Corso di laurea in Ing. Telematica, a.a. 2001/2002

Prova scritta di Matematica Applicata del 6 dicembre 2001 Prof. V. Romano

Quesito 1a

Si dimostri che la funzione

$$u(x,y) = e^x \left(x^2 + y^2\right)$$

non puó essere la parte reale o quella immaginaria di una funzione analitica.

Quesito 2a

Calcolare, applicando il teorema dei residui, il seguente integrale

$$\int_0^{2\pi} \frac{dx}{2 + \sin 2x}.$$

Quesito 1b

Risolvere per $t \geq 0$ il seguente problema di Cauchy, utilizzando le trasformate di Laplace

$$\begin{cases} y'' + \omega^2 y = b(t) \\ y(0) = y'(0) = 0 \end{cases}$$

 $\mathrm{con}\; b(t) = \left\{ \begin{array}{ll} 1 & 0 \leq t < T \\ -1 & T \leq t < 2T \\ 0 & \mathrm{altrove} \end{array} \right., \;\; \mathrm{essendo}\; \omega \; \mathrm{e}\; T \; \mathrm{delle}\; \mathrm{costanti} \; \mathrm{reali} \; \mathrm{positive}.$

Quesito 2b

Determinare la trasformata di Fourier della funzione

$$f(t) = \begin{cases} t & 0 \le t \le 1\\ e^{-(t-1)} & t > 1\\ 0 & \text{altrove} \end{cases},$$

scrivendo poi l'espressione dello spettro di fase e di ampiezza.

Corso di laurea in Ing. Telematica, a.a. 2001/2002

Prova scritta di Matematica Applicata del 20 dicembre 2001

Prof. V. Romano

Quesito 1a

Data la funzione

$$u(x,y) = x^3 - 3xy^2,$$

si determini v(x,y) in modo che f(z) = u(x,y) + i v(x,y) sia analitica, esplicitando poi l'espressione di f(z).

Quesito 2a

Calcolare, applicando il teorema dei residui, il seguente integrale

$$\oint_{\Gamma} \frac{z^2}{z-1} e^{\frac{1}{z-1}} dz,$$

ove $\Gamma = \{ z \in \mathbb{C} : |z| = 2 \}.$

Quesito 1b

Risolvere per $t \geq 0$ il seguente problema di Cauchy, utilizzando le trasformate di Laplace,

$$\begin{cases} y' + \int_0^t y(\tau) d\tau = H(t)H(2-t) (t-[t]) \\ y(0) = 0, \end{cases}$$

ove H(t) è la funzione di Heaviside and [t] la parte intera contenuta in t.

Quesito 2b

Determinare le serie di Fourier in soli seni e in soli coseni di $f:[0,2]\longmapsto \mathbb{R},$ definita da

$$f(x) = x - [x],$$

con [x] parte intera contenuta in x.

Corso di laurea in Ing. Telematica, a.a. 2001/2002

Prova scritta di Matematica Applicata del 18 marzo 2002

Prof. V. Romano

Quesito 1

Risolvere per $t \geq 0$ il seguente problema integro-differenziale di Cauchy, utilizzando le trasformate di Laplace

$$\begin{cases} x''(t) + y'(t) = t e^{-t} \\ \int_0^t x(\tau) d\tau + \int_0^t x(t - \tau) y(\tau) d\tau = 0 \\ x(0) = 1, x'(0) = 0, y(0) = -1. \end{cases}$$

Quesito 2

Scrivere, sia in forma reale che complessa, la serie di Fourier della funzione $f:]-\pi,\pi] \longmapsto \mathbb{R},$ definita da

$$f(x) = \begin{cases} -1 & -\pi < x \le -\frac{\pi}{2} \\ \sin x & -\frac{\pi}{2} < x \le \frac{\pi}{2} \\ 1 & \frac{\pi}{2} < x \le \pi \end{cases}$$

Quesito 3

Data la funzione

$$x(t) = \frac{t}{(4+t^2)^2},$$

calcolare i coefficienti della serie di Fourier della ripetizione periodica

$$x_T^*(t) = \sum_{k=-\infty}^{+\infty} x(t - kT),$$

essendo T un costante reale positiva.

Universitá degli Studi di Catania Corso di laurea in Ing. Telematica, a.a. 2001/2002 Prova scritta di Matematica Applicata del 17 giugno 2002

Prof. V. Romano

Quesito 1

Risolvere per $t \geq 0,$ utilizzando le trasformate di Laplace, il seguente problema di Cauchy

$$\begin{cases} y'' + y = b(t) \\ y(0) = y'(0) = 0 \end{cases} \quad \text{con} \quad b(t) = \begin{cases} e^t - 1 & 0 \le t < \log 2 \\ \sin \frac{\pi t}{2 \log 2} & \log 2 \le t < 2 \log 2 \\ 0 & \text{altrove} \end{cases}$$

Quesito 2

Scrivere la serie di Fourier in soli seni della funzione $f:[0,2\log 2]\longmapsto \mathbb{R},$ definita da

$$f(x) = \begin{cases} e^x - 1 & 0 \le x < \log 2\\ \sin \frac{\pi x}{2 \log 2} & \log 2 \le x \le 2 \log 2 \end{cases}$$

Quesito 3

Determinare la trasformata di Fourier della funzione

$$f(t) = \frac{t}{(9+t^2)^2}$$

Universitá degli Studi di Catania Corso di laurea in Ing. Telematica, a.a. 2001/2002 Prova scritta di Matematica Applicata, 8 luglio 2002

Prof. V. Romano

Quesito 1

Calcolare, applicando il teorema dei residui, il seguente integrale

$$\oint_{\Gamma} \left(1 + \frac{1}{z} \right) \, e^{\frac{\pi}{z}} \, dz,$$

ove $\Gamma = \{ z \in \mathbb{C} : |z| = 2 \}.$

Quesito 2

Risolvere per $t \geq 0$ il seguente problema di Cauchy, utilizzando le trasformate di Laplace,

$$\begin{cases} y' + \int_0^t e^{\tau - t} y(\tau) d\tau = H(t)H(2 - t)[t + 1] \\ y(0) = 0, \end{cases}$$

ove H(t) è la funzione di Heaviside and [x] la parte intera contenuta in x.

