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Human Visual System
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Where System

Location Object recognition
Motion perception Face recognition
Depth perception Color perception
Spatial organization Shape perception

Figure/Ground segmentation

Vision is light patterns processing (from
light to information useful to the
organism), not image transmission
(Homunculus Theory).

Among all the different visual information
processed by the visual system, the shape
certainly plays an important role.

You are reading characters on this slide... which
are characterized by their shape!



Which cue do we use most for object recognition?

» Colour

» Texture [
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Shapes

The 2D-silhouette

often conveys
enough information
to allow the

recognition of an
object.



In spite of the lack of additional important pictorial information (e.g., color,
texture, etc), the shape of objects help in recognizing each object and the
context of the scene too.



Shape Re 5| on/Matchi Ng

e Though the recognition/matching of shapes is natural
and simple for humans, the design of a robust computer
vision system for this task is not straightforward.

— Photometric Transformations (objects segmentation is a
challenging task)

— Low between class variability
— High within class variability
— Geometric Transformations
— Deformations

— Occlusion

— Real-time processing
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From 3D Object to 2D Shape

 When a 3-D real world object is projected

onto a 2-D image plane, one dimension of
object information is lost.

e As a result, the shape extracted from the
image only partially represents the object.

e High variability
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e The algorithms for shape representation
generally look for effective and perceptually
important shape features based on either

— shape boundary information
— boundary plus interior content
e These approaches can be  further
distinguished into
— space domain
— transform domain



our shape technique
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 Contour shape techniques only exploit shape
boundary information.

 Two types of different approaches for contour
shape modeling:

— continuous approach (global)
— discrete approach (structural)
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e Continuous approaches do not divide shape
into sub-parts

e Usually a feature vector derived from the
integral boundary is used to describe the
shape.

e The measure of shape similarity is usually a
metric (or pseudo-metric) distance between
the feature vectors describing the shapes.
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e Discrete approaches break the shape
boundary into segments, called primitives
using a specific criterion

 The final representation is usually a string or a
graph (or tree)

e The similarity measure is done by string
matching or graph matching.
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* In region based techniques, all the pixels
within a shape region are taken into account

to obtain the shape representation

e Similar to contour based methods, region
based shape methods can also be divided into
global and structural methods



polar raster sampling
of shape
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a) Convex hull and its concavities;
b) Concavity tree representation of convex hull




Classification of shape representation
techniques

Shape
|
Contour-based Region-based
1 o

Structural (lobal Czlobal Structural
Chain Code Penimeter Area Convex Hull
Polygon Compactness Euler Number Media Axis
B-spline Eccentricity Eccentricity Core
Invariants Shape Signature Geometric Moments

Hausdoff Distance Zernike Moments

Fournier Descriptors Pseudo-Zermke Moments

Wavelet Descriptors Legendre Moments

Scale Space Generic Fournier Descriptor

Autoregressive Gnid Method

Elastic Matching Shape Matrix




 Shape features are often evaluated by how
accurately they allow one to retrieve similar
shapes from a given database.



MPEG-7 principles

e MPEG-7 has set several principles to measure a
shape descriptor.

* Important characteristics:
— good retrieval accuracy
— robust retrieval performance
— compact features
— general application
— low computation complexity
— hierarchical coarse to fine representation
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e Good retrieval accuracy requires a shape
descriptor be able to effectively find

perceptually similar shapes from a database.

 Perceptually similar shapes wusually means
rotated, translated, scaled shapes and affinely
transformed shapes
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e The descriptor should also be able to find
noise affected shapes, variously distorted
shapes and defective shapes, which are

tolerated by human beings when comparing
shapes
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e Low computation complexity means minimizing
any uncertain or ad hoc factors that are involved

in the derivation processes.

e The fewer the uncertain factors involved in the

omputation processes, the more robust the
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Low computation complexity =
clarity and stability
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Other requirements

e Compact features are desirable for indexing and
online retrieval.

* |f a shape descriptor has a hierarchical coarse to
fine representation characteristic, it can achieve a
high level of matching efficiency.

— shapes can be matched at coarse level to first
eliminate large amount dissimilar shapes

— at finer level, shapes can be matched in details.



Sii 1P1€ SNnadpe descriptors
Common simple global descriptors are

— area

— circularity (perimeter?/area)

— eccentricity (length of major axis/length of minor axis)
— major axis orientation

— etc

These descriptors can only discriminate shapes with large
differences

Usually used as filters to eliminate false hits or combined with
other shape descriptors to discriminate shapes.
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These two shapes have the same circularity

(perimeter?/area), however, they are very different
shapes. In this case, eccentricity is a better descriptor.
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The measure of shape similarity is usually a
metric distance between the considered feature
vectors.
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A function d: X x X — 97, satisfying for all

X;, Xy X3 €X

* Non-negativity: d(x,, x,) =20

* Indiscernability: d(x,, x,) =0 iffx, = x,

e Symmetry: d(x,, x,) =d(x,, x,)

e Triangle inequality: d(x;, x;) < d(x,, x,)* d(x,, x,)

(X,d) is called a metric space \ 5

AB =BC + AC
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Correspondence-based shape matching

Correspondence-based shape matching works in the space
domain.

