 Antirefe�orio ArcoconFirma 60 149,889 1522 0,31%
5.10 Antirefe�orio BustoVaccarini 66 162,799 1654 0,34%
6.1 SantoMazzarino �adroS.Mazz. 72 178,16 1810 0,37%
6.2 SantoMazzarino A�resco 214 526,612 5353 1,09%
6.3 SantoMazzarino PavimentoOr. 98 242,332 2462 0,50%
6.4 SantoMazzarino PavimentoRes. 68 169,524 1722 0,35%
6.5 SantoMazzarino BassorilieviMan. 116 25,942 2906 0,59%
6.6 SantoMazzarino LavamaniSx 134 331,517 3369 0,69%
6.7 SantoMazzarino LavamaniDx 91 225,892 2296 0,47%
6.8 SantoMazzarino TavoloRelatori 149 366,575 3726 0,76%
6.9 SantoMazzarino Poltrone 108 266,611 2709 0,55%
7.1 Cucina Edicola 368 931,368 9467 1,93%
7.2 Cucina PavimentoA 55 137,197 1394 0,28%
7.3 Cucina PavimentoB 52 129,601 1316 0,27%
7.4 Cucina PassavivandePavim.Orig. 84 206,667 2100 0,43%
7.5 Cucina AperturaPav.1 58 142,7 1450 0,30%
7.5 Cucina AperturaPav.2 57 142,145 1444 0,29%
7.5 Cucina AperturaPav.3 65 161,61 1641 0,33%
7.6 Cucina Scala 79 195,547 1988 0,40%
7.7 Cucina SalaMetereologica 158 390,583 3970 0,81%
8.1 Ventre Doccione 100 246,353 2503 0,51%
8.2 Ventre VanoRacc.Cenere 128 315,824 3210 0,65%
8.3 Ventre SalaRossa 158 388,603 3951 0,80%
8.4 Ventre ScalaCucina 213 524,06 5327 1,08%
8.5 Ventre CucinaProvv. 151 371,84 3779 0,77%
8.6 Ventre Ghiacciaia 72 178,295 1811 0,37%
8.6 Ventre Ghiacciaia1 185 457,1 4646 0,95%
8.7 Ventre Latrina 80 295,294 4804 0,98%
8.8 Ventre OssaScarti 150 369,523 3756 0,76%
8.8 Ventre OssaScarti1 34 86,105 873 0,18%
8.9 Ventre Pozzo 149 367,713 3737 0,76%
8.10 Ventre Cisterna 30 114,114 1852 0,38%
8.11 Ventre BustoP.Tacchini 106 261,822 2661 0,54%
9.1 GiardinoNovizi NicchiaePav. 104 256,731 2609 0,53%
9.2 GiardinoNovizi TraccePalestra 58 216,801 3533 0,72%
9.3 GiardinoNovizi Pergolato 164 404,893 4115 0,84%
AVG 93.53 232.97 2515 0,51%
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Table 17. List of test videos acquired using GoPro. For each video we report the length in seconds, the amount of occupied memory, the number of frames, the
number of environments included in the video, the number of points of interest included in the video, the sequence of environments as navigated by the
visitor, and the sequence of points of interest, as navigated by the visitor.

Video Time(s) MB #frames %frames #env. #p.int. sequence environements sequence points of interest

Test1 397 390.558 14788 5.32% 4 9 1.0->2.0->3.0->4.0->3.0 1.1->2.2->3.9->3.10->3.6->4.1->
4.2->4.3->3.11

Test2 420 1033.149 10503 3.78% 4 8 1.0->2.0->3.0->5.0->3.0 1.1->2.1->3.9->3.10->3.4->3.11->
3.6->3.11->5.10->3.10

Test3 579 1425.480 14491 5.21% 5 11 1.0->2.0->3.0->9.0->3.0->5.0->3.0
1.1->2.2->2.1->2.2->3.9->3.10->
3.6->3.11->9.2->9.1->9.3->9.2->
3.11->5.10->3.11

Test4 1472 3620.627 36808 13.24% 9 35 1.0->2.0->3.0->4.0->3.0->5.0->
6.0->5.0->7.0->8.0->9.0->3.0

1.1->2.1->2.2->3.9->3.10->3.4->
3.11->3.6->4.1->4.3->3.11->5.4->
5.2->5.1->5.3->5.10->5.9->5.6->5.1->
6.9->6.4->6.9->6.8->5.3->5.6->
5.4->5.2->7.1->7.6->7.1->7.5->
7.4->7.7->8.1->8.6->8.2->8.8->
8.1->8.10->8.9->8.11->8.3->9.1->9.2

Test5 751 1848.142 18788 6.76% 6 26 1.0->2.0->3.0->5.0->7.0->8.0

1.1->2.2->2.1->3.1->3.9->3.10->
3.4->3.11->5.10->5.6->5.1->5.3->
5.4->5.2->7.1->7.4->7.1->7.5->
7.7->8.1->8.5->8.4->8.7->8.10->
8.8->8.10->8.11

Test6 506 1245.254 12661 4.56% 5 11 8.0->9.0->3.0->4.0->3.0->2.0 8.3->9.1->9.3->9.2->3.11->3.6->
4.2->3.10->3.9->3.1->2.1

Test7 1549 3809.218 38725 13.93% 9 44

1.0->2.0->3.0->2.0->3.0->4.0->
3.0->9.0->3.0->5.0->7.0->8.0->
7.0->5.0->6.0->5.0->3.0->9.0->
3.0->2.0->1.0

1.1->2.1->3.3->3.2->2.1->3.9->
3.10->3.5->3.10->3.5->3.10->3.4->
3.11->3.7->3.11->3.10->3.4->3.6->
4.1->4.3->3.6->3.11->9.2->9.1->
9.2->3.11->5.7->5.4->5.3->5.2->
7.1->7.5->7.4->7.6->7.1->7.7->
7.4->7.7->8.1->8.5->8.4->8.6->
8.2->8.8->8.4->8.10->8.11->8.3->
8.5->7.1->6.2->6.1->6.5->6.9->
6.6->6.5->6.8->6.4->5.3->5.10->
3.11->9.1->9.3->9.2->3.11->3.10->
3.5->3.10->3.9->2.1->2.2->1.1
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