Quesito 3

Scrivere la serie di Fourier, sia in forma reale che complessa, della funzione $f:[-1,1]\longmapsto \mathbb{R},$ definita da

$$f(x) = \begin{cases} e^x - 1 & x \in [-1, 0[\\ x & x \in [0, 1] \end{cases}$$

Corso di laurea in Ing. Telematica, a.a. 2001/2002

Prova scritta di Matematica Applicata del 5 settembre 2002

Prof. V. Romano

Quesito 1

Determinare il valore del parametro α per cui la funzione

$$u(x, y) = (\alpha + 1)x^2 - y^2 + x$$

risulta la parte reale di una funzione analitica e per tale valore trovare la funzione coniugata v(x,y).

Quesito 2

Determinare la trasformata di Laplace della funzione f(t) = H(t)g(t), ove H(t) è la funzione di Heaviside e g(t) è il prolungamento periodico di $\hat{g}(t): [0,2[\longmapsto \mathbb{R},$ definita da

$$\hat{g}(t) = \begin{cases} e^t & 0 \le t < 1\\ t - 1 & 1 \le t < 2 \end{cases}$$

Quesito 3

Scrivere lo sviluppo in serie di Fourier di soli seni della funzione $f:[0,2\pi[\longmapsto\mathbb{R},$ definita da

$$f(x) = \begin{cases} & \text{sen } x & 0 \le x \le \frac{\pi}{2} \\ & 1 & \frac{\pi}{2} < x \le \pi \\ & -1 & \pi < x < 2\pi \end{cases}$$

Quesito 4

Dire quali delle seguenti funzioni è trasformabile secondo Fourier, calcolandone poi, ove possibile, la trasformata di Fourier

$$x(t) = \frac{1}{1+t^3}, \quad x(t) = \frac{1}{1-t^2}, \quad x(t) = \frac{t+1}{(1+t^2)^2},$$

Corso di laurea in Ing. Telematica, a.a. 2001/2002

Prova scritta di Matematica Applicata del 19 settembre 2002

Prof. V. Romano

Quesito 1

Calcolare

$$\oint_{\Gamma} (z^2 + 1) \cos \frac{1}{z} \, dz,$$

ove Γ è una qualunque curva regolare semplice chiusa contenente al suo interno l'origine.

Quesito 2

Determinare per t > 0 la soluzione del problema di Cauchy

$$\begin{cases} \int_0^t y(\tau)y(t-\tau) \ d\tau - 2y(t) - t + 2 = 0, \\ y(0) = 1. \end{cases}$$

Quesito 3

Dire quali delle seguenti funzioni è trasformabile secondo Fourier, calcolandone poi, ove possibile, la trasformata di Fourier

$$x(t) = \frac{1}{2 - t^2}, \quad x(t) = \frac{t + 1}{(4 + t^2)^2}, \quad x(t) = \frac{1}{2 + t^3}.$$

Corso di laurea in Ing. Telematica, a.a. 2002/2003

Prova scritta di Matematica Applicata del 10 dicembre 2002

Prof. V. Romano

Quesito 1a

Calcolare

$$\oint_{\Gamma} z^2 \operatorname{sen} \frac{1}{z+\pi} \ dz,$$

ove $\Gamma = \left\{ z \in \mathbb{C} : |z + \frac{\pi}{2}| = \pi \right\}.$

Quesito 2a

Calcolare sia in forma reale che complessa i coefficienti di Fourier della ripetizione periodica della funzione

$$f(x) = \begin{cases} |\sin t| & -\frac{\pi}{2} \le t \le \frac{\pi}{2} \\ 1 & \frac{\pi}{2} < t \le \pi \end{cases}$$

Quesito 1b

Determinare per $t \geq 0$ la soluzione del problema di Cauchy

$$\begin{cases} y''(t) + 2y'(t) + y(t) = \chi_{[0,\pi]}(t) \text{ sen } \omega t, \\ \\ y(0) = y'(0) = 0 \end{cases}$$

con $\chi_{[0,\pi]}(t)$ la funzione caratteristica dell'insieme $[0,\pi]$ e ω parametro reale.

Quesito 2b

Provare che |x| è soluzione nel senso delle distribuzioni dell'equazione

$$y'' + y' = sign(x) + 2\delta(x),$$

essendo sign(x) la funzione segno.

Università degli Studi di Catania Corso di laurea in Ing. Telematica, a.a. 2002/2003

Prova scritta di Matematica Applicata del 27 marzo 2003

Prof. V. Romano

Quesito 1

Classificare le singolarità della funzione

$$f(z) = z \, \exp \left(2 + \frac{1}{z}\right),$$

calcolandone poi il residuo in z = 0.

Quesito 2

Risolvere per $t \ge 0$ il problema di Cauchy

$$\begin{cases} x''(t) + y''(t) + x'(t) = t e^{-t}H(t), \\ y''(y) + y'(t) + x'(t) = e^{-t}H(t), \\ x(0) = x'(0) = y(0) = y'(0) = 0 \end{cases}$$

essendo H(t) la funzione di Heaviside.