In contrast to feature-based shape representation
techniques, correspondence-based shape matching
measures similarity between shapes using point-to-point
matching.

Every point on the shape is treated as a feature point.
The matching is conducted on 2-D space.

Example: Hausdorff distance, Chamfer Matching, Shape
Context
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e When talking about distances, we usually mean
the shortest.

 Formally, this is called a minmin function:

D(A,B) = min {mm{d(a b}}}

acd

e |t reads like: “for every point a of A, find its
smallest distance to any point b of B ; finally,
keep the smallest distance found among all points

V4

a
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The shortest distance doesn't consider the

whole shape.




Hausdo
* Hausdorff distance is the “maximum distance of a set
to the nearest point in the other set”

* More formally, Hausdorff distance from set 4 to set
B is a maxmin function, defined as:

h(A,B) = max {mm{d(mb)}}

acd

where a and b are points of sets 4 and B respectively,
and d(a, b) is any metric between these points
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e Usually d(a,b) is the Euclidean distance:

h(A,B) = max{mm{lla bll}}

bel

e |t should be noted that Hausdorff distance is
oriented (or asymmetric):

(A, B) # h(B, A)

e Using this definition, the Hausdorff distance is
not a metric!




h(B,R)#h(R,B)
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* A more general definition for the Hausdorff

distance (which “fixes” this asymmetry) is:
H(A, B) = max{h(A, B), h(B, A)}

which is a pseudo-metric and defines the
distance between 4 and B

e Unlike a metric space, points in a
pseudometric space need not
be distinguishable:

one may have d(x, y)=0forx #y
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Hausdorff distance is a classical correspondence-
based shape matching method, it has often been
used to locate objects in an image and measure

similarity between shapes
Shape can be matched partially

However:
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This distance is not translation, scale and rotation
invariant.



Hausdorff distance shown around extremum of
each triangles. Each circle has a radius of H( P, P,).

Hausdorff distance for the triangles at the
same shortest distance, but in different
position
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In order to match a model shape with a shape in the image, the

model shape has to be overlapped on the image in different
positions, orientations and scales

A single point in 4 that is far from anything in B will cause /(4, B) to
be large.

Therefore, a modified Hausdorff distance is introduced by
Rucklidge:

)

h' (A, B) = figaminlla — b|

Where frex9(X) denotes the /* quantile value of g(x)
over set X. In practice, f is usually set to be % (the
median)
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Rucklidge extends Hausdorff dlstance matching into affine
invariant matching
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A set of affine models are generated from the model shape.

Since the space of affine transformations from the model
shape is large, an efficient matching scheme is introduced by
only examining a small part of the space of the affine
transformations.

Despite the efficiency effort, the matching load is still high

- scaling» ST rotations
1 s s 1
I R I
//\ : - % | - P translations
Y / \ i SyY x \ i \) i t. ,
A =L 1|\ V \
model B ! L \\\

' min H{A, T,(B))
PET

image A
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e The Procrustean distance is a least-squares type
shape metric that requires shapes with one-to-one
point correspondence.

 To determine the Procrustean distance between two
shapes involves four steps:

> W N

Compute the centroid of each shape.

Re-scale each shape to have equal size.

Align w.r.t. position the two shapes at their centroids.
Align w.r.t. orientation by rotation.
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OCrus ISTa
e Mathematically the squared Procrustean
distance between two shapes, X; and X,, is the
sum of the squared point distances after

alignment:

(1]
2 2
P = Z | (1 = 372)” + (g2 = 912)”|
=1
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 The centroid of a shape can be interpreted as center

of mass of the physical system consisting of unit
masses at each landmark. Thus to compute the

centroid:
Tt Tt
_ 1 1
E =| 72,572,
j=1 j=1
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* To re-scale each shape to have equal size we need to
establish a size metric.

* A shape size metric S(X) is any positive real valued

function of the shape vector that fulfils the following
property:

S(ax) = aS(x)
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e We can use the Frobenius norm as a shape size

metric:

Tt
2 2
S(x) = Z [(:&:} - %) +(y; — 7) ]
/=t
e Another often used scale metric is the centroid size:

s6)= " [l -2+ - 77
7=1
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e To filter out the rotational effects the following singular
value decomposition technique is suggested by
Bookstein [1997]:

1.