Quesito 3

Provare che le funzioni

$$\frac{\text{sen } 2t}{(t^2+t+1)^2}, \quad \frac{\text{cos } 2t}{(t^2+t+1)^2}, \quad \frac{t}{(t^2+t+1)^2},$$

sono trasformabili secondo Fourier, determinandone poi la trasformata di Fourier stessa.

Quesito 4

Verificare che $\phi(t) = (1 + \cos t) H(t)$ è soluzione nel senso delle distribuzioni dell'equazione

$$y'' + y = 2\delta'(t) + H(t),$$

essendo H(t) la funzione di Heaviside e $\delta(t)$ la delta di Dirac.

Corso di laurea in Ing. Telematica, a.a. 2002/2003

Prova scritta di Matematica Applicata del 1 luglio 2003 Prof. V. Romano

Quesito 1

Classificare le singolarità, sia finite che eventualmente all'infinito, della funzione

$$f(z) = \frac{z^2}{z - 1} + \operatorname{sen} \ \frac{1}{z},$$

calcolandone poi i residui.

Quesito 2

Risolvere per $t \ge 0$ il problema di Cauchy

$$\begin{cases} y'(t) + \int_0^t (t - \tau) y(\tau) \ d\tau = b(t), \\ y(0) = 0 \end{cases}$$

essendo

$$b(t) = \begin{cases} -1 & 0 \le t \le 1\\ 1 & 1 < t < 2\\ e^{-(t-2)} & t \ge 2 \end{cases}$$

Quesito 3

Provare che la funzione

$$f(t) = \frac{\text{sen } t}{(t^2 + 1)} + \frac{2t \text{ sen } t}{(t^2 + 1)^2}$$

è trasformabile secondo Fourier, determinandone poi la trasformata di Fourier stessa.

Quesito 4

Utilizzando la trasformata di Laplace, risolvere nel senso delle distribuzioni l'equazione

$$y' + \int_0^t H(t - \tau)y(\tau) d\tau = \delta''(t) + \delta'(t) + \delta,$$

essendo H(t) la funzione di Heaviside e $\delta(t)$ la delta di Dirac.

Corso di laurea in Ing. Telematica, a.a. 2002/2003

Prova scritta di Matematica Applicata del 3 settembre 2003

Prof. V. Romano

Quesito 1

Utilizzando il metodo dei coefficienti indeterminati, si sviluppi la funzione

$$f(z) = \frac{1}{e^{2z} - 1}$$

in serie di Laurent di centro z=0 e si calcoli $\oint_{\Gamma} f(z) dz$ con Γ una qualunque curva chiusa regolare contenente al proprio interno l'origine.

Quesito 2

Si determini la trasformata di Laplace della funzione H(t) f(t), essendo f(t) l'estensione periodica della funzione

$$\tilde{f}(t) = \left\{ \begin{array}{ll} t & \text{se } t \in [0,1] \\ e^{-(t-1)} & \text{se } t \in [1,2] \end{array} \right.$$

e H(t) la funzione di Heaviside.

Quesito 3

Provare che la funzione

$$f(t) = \frac{\cos t}{(t^2 + 1)} + \frac{\sin t}{(t^2 + 1)^2}$$

è trasformabile secondo Fourier, determinandone poi la trasformata di Fourier stessa.

Quesito 4

Risolvere nel senso delle distribuzioni l'equazione

$$y' + \int_0^t (t - \tau)y(\tau) d\tau = \delta(t) + \delta'(t),$$

essendo $\delta(t)$ la delta di Dirac.

Corso di laurea in Ing. Telematica, a.a. 2002/2003

Prova scritta di Matematica Applicata del 19 settembre 2003

Prof. V. Romano

Quesito 1

Data la funzione

$$f(z) = \frac{1}{\cos z - 1},$$

si trovino le singolarità di f(x), si determinino, utilizzando il metodo dei coefficienti indeterminati, i primi 4 termini significativi della serie di Laurent di centro z=0 e si calcoli $\oint_{\Gamma} f(z) \, dz$ con $\Gamma = \{z \in \mathbb{C} : |z| = \pi\}$.

Quesito 2

Si scriva lo sviluppo in soli seni della funzione $f:[0,\pi]\mapsto\mathbb{R}$ definita da $f(x)=e^x$.

Quesito 3

Si indichi per quali valori del parametro reale a la funzione

$$f(t) = \begin{cases} e^{-at} & \text{se } t \ge 0\\ e^{at} \text{sen } t & \text{se } t < 0 \end{cases}$$

è trasformabile secondo Fourier, determinandone poi la trasformata di Fourier stessa.

Quesito 4

Risolvere per $t \geq 0$ il problema di Cauchy

$$\begin{cases} y'' + y' + 2y = b(t), \\ y(0) = y'(0) = 0 \end{cases}$$

essendo

$$b(t) = \begin{cases} 0 & \text{se } t < 0\\ 1 & \text{se } t \in [0, 1]\\ e^{-(t-1)} & \text{se } t > 1 \end{cases}$$

Corso di laurea in Ing. Telematica, a.a. 2003/2004

Prova scritta di Matematica Applicata del 18 dicembre 2003

Prof. V. Romano

Quesito 1a

Determinare la parte principale dello sviluppo di centro in z=0 della funzione

$$f(z) = \frac{z + \sin z}{e^z - 1 - z - z^2},$$

Quesito 2a

Calcolare il seguente integrale

$$\int_0^{2\pi} \frac{\sin 2x}{1 + 2\sin^2 x} \ dx$$

Quesito 1b

Risolvere per $t \geq 0$ il problema

$$\int_0^t y'(t-\tau) \, y'(\tau) \, d\tau + 2y'(t) = te^{-t} H(t) - \delta(t)$$

con la condizione

$$y'(t) = e^{-t} \left(H(t) - \delta(t) \right),$$

essendo H(t) la funzione di Heaviside e $\delta(t)$ la delta di Dirac.

Quesito 2b

Dire, precisando in che ambito, se la funzione

$$f(t) = t \operatorname{sen} t + \operatorname{sen}^2 t$$

è trasformabile secondo Fourier, determinandone poi la trasformata di Fourier stessa.

Università degli Studi di Catania Corso di laurea in Ing. Telematica, a.a. 2002/2003 Prova scritta di Matematica Applicata del 7 gennaio 2004

Prof. V. Romano

-

Quesito 1

Si calcoli il seguente integrale

$$\int_2^\infty \frac{t}{1+(t-2)^4} \, dt$$

Quesito 2

Si determini lo sviluppo in soli coseni dell'estensione periodica della funzione $f: [0, \frac{3}{2}\pi] \mapsto \mathbb{R}$, definita da

$$f(x) = \operatorname{sen} x$$

Quesito 3

Si trovi il termine generale della successione definita per ricorrenza da

$$\begin{cases} a_{n+1} + 3 a_n = b_n \\ a_0 = 1 \end{cases} \text{ con } b_n = \begin{cases} \left(\frac{1}{2}\right)^n & \text{se } n \text{ pari} \\ 0 & \text{se } n \text{ dispari} \end{cases}$$

Quesito 4

Si dica se la seguente funzione

$$f(t) = \chi_{[-1,1]}(t) + e^{-(t-1)}H(t-1) + t^2$$

essendo $\chi_{[-1,1]}(t)$ la funzione caratteristica dell'intervallo [-1,1] e H(t) la funzione di Heaviside, è trasformabile secondo Fourier, calcolandone in caso affermativo la trasformata stessa.

Corso di laurea in Ing. Telematica, a.a. 2003/2004

Prova scritta di Matematica Applicata del 4 aprile 2004

Prof. V. Romano

Quesito 1

Si classifichi la singolarità in z = 0 della funzione

$$f(z) = \frac{\sinh x}{x^2} - \frac{\cosh x}{x}$$

e si calcoli poi l'integrale

$$\oint_{\Gamma} f(z) dz \quad \text{essendo} \quad \Gamma = \{ z \in \mathbb{C} : |z| = \pi/4 \}$$

.

Quesito 2

Si risolva per t > 0 il problema di Cauchy

$$\begin{cases} y'' + y = b(t) \\ y(0) = y'(0) = 0 \end{cases} \quad \text{con} \quad b(t) = \begin{cases} e^t - 1 & 0 \le t \le 1 \\ -1 & 1 < t < 2 \\ 0 & 2 \le t \end{cases}$$

Quesito 3

Si determinino i coefficienti di Fourier della ripetizione periodica di periodo T>0

$$x_T(t) = \sum_{k=-\infty}^{\infty} x(t - kT)$$
 ove $x(t) = \begin{cases} e^{-t} & \text{se } t \ge 0\\ 0 & \text{se } t < 0 \end{cases}$

Quesito 4

Si provi che la serie

$$\sum_{k=-\infty}^{\infty} k \, \delta(t-k)$$

con δ la delta di Dirac, è convergente nello spazio delle distribuzioni temperate.

Università degli Studi di Catania Corso di laurea in Ing. Telematica, a.a. 2003/2004 Prova scritta di Matematica Applicata del 8 luglio 2004

Prof. V. Romano

Quesito 1

Si calcoli l'integrale

$$\int_0^{+\infty} f(x) \, dx \quad \text{essendo} \quad f(x) = \frac{x^2}{1 + x^4} H(x) + \frac{\sin^{-2}x}{1 + x^2} H(-x),$$

con H(x) funzione di Heaviside.

Quesito 2

Si risolva per t > 0 il problema di Cauchy

$$\begin{cases} y'' + y' + y = e^t \chi_{[0,1]} \\ y(0) = y'(0) = 0 \end{cases}$$

con $\chi_{[0,1]}$ funzione caratteristica dell'intervallo [0,1].

Quesito 3

Si determini, nell'opportuno ambiton la trasformata di Fourier della funzione¹

$$x(t) = t H(t) \operatorname{sen} t.$$

Quesito 4

Si provi che la serie

$$\sum_{k=-\infty}^{+\infty} \operatorname{sen} k \, \delta(t-k),$$

con δ delta di Dirac, è convergente nello spazio delle distribuzioni temperate.

 $^{^{1}}$ Si lasci indicata la derivata di v.p. $\frac{1}{t}$.

Corso di laurea in Ing. Telematica, a.a. 2003/2004

Prova scritta di Matematica Applicata del 15 settembre 2004

Prof. V. Romano

Quesito 1

Si calcoli l'integrale

$$\oint_{\Gamma} \frac{e^{1/z+1/z^2}}{z} dz \quad \text{con} \quad \Gamma = \{z \in \mathbb{C} : |z| = 1\}.$$

Quesito 2

Si risolva per t > 0 il problema di Cauchy

$$\begin{cases} y'' + y' + y = \chi_{[0,1]} \sin t \\ y(0) = y'(0) = 0 \end{cases}$$

con $\chi_{[0,1]}$ funzione caratteristica dell'intervallo [0,1].