Arrange the size and position aligned X, and X, as a nxk
matrix

Calculate the SVD, UDV/, of x,’X,

Then the rotation matrix needed to optimally superimpose
X, upon X, is VU, In the planar case:

cos (@) —sin (@)
vy = [sin (@) cos (@)
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e As an alternative Cootes et al. [2000] suggest a
variation on Procrustean distance-based alignment
by minimizing the closed form of |T(X,)-X,|* where T
in the Euclidean case is:

X a =1 X (%
") 316)-[

W)=l 5 1G)* s
e The term |T(X,)-X,|° is then differentiated w.r.t.
(a,b,t, ).

e This transformation changes the actual shape.



Ch A~ 11

Sndpe Signature

e A Shape signature represents a shape by a one
dimensional function derived from shape boundary
points.

 Many shape signatures exist. They include centroidal
profile, complex coordinates, centroid distance,
tangent angle, cumulative angle, curvature, area and
chord-length, etc..
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Shape signature (cont)

Shape signatures are usually normalized to obtain translation and scale
invariance.

In order to compensate for orientation changes, shift matching is needed
to find the best matching between two shapes.

Most of the signature matching is normalized to shift matching in 1-D
space,

Some signature matching requires shift matching in 2-D space, such as the
matching of centroidal profiles

In either case, the matching cost is too high for online retrieval.

In addition to the high matching cost, shape signatures are sensitive to
noise, and slight changes in the boundary can cause large errors in
matching.

Therefore, it is undesirable to directly describe shape using a shape
signature



Spectral descripto
e Spectral descriptors overcome the problem of
noise sensitivity and boundary variations by

analyzing shape in spectral domain.

e Spectral descriptors include Fourier descriptors
(FDs) and wavelet descriptors (WDs)

 They are derived from spectral transforms on 1-D
shape signatures
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Time domain Frequancy domain
(complex signal) (complex spectrum)
alr) = Alp) =
al0), a(l), ..., a(N —1) A(0). A1), AN —1)
S 21 Forward DFT
A . e orwar
Alp) = Zr alx) exp ( N A 1) (MATLAB ££¢)
r=U
()| = Inverse DFT
— (MATLAB ifft)
| |
Signal Spectrum Basis Function
Frequency QOmalﬂ Complex exponential(oscillation).
Reconstructed from representation. Frequency u/ N over entire signal
e s A Weight and phase of )
p Ap) - frequency p. 0<z<N.




The above figures show the reconstruction based on different percentages of frequency
components (descriptors) after the Fourier transform of the pixels on the boundary of the figure
in the image. The percentages used are, from left to right 0.1%, 1%, 2%, 5% and 100%. It can be
seen that the reconstructed figures using 5% of the frequency components are very similar to
the actual figure (using one hundred percent of the frequency components on the right).



Dynamic Time Warping

Dynamic time warping (DTW) is an algorithm for measuring similarity
between two sequences which may vary in time or speed.

In general, DTW is a method that allows a computer to find an optimal
match between two given sequences (e.g. time series) with certain
restrictions.

The sequences are "warped" non-linearly in the time dimension to
determine a measure of their similarity independent of certain non-linear
variations in the time dimension.

One example of the restrictions imposed on the matching of the
sequences is on the monotonicity of the mapping in the time dimension.
Continuity is less important in DTW than in other pattern
matching algorithms; DTW is an algorithm particularly suited to matching
sequences with missing information, provided there are long enough
segments for matching to occur.

The extension of the problem for two-dimensional "series" like images
(planar warping) is NP-complete, while the problem for one-dimensional
signals like time series can be solved in polynomial time.
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Sequences are aligned “one to one”.

“Warped” Time Axis

Nonlinear alignments are possible.



How is DTW DTW(Q,C) :min{ > K
Calculated?

Y(IIJ) = d(qircj) + mln{ ’Y(I_llj_l) ’ Y(I'l,j ) ’ Y(Ir./_l) }

Warping path w e
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Opt

The major optimisations to the DTW algorithm arise from observations on
the nature of good paths through the grid. These are outlined in Sakoe
and Chiba and can be summarised as:

— Monotonic condition: the path will not turn back on itself, both the i and j
indexes either stay the same or increase, they never decrease.

— Continuity condition: The path advances one step at a time. Both i and j can
only increase by 1 on each step along the path.

— Boundary condition: the path starts at the bottom left and ends at the top
right.
— Adjustment window condition: a good path is unlikely to wander very far from

the diagonal. The distance that the path is allowed to wander is the window
length r.