Quesito 3

Si determini, nell'opportuno ambito, la trasformata di Fourier della funzione²

$$x(t) = t H(t) \operatorname{sen}^{2} t.$$

Quesito 4

Si provi che la serie

$$\sum_{k=-\infty}^{+\infty} \operatorname{sen}^{2} k \ \delta(t-k),$$

con δ delta di Dirac, è convergente nello spazio delle distribuzioni temperate.

 $^{^{2}}$ Si lasci indicata la derivata di v.p. $\frac{1}{t}$.

Università degli Studi di Catania Corso di laurea in Ing. Telematica, a.a. 2004/2005

Prova scritta di Matematica Applicata del 3 febbraio 2005 Prof. V. Romano

-

Quesito 1a

Si studino le singolarità della funzione

$$f(z) = \frac{1}{z^3} \text{ sen } z^2 + \frac{1}{z} \text{ Log} (3+z)$$

ove $\text{Log}\left(z\right)$ rappresenta la diramazione principale del logaritmo, determinando poi il residuo nelle singolarità isolate tramite lo sviluppo in serie di Laurent.

Quesito 2a

Si scriva la serie di Fourier di soli seni della funzione $f:[0,\frac{3}{2}\pi]\mapsto\mathbb{R}$ definita da

$$f(x) = x \operatorname{sen} x.$$

Quesito 1b

Si determini l'antitrasformata di Laplace della funzione

$$f(s) = e^{-s} \frac{\operatorname{senh} s}{s^2 + 1}$$

Quesito 2b

Si risolva il problema

$$\left\{ \begin{array}{ll} y''+y'+y=e^t\,\chi_{[0,1]}(t), & t>0\\ y(0)=0, & y(2)=\alpha & \text{con }\alpha \text{ parametro reale} \end{array} \right.$$

essendo $\chi_{[a,b]}(t)$ la funzione caratteristica relativa all'intervallo [a,b].

Università degli Studi di Catania Corso di laurea in Ing. Telematica, a.a. 2004/2005 Prova scritta di Matematica Applicata del 14 aprile 2005

Prof. V. Romano

Quesito 1

Si determini la parte principale dello sviluppo in serie di Laurent di centro z=0 della funzione

 $\frac{\log(1+z)}{z \operatorname{sen} z^2}$

Quesito 2

Risolvere per t > 0 il sistema

$$\begin{cases} x'' - y'' = H(t - \tau)e^{-t} \\ x'' + y = e^{-t}H(t) \end{cases} \quad \text{con} \quad \begin{cases} x(0) = x'(0) = 0 \\ y(0) = y'(0) = 0 \end{cases}$$

essendo τ una costante reale positiva e H(t) la funzione di Heaviside.

Quesito 3

Si calcoli la trasformata Fourier di

$$f(t) = te^{-t}H(t) + \text{sen } t \ \chi_{[-1,1]}(t) + t$$

ove $\chi_{[a,b]}(t)$ è la funzione caratteristica dell'intervallo [a,b].

Università degli Studi di Catania Corso di laurea in Ing. Telematica, a.a. 2004/2005 Prova scritta di Matematica Applicata del 7 luglio 2005

Prof. V. Romano

Quesito 1

Calcolare, applicando il teorema dei residui, l'integrale

$$\int_0^{+\infty} \frac{dx}{1 + 2x^3}.$$

Quesito 2

Utilizzando le trasformate di Laplace, risolvere per $t \geq 0$ il problema di Cauchy

$$\left\{ \begin{array}{l} y''+\,y=H(t-\tau)\,(t-\tau)\,e^{-t}\\ y(0)=y'(0)=0 \end{array} \right.$$

essendo τ una costante reale positiva e H(t) la funzione di Heaviside..

Quesito 3

Determinare i termini della succesione definita per ricorrenza

$$\begin{cases} a_{n+2} - a_{n+1} + a_n = (-1)^n \ n \\ a_0 = 1, \ a_1 = 0 \end{cases}$$

Quesito 4

Si provi che la serie

$$\sum_{-\infty}^{+\infty} n \, \delta(x-n)$$

è convergente nello spazio delle distribuzioni temperate

Corso di laurea in Ing. Telematica, a.a. 2004/2005

Prova scritta di Matematica Applicata del 20 luglio 2005

Prof. V. Romano

Quesito 1a

Si calcoli l'integrale

$$\oint_{\Gamma} \frac{\log(1+z)}{z^2 \operatorname{sen} z} \, dz$$

ove $\Gamma = \{z \in \mathbb{C} : |z| = \frac{1}{2}\}$ e Log(z) rappresenta il logaritmo principale.

Quesito 2a

Si studino le singolarità della funzione

$$f(z) = \sqrt{2+z} + \frac{\text{Log}(1+z) \operatorname{sen} z}{z^2}$$

ove per la radice bisogna intendere la determinazione $-\pi/2 < \arg(z) \le 3\pi/2$, mentre $\operatorname{Log}(z)$ rappresenta il logaritmo principale.

Quesito 1b

Si calcoli l'antitrasformata di Laplace di

$$f(s) = e^{-s} \frac{\cosh s}{s^3 + 1} + s - 1$$

Quesito 2b

Si risolva il problema ai limiti

$$\begin{cases} y''(t) + y(t) = (1 - t^2)\chi_{[0,1]}(t) \\ y(0) = 0, \ y(2) = \alpha \end{cases}$$

con α parametro reale e $\chi_{[a,b]}(t)$ funzione caratteristica dell'intervallo [a,b].

Università degli Studi di Catania Corso di laurea in Ing. Telematica, a.a. 2004/2005 Prova scritta di Matematica Applicata del 08/09/2005

Prof. V. Romano

Quesito 1

Si studino le singolarità della funzione

$$f(z) = \frac{1}{z^2 + 1} \left(\sqrt{z + 1} + \operatorname{Log} z \right)$$

ove Log(z) rappresenta la diramazione principale del logaritmo.

Quesito 2

Si scriva la serie di Fourier della funzione $f:[-\pi,\pi/2]\mapsto \mathbb{R}$ definita da

$$f(x) = \begin{cases} \text{sen } x \text{ se } -\pi \le x < 0\\ \cos x \text{ se } 0 \le x \le \pi/2 \end{cases}$$

Quesito 3

Si risolva per t > 0 il problema di Cauchy

$$\begin{cases} y'' + y = H(t) e^{-t} + H(t-1) e^{-t} \\ y(0) = y'(0) = 0, \end{cases}$$

essendo H(t) la funzione di Heaviside.

Quesito 4

Si determini, nell'opportuno ambito, la trasformata di Fourier di

$$f(t) = 1 + \sin \omega t \cos \omega t \, \delta(t)$$

essendo $\delta(t)$ la delta di Dirac e ω una costante reale.

Università degli Studi di Catania Corso di laurea in Ing. Telematica, a.a. 2004/2005 Prova scritta di Matematica Applicata del 22/09/2005

Prof. V. Romano

Quesito 1

Si determini l'antitrasformata di Laplace della funzione

$$f(s) = \frac{e^{-s} \cosh s}{s^3 + 1}.$$

Quesito 2

Si scriva la serie di Fourier della funzione $f:[-\pi/2,\pi]\mapsto \mathbb{R}$ definita da

$$f(x) = |\text{sen } x|,$$

fornendo poi lo spettro di fase e di ampiezza.

Quesito 3

Si trovi il termine generale della seguente successione definita per ricorrenza

$$\begin{cases} a_{n+1}-a_n=b_n, & n=0,1,2,\dots\\ a_0=1, \end{cases} \text{ ove } b_n=\begin{cases} \frac{1}{n!}(-1)^k & \text{se } n=2k\\ 0 & \text{altrimenti} \end{cases}$$

Quesito 4

Si determini, nell'opportuno ambito, la trasformata di Fourier di

$$f(t) = t + \cos \omega t \, \delta(t)$$

essendo $\delta(t)$ la delta di Dirac e ω una costante reale.

Corso di laurea in Ing. Telematica, a.a. 2005/2006

Prova scritta di Matematica Applicata del 9/2/2006 - PARTE A

Prof. V. Romano

Quesito 1

Si studino le singolarità della funzione

$$f(z) = \frac{\text{Log}(z+1)}{1 - \cos z}$$

e si determini lo sviluppo in serie di Laurent di centro z=0.

Quesito 2

Si determini per t > 0 la soluzione del seguente problema di Cauchy

$$\begin{cases} y'(t) + \int_0^t y(t-\tau) \operatorname{sen} \tau \, d\tau = t \, H(t) \, e^{-t} \\ y(0) = 0, \end{cases}$$

ove H(t) denota la funzione di Heaviside.

Quesito 3

Si scriva la serie di Fourier dell'estensione periodica della funzione $f:[0,3[\mapsto \mathbb{R},$ definita da

$$f(x) = [x] + 1$$

ove [x] denota la parte intera di x.

Quesito 4

Si scriva la serie di Fourier della ripetizione periodica

$$x_T^*(t) = \sum_{k=-\infty}^{k=+\infty} x(t - kT)$$

ove T è una costante reale positiva e

$$x(t) = \chi_{[0,1]}(t) ([t] + 1) \text{ sen } t$$

essendo $\chi_{[0,1]}(t)$ la funzione caratteristica dell'intervallo [0,1].

Corso di laurea in Ing. Telematica, a.a. 2005/2006

Prova scritta di Matematica Applicata del 9/2/2006 - PARTE B

Prof. V. Romano

Quesito 1

Si studino le singolarità della funzione

$$f(z) = \frac{1}{1 - \cos z} \operatorname{Log}(2 + z)$$

e si determini lo sviluppo in serie di Laurent di centro z=0.

Quesito 2

Si determini per t>0 la soluzione del seguente problema di Cauchy

$$\begin{cases} y'(t) + \int_0^t y(t-\tau) \cos \tau \, d\tau = t \, H(t) \, e^{-t} \\ y(0) = 0, \end{cases}$$

ove H(t) denota la funzione di Heaviside.

Quesito 3

Si scriva la serie di Fourier dell'estensione periodica della funzione $f:]-3,0]\mapsto \mathbb{R},$ definita da

$$f(x) = [x]$$

ove [x] denota la parte intera di x.

Quesito 4

Si scriva la serie di Fourier della ripetizione periodica

$$x_T^*(t) = \sum_{k=-\infty}^{k=+\infty} x(t - kT)$$

ove T è una costante reale positiva e

$$x(t) = \chi_{[0,1]}(t)([t]+1)\cos t$$

essendo $\chi_{[0,1]}(t)$ la funzione caratteristica dell'intervallo [0,1].

Università degli Studi di Catania Corso di laurea in Ing. Telematica, a.a. 2005/2006 Prova scritta di Matematica Applicata del 02/03/2006

Prof. V. Romano

Quesito 1

Si determinino gli sviluppi di Laurent della funzione

$$f(z) = \frac{\text{sen } z}{(z^2 - \pi^2)^2}$$

di centro le singolarità finite.