— Slope constraint condition: The path should not be too steep or too shallow.
This prevents very short sequences matching very long ones. The condition is
expressed as a ratio n/m where m is the number of steps in the x direction
and m is the number in the y direction. After m steps in x you must make a
step in y and vice versa.
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e The HT is capable of identifying digital straight line
segment in cluttered and/or noisy images, and also give
an estimate of their respective parameters.

e There are many HT variations; here we refer to the
traditional approach, reported in Hough'’s patent

— The transform acts as a mapping from the image
space into a parameter space

 The Hough transform was initially developed to
detect analytically defined shapes (e.g., lines,
circles, ellipses etc.).
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e Basic principle easy to understood in we consider both
the image and the parameter spaces as being continuous

e Parameters:

— The normal distance between the straight line and the
coordinate origin (r)

— the normal angle (6) defined between the line normal
and the x-axis

e A straight line corresponds to the set of points in the
plane satisfying the equation r=x-cos(0) + y-sin(6)



)
C
O
Q

-’

U
9

(O
O
V9
)
O
)
-
S
-
O
O

1L

=r

X cosU +y sinU
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A straight line in the continuous image space is mapped into a continuous
collection of sinusoidals, in the continuous normal parameter space. All such

sinusoidals intercept at the single point (8’, p’) corresponding to the parameters
of the original line L.
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e The generalized Hough transform can be used to
detect arbitrary shapes (i.e., shapes having no simple

analytical form).

e The essential idea is that, instead of using the parametric
equation of the curve, we use a look-up table to define
the relationship between the boundary coordinates and
orientation, and the Hough parameters.

e The look-up table values must be computed during a
training phase using a prototype shape
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e Suppose we know the scale and orientation of the
required object (special case).

 The first step is to select an arbitrary reference point
(x., y.) in the object (e.g., the center of mass)

 Then the shape of the object is described in terms of:

— distance between a hmmdarv point and the referenc

point.

— angle between the line defined by the boundary point and
the reference point and the tangent at boundary point



R-table

X=X, +x =x_ +rsin(n—P)=x, —rcos(P)

y=y. +y =y +rcos(n—P) =y, —rsin(p)

r= \/(x—xc)2 +(y-y.)

o —
X B:tanl(y yc]

X=X,

a1 =0 (?,J)ll (?‘, 3)1 (1 ,d)l,11
c}j (?: J)jl (T! J)J (?’J‘JJH
or=7|(r3)r, (r,0)k (1, B)k,,




(1) Quantize the parameter space:

Plx

(2) for each edge point (x, y)

o XCm:Lx] [-’V':'mln o -’chax]

Cmin

(2.1) Using the gradient angle @, retrieve from the K-rable all the (&,r) values
indexed under ¢.

(2.2) For each (&,r), compute the candidate reference points:

X. = x+ rcos(a)
V.= v+ rsin(a)

(2.3) Increase counters (voting):
++(Plx Iy

(3) Possible locations of the object contour are given by local maxima in

Plxly.]

- If P[XC][_}/C] > T, then the object contour is located at X, _}/C)

We have assumed that we know the orientation and the scale of the shape!
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e |f we do not know orientation and scale of the shape,
we have to extend the accumulator by incorporating
two extra parameters (a,s) to take changes in
orientation and scale into consideration.

e Thus we should use a four-dimensional accumulator
indexed (x., y., a, s) (quantized) and the following

formula
X.=x+s-r-cos(f+a

y=y+s-r-sin(f+a)
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Chamfer System for shape-based
object detection
e [t covers the detection of arbitrary-shaped

objects, whether parametrized (e.g. rectangles
and ellipses) or not (e.g. pedestrian outlines).

Seene [mage Featwwe Itnage Digtatice Image Matching Feadt
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Distance Transform

el

= Distance image gives the distance to the nearest
edge at every pixel in the image

= Calculated only once for each frame



Chamfer Matching

Edge-model translated over Distance
Image.

At each translation, edge model
superimposed on distance image.

Average of distance values that edge
model hits gives Chamfer Distance.

Edge Model
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Dhstance Image
Chamfer Distance = 1.12



Chamfer Matching

{1

= Chamfer score is the average of distance trasform
values related the template position



Chamfer Matching

=Distance image provides a smooth cost function

= Efficient searching techniques can be used to find
correct template



Chamfer Matching




Chamfer Matching
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Chamfer Matching




Chamfer Matching




Chamfer Matching




Hand Detection/Recognition
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iderations
= Chamfer Distance

— Variant to scale and rotation

— Sensitive to small shape changes

— Need large number of template shapes
But

— Robust to clutter
— Computationally cheap



Chamfer Based Pedestrian Detection

Shape Clustering rretees The approach chosen groups similar
b e Jﬁm templates together and represents
e oh b s each group by two entities: a
56 0% 13 éié cmm “prototype” template and a
Examgle Shapes  Dissimilarity Matrix distance parameter.