Quesito 2

Si determini per t > 0 la soluzione del seguente problema di Cauchy

$$\begin{cases} y''(t) + \int_0^t y(\tau)d\tau = H(t) e^{-t} + H(t-1) e^{-(t-1)} \\ y(0) = y'(0) = 0, \end{cases}$$

essendo H(t) la funzione di Heaviside.

Quesito 3

Si scriva la serie di Fourier in soli seni della funzione $f:[0,3]\mapsto\mathbb{R}$, definita da

$$f(x) = [x] + 1$$

ove [x] rappresenta la parte intera di x.

Quesito 4

Si verifichi se la distribuzione $F=\text{sen }t\ \delta(t)+t\cos_+t$ soddisfa l'equazione distribuzionale

$$F'' + F = 2\delta(t) - 2\operatorname{sen}_{+}t$$

ove $\delta(t)$ denota la delta di Dirac, sen t = t = t t = t t = t t = t ove t = t t = t ove t = t

Università degli Studi di Catania Corso di laurea in Ing. Telematica, a.a. 2005/2006 Prova scritta di Matematica Applicata del 04/05/2006

Prof. V. Romano

Quesito 1

Si studino le singolarità della funzione

$$f(z) = \frac{1}{z^2 \operatorname{senh} z}$$

e si scriva poi la parte principale degli sviluppi di Laurent di centro le singolarità finite.

Quesito 2

Si determini per t > 0 la soluzione del seguente problema di Cauchy

$$\begin{cases} y''(t) + \int_0^t y(\tau)d\tau = \chi_{[0, 2]}(t) + H(t-1)e^{-(t-1)} \\ y(0) = y'(0) = 0, \end{cases}$$

essendo H(t) la funzione di Heaviside e $\chi_{[a, b]}(t)$ la funzione caratteristica relativa all'intervallo [a, b].

Quesito 3

Si provi che

$$\lim_{n \to \infty} (\text{sen } t + \cos t) \, \delta\left(t - \frac{1}{n}\right) = \delta(t)$$

ove $\delta(t)$ denota la delta di Dirac.

Università degli Studi di Catania Corso di laurea in Ing. Telematica, a.a. 2005/2006 Prova scritta di Matematica Applicata del 29/06/2006

Prof. V. Romano

Quesito 1

Si studino le singolarità finite della funzione

$$f(z) = \sqrt{2+z} + \frac{\cos z - 1}{\sin^3 z}$$

e si scriva poi la parte principale degli sviluppi di Laurent di centro le singolarità isolate.

Quesito 2

Si determini per t > 0 la soluzione del seguente problema di Cauchy

$$\left\{ \begin{array}{l} y''(t) + y(t) = \chi_{[0,\ 2]}(t)(t-[t]) + H(t-2)\,e^{-(t-2)} \\ y(0) = y'(0) = 0, \end{array} \right.$$

essendo H(t) la funzione di Heaviside, $\chi_{[a, b]}(t)$ la funzione caratteristica relativa all'intervallo [a, b] e [t] la parte intera di t.

Quesito 3

Si calcoli la trasformata di Fourier di

$$F(x) = \chi_{[0, 2]}(x) \operatorname{sen} x + \operatorname{sen} |x|$$

con $\chi_{[a, b]}(x)$ come nel quesito 2.

Università degli Studi di Catania Corso di laurea in Ing. Telematica, a.a. 2005/2006 Prova scritta di Matematica Applicata del 19/07/2006

Prof. V. Romano

Quesito 1

Si scriva lo sviluppo in serie di Laurent della funzione

$$f(z) = \frac{\text{Log}(z+1)}{\sin^2 z}$$

di centro z=0 e si calcoli poi

$$\oint_{\Gamma} \frac{\operatorname{Log}(z+1)}{\sin^2 z}$$

ove $\Gamma = \{z \in \mathbb{C} : |z| = \frac{1}{\pi}\}$, essendo Log z il logaritmo principale.

Quesito 2

Si determini il termine generale della successione definita per ricorrenza da

$$\begin{cases} a_{n+2} - 4 \ a_{n+1} + 4 \ a_n = n \ (-1)^{n+1} \\ a_0 = 1, \ a_1 = 0, \end{cases}$$

Quesito 3

Si calcoli la trasformata di Fourier di

$$F(x) = \frac{x^2}{2x^2 + 1} + \text{sen } + x$$

con sen +x = H(x) sen x, essendo H(x) la funzione di Heaviside.

Università degli Studi di Catania Corso di laurea in Ing. Telematica, a.a. 2005/2006 Prova scritta di Matematica Applicata del 22/09/2006

Prof. V. Romano

Quesito 1

Si determini la soluzione dell'equazione integrale

$$\int_0^t y(\tau) \, d\tau + 2 \int_0^t \sin((t - \tau) y(\tau)) \, d\tau = \delta(t) + H(t)e^{-t}$$

essendo $\delta(t)$ la delta di Dirac e H(t)la funzione di Heaviside.

Quesito 2

Si scriva la serie di Fourier della ripetizione periodica

$$x_T(t) = \sum_{k=-\infty}^{+\infty} x(t - kT)$$

ove

$$x(t) = \begin{cases} 0 & \text{se } t < 0 \\ e^{-t} \operatorname{sen} t & \text{se } t \ge 0 \end{cases}$$

essendo T una costante positiva.

Quesito 3

Data la funzione

$$f(t) = \begin{cases} 0 & \text{se} \quad t < 0 \\ e^{-2t} & \text{se} \quad t \ge 0 \end{cases}$$

si determinino in ambito distribuzionale f'' e il limite

$$\lim_{n\mapsto +\infty} n\,f(n\,t)$$

Università degli Studi di Catania Corso di laurea in Ing. Telematica, a.a. 2005/2006 Prova in itinere di Matematica Applicata del 14/12/2006

Prof. V. Romano

Quesito 1

Si scriva la serie di Fourier in soli coseni della funzione $f:[0,\pi/4]\to\mathbb{R}$, definita da

$$f(x) = \operatorname{sen} x$$

Quesito 2

Si calcoli il seguente integrale utilizzando il teorema dei residui

$$\int_{\pi}^{\infty} \frac{\cos x}{\left[(x-\pi)^2 + 3\right]^2} \, dx$$

Quesito 3

Si studino le singolarità della funzione

$$f(z) = \frac{2}{\text{sen }^2 z \cos^2 z} + \text{Log}(4 + z^2),$$

ove Logz indica la diramazione principale del logaritmo, scrivendo poi la serie di Laurent di f(z) di centro z=0.

Università degli Studi di Catania Corso di laurea in Ing. Telematica, a.a. 2005/2006 Prova scritta di Matematica Applicata del 14/12/2006

Prof. V. Romano

Quesito 1a

Si studino le singolarità della funzione

$$f(z) = \frac{1}{\text{sen }^2 z \cos^2 z} + \text{Log}(1 + z^2)$$

ove Log z indica la diramazione principale del logaritmo, scrivendo poi la serie di Laurent di f(z) di centro z=0.

Quesito 2a

Si scriva la serie di Fourier in soli seni della funzione $f:[0,\pi/4]\to\mathbb{R}$, definita da

$$f(x) = \cos x$$

Quesito 1b

Si risolva per t > 0 il problema di Cauchy

$$\begin{cases} y_1'' = y_1' - y_2' + y_1 \\ y_2'' = y_1' - y_2' + y_1 \\ y_1(0) = y_2(0) = 0, \quad y_1'(0) = 1, \quad y_2'(0) = 2 \end{cases}$$

Quesito 2b

Si determini la trasformata di Fourier della funzione

$$f(x) = \frac{(2+x^2) \, \text{sen } x}{x^2 + 1}$$

Università degli Studi di Catania Corso di laurea in Ing. Telematica, a.a. 2006/2007 Prova scritta di Matematica Applicata del 01/02/2007

Prof. V. Romano

Quesito 1a

Si calcoli il seguente integrale

$$\int_0^\infty \operatorname{sen} x \operatorname{arctg} \frac{1}{x^3} dx$$

Quesito 2a

Si calcoli il seguente integrale

$$\oint_{\Gamma} \operatorname{sen} \frac{1}{z} \cos \frac{1}{z-1} \, dz$$

essendo $\Gamma = \{z \in \mathbb{C} : |z| = 3\}.$

Quesito 1b

Si risolva per t > 0 l'equazione differenziale

$$y'' + \omega^2 y = \delta(t) + H(t-1) e^{-t}$$

essendo ω una costante reale positiva, $\delta(t)$ la delta di Dirac e H(t) la funzione di Heaviside.

Quesito 2b

Si determini, nell'opportuno ambito, la trasformata di Fourier di

$$f(x) = \chi_{[-\pi/2,\pi]}(x) + |x| \operatorname{sen} x$$

rappresentando $\chi_{[a,b]}$ la funzione caratteristica relativa all'intervallo [a,b].

Corso di laurea in Ing. Telematica, a.a. 2006/2007

Prova scritta di Matematica Applicata del 22/02/2007

Prof. V. Romano

Quesito 1a

Si studino le singolarità della funzione

$$f(z) = \frac{z \operatorname{sen} \ z + \cos z}{z^2}$$

Quesito 2a

Si trovi per quale valore del parametro reale α la funzione

$$u(x,y) = x^2 - \alpha (y^2 - 2x)$$

può essere la parte reale di una funzione analitica. Per tale valore di α si determino poi le funzioni v(x,y) tali che $u(x,y)+i\,v(x,y)$ risulta analitica.

Quesito 1b

Si scriva la serie di Fourier della ripetizione periodica

$$x_T(t) = \sum_{k=-\infty}^{+\infty} x(t - kT)$$

con

$$x(t) = \frac{e^{-it}}{1 + (2t+1)^2} + \chi_{[0,1](t)} + \frac{\text{sen } (2t+1)}{2t+1},$$

essendo $\chi_{[0,1](t)}$ la funzione caratteristica relativa all'insieme [0, 1].

Quesito 2b

Si determinino le successioni definite $\forall n \geq 0$ dalle relazioni

$$\begin{cases} x_0 = 0, & y_0 = 5, \\ x_{n+1} = 4x_n + 2y_n, \\ y_{n+1} = 3x_n + 3y_n \end{cases}$$

Università degli Studi di Catania Corso di laurea in Ing. Telematica, a.a. 2006/2007 Prova scritta di Matematica Applicata del 30/03/2007

Prof. V. Romano

Quesito 1

Si determini la soluzione dell'equazione

$$\int_0^t (t - \tau) y'(\tau) d\tau + \int_0^t \tau y(t - \tau) d\tau = H(t) e^{-t} + \delta''(t) + \delta'(t), \quad t \ge 0$$

essendo H(t) la funzione di Heaviside.

Quesito 2

Si trovi il termine generale delle successioni definite dalle relazioni

$$\begin{cases} x_0 = 6, \ y_0 = 2, \\ x_{n+1} = 4x_n - 5y_n, \\ y_{n+1} = x_n - 2y_n \ \forall n \ge 0. \end{cases}$$

Quesito 3

Si scriva la trasformata di Fourier di

$$f(t) = \text{sen } |t| + \frac{\text{sen } t}{1 + (t - \pi)^2}.$$