Combined Hiersrchical Approach in Transform ati on and Shape Space

& Coarse-to-fite E’“’JJ\L‘\& -

- Dlatch Grid

. o

Template ;/dr“:{ N

Hierarchyy

When applied recursively, shape-
clustering leads to a template

L 5 I W) W)

in 1999
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NTeEXT
 Belongie et al. [2002] proposed a correspondence-

based shape matching method using shape contexts
e |t extracts a global feature, “the shape context”, for
each corresponding point

e The matching between corresponding points is then
the matching between the context features
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£ e Let’s consider a
Po character shape
o e Then extract the edges
and sample them

e To extract the shape
context at a point p, the
vectors of p to all the
other boundary points
are found
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Shape context
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e For a point p; on the shape a histogram #; of the relative
coordinates of the remaining n-1 points is computed :

hi(k)=#{q #p;: (q - p)) bin(k)}

* This histogram is defined to be the shape context of p,



ChA~

Vectors are put into log-polar
space to make the histogram
more sensitive to positions of
nearby points than to those of
points farther away

This choice corresponds to a
linearly increasing positional

uncertainty with distance from
Da reasonable if the
transformation between the
shapes around p; can be locally

approximated as affine.

-~ AN~ ntAaveE
Snape context

e 5 bins are used for log r
e 12 bins are used for 6
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e The histogram of each point is
flattened and concatenated to form
the context of the shape

e The matching of two shapes is done
by matching two context maps of
the shapes, which is a matrix-based
matching.

e |t minimizes the total cost of
matching between one context
matrix and all the permutations of
another context matrix.
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Shape context — matching (cont)

* Consider a point p; on the first shape and a point g;
on the second shape. Let C; = C(p,, g;) denote the
cost of matching these 2 points.

e Shape context are distributions represented as
histogram, then we can use the y? test statistic:

1 S [hi(k) — hi(K))?
Jiio = Clpig;)) = = ' J
& (pisq;) Z hi (k) + h;(k)

2 k=1
where /(k) and h(k) denote the K—bin normalized
histogram at p; and g, respectively |




Shape context — matching (cont)

* Given the sets of costs between all pairs of points p; on
the first shape and g;on the second shape, we want to
minimize the total cost of matching

Z C'(pis ¢

e Constraint: the matchlng must be one-to-one, i.e. 7 is a
permutation

e An algorithm to solve the assignment problem can be
used to minimize the cost function (e.g., Hungarian
Algorithm, The Shortest Augmenting Path Algorithm,
etc).




Bluel
Blue2
Blue3
Blued

Redl
8

39
13
22

Red2
17
4

Red3

11
41

Red4

Are there

Augment
the matrix

n solutions?

Select permutations
in weight matrix




Step 1

First for each row we subtract the

row minimum from the rest of the

row.

Red4
23
20

Red2 Red3

17

Red1
8

Bluel

11
41

39
13
22

Blue2

Blue3

Blue4d



Bluel
Blue2
Blue3
Blued

Redl
5

35
11
20

Red2

Red3

Red4
20
16

First for each row we subtract the
row minimum from the rest of the
rOWw.



Then for each column we subtract
the column minimum from the rest
of the column.

Redl Red?2 Red3 Red4

Bluel 5 14 0 20
Blue2 35 0 7 16
Blue3 11 0 39 4
Blue4 20 6 7



Then for each column we subtract
the column minimum from the rest
of the column.

Redl Red?2 Red3 Red4

Bluel 0 14 0 20
Blue2 30 0 7 16
Blue3 6 0 39 4

Blue4d 15 6 7



Bluel
Blue2
Blue3
Blued

Red1l
0

30

6

15

Red?2
14

Red3
0

7

39

7

Red4
20
16

it A
110

Cover the minimum number of rows
or columns required to cover all of
the zeros in the matrix (shown in
light green). If the number of rows or
columns required is equal to the
number of rows/columns in the
matrix then we are finished.
Otherwise, we have to proceed to
the next step. In this case, we can
cover all zeroes with only three lines
SO we continue.



Bluel
Blue2
Blue3
Blued

Red1l
0

30

6

15

Red?2
14

Red3
0

7

39

7

Red4
20
16

Step 4
From matrix, we first have to find the

minimum value not covered (
6=[Blue3,Red1]).

This value is then subtracted from
each uncovered entry and added to
each entry covered by both a vertical
and horizontal line ([Bluel,Red2] and
[Bluel,Red4]) .



Step 4
From matrix, we first have to find the

minimum value not covered (
6=[Blue3,Red1]).

This value is then subtracted from
each uncovered entry and added to
each entry covered by both a vertical
Red1 Red2 Red3 Red4 and horizontal line ([Bluel,Red2] and

Bluel O 20 0 26 [Blue1,Red4]) .
Blue2 24 0 1 16
Blue3 O 0 33 4

Blue4d 9 6 1



Bluel
Blue2
Blue3
Blued

Redl
0
24

Red?2
20

Red3

33

Red4
26
16

Repeat until converge

Step 3 is then repeated. This
continues until four rows or columns
are needed to cover all zeroes and
we are finished.

In this case, the matrix shown on the
left is finished. The zeroes in the
matrix determine the optimal
matching between nodes. The only
possible matching is shown by the
zeroes in the purple cells. The final
node matches are listed below.



Invariance to translation is intrinsic to the shape context
definition since all measurements are taken with respect to
points on the object.

To achieve scale invariance all radial distances are normalized
by the mean distance a between the n? point pairs in the
shape.

Shape contexts are inherently insensitive to small
perturbations of parts of the shape

The descriptor is not rotation invariant. Rotation invariance
can be obtained treating the tangent vector at each point as
the positive x-axis, instead of using the absolute frame.
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* Feature extraction is performed capturing the
spatial arrangement of significant object
characteristics in a correlogram structure

(from the center of the object region).

e Shape information from objects is shared
among correlogram regions, being tolerant to
the irregular deformations



Correlogram structure (1)

 Correlogram definition: Given a number of circles
C, a radius R, a number of sections S, and an
image region /, a correlogram

B=1{b{l1} .., b{CS}

is defined as a radial distribution of sub-regions
of the image.
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Correlogram structure (2)

 Each region b is defined by its centroid coordinate
b*. Then, the regions around b are defined as the
neighbors of b




Correlogram structure (3)

The region around b
are defined as the
neighbors of b.
There is a different
number of neighbors
depending on the
location of b.




Correlogram structure (4)

Different correlograms structures for different values of C and S.



Descriptor computation

 Given the object contour map, each contour point
from the image is considered.

e The distances from the contour point x to the
centroids of its corresponding region and
neighboring regions are computed. The inverse of
these distances is normalized by the sum of the total
distances.

 These values are then added to the corresponding
positions of the descriptor vector v

—

bisa; Brasy Bragy  Bysay byssy bpse;

......



NA it
Descripto

e The description is tolerant to irregular
deformations

e The length of v defined by parameters C and §,
defines the degree of spatial information taken
into account in the description process

e As the number of regions increase, the
description becomes more local.

— An optimal parameters of C and S should be obtained
for each particular problem
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* In order to make the description rotationally
invariant we look for the main diagonal G; of
correlogram B that maximize the sum of the

descriptor values.

 This diagonal is then the reference to rotate the
descriptor.

 The orientation in the rotational process, so that
G, is aligned with the x-axis, is that corresponding
to the highest description density at both sides of
G.

l



Batl 54 =54

Batl 24 =24

Batl

Bat2 54 x54

Bat2 24 :24

Bat2
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Statistical Shape Analysis

s = [r1,72,....Tn. Y. Y2, ... Yn]"
S =1{S1...., S
{ 1 m} X =[x,,x,]
! ! !
S — {Sl """ S?H-} CI)Linear_Kernel (X) =X
f 2 D : (X) =[x, x> V2x x ]
S"I’ (I) _—'ﬂ' —3 Rﬂ*(’f) Polynomial _Kernel 12420 142

i=1
1 e ! e / / T {e{I}}?-l.(b
Cp = — (*I} S;) — S ) ((I:- s.)—s ) 7 J=1
m Z [ ( 1-} i ( 1) &
1=1 na
fI)(sf) = 5:1} + a?je?
D b _oD '
Cq,ej }‘j ¥ 1 =1,..., ng j=1
T & _ |
j _? J_ ;" - J_ ..... ﬂ-(I} b
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Case study:
Objective Estimation of Body
Condition Score

Azzaro G., M. Caccamo, J. D. Ferguson,
S. Battiato, G. M. Farinella, G. C. Guarnera,
G. Puglisi, R. Petriglieri and G. Licitra

23 Penn B

¥ ¥ Veterinary Medicine
UNIVERSITY of PENNSYLVANIA
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Body Condition Score (BCS)

* |tisan important tool for management of dairy cattle

e Used to assess body energy reserves / body condition of dairy cows

e Body condition influences milk production, animal well-being, reproductive
performance, and, more generally, farm productivity.

e BCS is estimated through visual or tactile inspection by trained technicians.

e Scale from 1to 5 (0.25 increments)

 Few dairy farms use it as a feeding management tool: Subjective Estimation, lack of
computerised reports, time consuming, costs for training technicians

Emaciated 1.5
Cows

BCS using digital images has been recently investigated in Dairy /Animal Science:
Ferguson et al. 2006, Bewley et al. 2007, Halachmi et al. 2008.



Training Block

Employing Block
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*Network camera specs:

o Framerate 12 fps
o Resolution 704x576

°lmage acquisition
o from April 4t through May 6t 2009
o from 10 a.m. to 2 p.m.
o from 8 p.m. to 00 a.m.

Orthogonal view

N 2| [PLab - Corfilac] BCS IPCam

e The image acquisition system gathered

e | approximately 172800 images for each
Select Image Resolution Select Connection Type a Cq u is itio n i nte rva I Of fo U r h O u rS tO b e
O CIF @ PAL | VGA ® Local ' Internet

analyzed.

Time Slot 1
Start Time

Acquisition time (hours)

e The useful information (i.e., the cow is in
the scene) was contained in a very small
subset (about 40).

e We developed an ad-hoc image processing
pipeline to select images to be used in the
experiments.

<[ TulT»
ENIE

Time Slot 2
Start Time

Acquisition time (hours)

<[ Til»

[NED




Interframe differences

" | I\'F pf\\ll : Yo va I \

] OT LOW ImMmdages (1)
Peaks are  strongly
related to the presence

N .
)
2N '
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Terabytes of data > Megabytes of data

of cows




Selection of Cow Images

N M
EZZZ|It(i’j)_It+1(i’j)|
i=l j=1

Interframe differences

110

L

Acquisition interval of four hours

L 1 1 L L L 1
1} 50 100 180 200 250 300 380 400

\

Local variance analysis

w1’

Frames-Background
. differences

Best Frame
Manually selected

Peak indicates the  Plateau are strongly related to

Five frames per cow  prasence of the cow consecutive background frames



File

4 I

[*]

Ib]

[4]

Point 2/23

z1 18 17

ID

[l

1) left forerib

2) left short rib start

3) left hook start

4]} left hook anterior midpoint
5) left hook

6) left hook posterior midpoint
T) left hook end

8) left thurl

9) left pin

1N) left tailhead nadiv

11) left tailhead junction

12) tail

13) right tailhead junction
14) right tailhead nadir

15) right pin

16) right thurl

17) right hook end

IG

4

according to Bewley et al. 2008




Cow Images ldentification
and BCS Assignment

L

Time

| 20_05_09_11 22 Frame245.jpg
| 20_05_09_11 22 Frame246.jpg
5 \30_05_09_ 11 23] Framel.jpg
(W | 20_05_09_11_23|] Frame2.jpg
20 05 09 11 23] Frame3.jpg

e | 20_05_09_11_23] Frame4.jpg
- 20_05_09 11 23| Frame5.jpg

sy Ul sl Technician 1 | Technician 2

20/05/2009
11:18 AM

136

21/05/2009 20 05 09 11 23| Frame6.jpg
132 10:24
: 20_05_09_11 23| Frame7/.jpg
21/05/2009
110 22:01 20_05_09_11 23] Frame8.jpg

20 05 09 11 23] Frame9.jpg

;“ Ferguson et al. 1994 [ 20_05_09_11_23| Frame10.jpg
S YU ﬁﬂ;j} 20 05_09_11_23| Frame11l.jpg

738_2.875.@_09_11_23_Frame5.jpg V(SR

B 1120 05 09 11 23| Framel2.jpg




Dataset with 29 different Cows

Identified Images

|

Semi-Atomatic Identification and Labeling

ﬂ\
"

r‘c‘)paga tion

dataset, we have to recognize its ID in
order to assign the estimated BCS.




Semi-Atomatic Identification and Labeling
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Identified Images  Binarization Distribution within shape New unlabeled image
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Semi-Atomatic Identification and Labeling

I13|fferelnt Cows with similar Cblor D|str|but|ons
P P P P P P

The similarity is obtained by averaging the similarity of distributions of corresponding
subregions measured with the Bhattacharyya coefficient.

BC(p.0)=— ZZJp (Na: ()

ll]l

D,




Semi-Atomatic Identification and
Labeling Propagation (4)

Top 10 retrieved




Labeled Dataset

(image, shape, BCS1, BCS2)

Examples of images within the experimental dataset Py
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BCS Estimation: Proposed Approach

Alignment of the cows’ body shape to the same pose.

Reconstruction of cows’ body shape through a linear combination
of basis shape obtained through statistical shape analysis from a
dataset of examples.

Description of the cows’ body shape considering the variability in
deviations from the mean shape.

Kernel space to deal with the non-linearity of cows’ body shape.

Regression Machine used to infer BCS of new samples.



Geometric information that remains when
location, scale and rotational effects are

removed
(Kendall, 1984)



Example of Shapes from Anatomical Points

~— "
v

Different Scale, Position and Orientation



ClharmnAa AlicrnmrAantd
shape Allghment

e To establish the pose we used the left hook (5), right hook
(19), tail (12), left forerib (1) and right forerib (23) as reference

anatomical points.

Alignment (shape)
1) Translation
2) Rotation '///t
3) Scaling
Return Aligned Shape

;\o\

22
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Examples of Alighed Shapes




The aligned Cow Shapes

The Cow Mean Shape




Variance with respect to the mean shape

The aligned Cow Shapes

The Cow Mean Shape

e e e —— N

Outliers:
B Cow Body Distortion
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 Describe the shape of cows considering the
different variability from the mean shape.

 Shapes of cows are reconstructed by using a
linear combination of basis shape

 Basis shape are obtained through principal
component analysis from a dataset of
examples
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The Basis shape computed on the experimental dataset
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The Basis shape computed on the experimental dataset



Shape Reconstruction

(I)Linear_Kernel (X) =X

nag
)
d(s.) = S:I} + (ISjE?
dbyne 7=1
{ej }jzl
& _ P !
! | m , a, ; =e ((I)(s ) — b@)
Sp = — Z (I)(Sz)
m.
1=1

Reconstruction by considering two elements of the basis shape:
.

() 4] d — — RECONSTRUCTED

oo S vt € S+ s = R

The vector [a},a,...,a;, ] is used to describe aspects of the shape (s},




et (X) =X Reconstructlon considering
""" " two principal components

The point (0,0) correspond
to the mean shape 5"&)

S S gy (555 /95 - >
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Points sampled over a 7x7 grid



e =% Shape Descriptor Space

1) Red, Blue and Black Shapes are “similar” = Corresponding Points are close
2) Green Shape differ from Red, Blue, and Black shapes = Green Point is far

0.15 T T T T T T

01—

00s—

Capture Variability of rear

0.05—

L1 -

0.2

025

035 | | | | | | | | |
.25 0.2 .18 41 0.08 ] 0.0s 0 015 0.z 0.25

Each point is related to

one of the experimental shapes Capture Variability around hooks



(DLinear_Kernel (X) =X

Remove Outliers
e Suitable space limits:

0.3
0.2+ —
a1 —
© O o o ®
_ °
3aA, Sa;, S34A,

0 _
Q11 —
Q2+ —

[~ @ ® [~ @
O3 - . _
Outliers
a4 | | | | | | | | |
125 1.2 1% 1.1 .05 a 0.05 0.1 1% 02

0.2&



(DLinear_Kernel (X) =X

Remove Outliers
e Suitable space limits:

0.3

02—

0.1

Q11 —
Q2+ |
@ @ [~ @
O3 - . _
Outliers
04 | | | | |
125 1.2 1% 1.1 .05 a 0.25







BODY CONDITION SCORE DATABASE

_--"'_"

BCS \4

DATABASE

Trigingl Imoge

Creginel Lmegs

Shopa from Anctomicol] Points

Shops from Anctamizol Pamia

=hepa from Ancbtomicel Points

BLE,

325 3

BLS,

335 3

BOsg

BCs,

http://iplab.dmi.unict.it/bcs/

The Final BCS Database contains 286
labelled images with the related ground
truth (anatomical points and BCS).

25

20F

nurnber of images

0
0 =3 10 15 20 25 30

cow

Number of images per cow

60

a0t

40+

30+

nurnber of cows

2 25 3 35 4 45 g
BCS

BCS distribution



BCS Estimation e

We used the coefficients corresponding to the
principal components in order to describe the
shape of cows.

A regression approach was employed to infer
the BCS.

The parameters are learned using the BCS labels estimated by technicians

| ||

BCS(CD(S:-)) =a;, W, ta W, 4 t..+a ,w+Ww,

i,ng—1""n

] |

Shape Descriptor extracted related the basis shape



Kernel Principal Component Regression

e Linear Regression: address the problem of
identifying linear relations between one
selected variable and the input variables
where the relation is assumed linear

e Often, however, the relations that are sought
are nonlinear




Kernel Principal Component Regression

e Key ldea: Map the input space into a new features
space in such way that the sought relations can be
represented in a linear form and hence the linear
regression algorithm described above will be able to
detect them.

D:Xe Rd —> F C RD D >>d Map data to  higher
dimensional space (feature
space) and perform linear
regression in  embedded

space.

*)

v

The choice of the map ¢ aims to convert the nonlinear relations into linear ones.
Hence the map reflect our expectations about the relation y=f(x)



W, X+b

f(x)

w,=1/4
w,=1/4
w,=-1/2

B=-2

2 3
W X+W, X+ WX +b

<W,@(x)>+b =

f(x)



Related works

taken into account for comparison
Bewley et al. 2008 Halachmi et al. 2008

260
Ba0 ; ' ' ' ' 200} S ot i #
- D T
580 \ e -
so0 | .
PHA K 200+
40t _

150
400 -

HA |
380 \ i 100 -

300 B a0k

Model 1

y; =M+ PHA, + p,PHA, + B;(HAX PHA),; + e, TBCS = 5% x )
MAE

Model 2 MAE (Mean Absolute Error)

y; =u+ B HA + B,PHA; + B;,(HAx PHA); + B,TD, + B;(PHAXTD), +e¢,



Evaluation S

e Leave One Out Cross Validation

— Each run of LOOCV involved a single observation of the
dataset as test, and the remaining samples as training
data. The average error rate was computed taking into
account all runs.

e Regression Error Characteristic Curves

— It is essentially the cumulative distribution function of
the error. The area over the curve is a biased estimation
of the expected error of an employed regression model.
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