PROGRAMMA DI METODI PROBABILISTICI, STATISTICI E NUMERICI

Laurea Magistrale in Ing. Civile Strutturale e Geotecnica a.a. 2012/2013

Prof. Vittorio Romano

Sistemi di numerazione. Rappresentazione dei numerici in una base. Rappresentazione binaria. Numeri macchina e rappresentazione in virgola mobile. Fenomeno della cancellazione numerica. Problemi ben condizionati e stabilità numerica.

Sistemi lineari. Norme di matrici e vettori. Numero di condizionamento di una matrice. Metodi diretti per larisoluzione di un sistema lineare: metodo di Gauss e del pivoting parziale; fattorizzazione LU, metodo di Choleski, metodo di Doolittle. Metodi iterativi per la risoluzione di sistemi lineari: generalità, metodi di Jacobi e metodo di Gauss-Sidel, metodi di rilassamento.

Zeri di equazioni non lineari. Metodo di bisezione, metodo delle secanti, metodo delle tangenti e di Newton. Metodo di Newton-Raphson per i sistemi.

Metodi di interpolazione e di approssimazione. Interpolazione polinomiale, polinomi fondamentali di Lagrange, differenze divise, espressione del polinomio interpolante tramite le differenze divise. Funzioni spline. Metodo dei minimi quadrati.

Formule di quadratura. Formule di Newton-Cotes: formula dei trapezi e di Simpson. Cenni sulle formule di quadratura gaussiane.

Derivazione numerica. Formule alle differenze finite per l'approssimazione di derivate.

Metodi numerici per equazioni differenziali ordinarie. Metodo di Eulero: schema e studio del comportamento dell'errore. Metodi Runge-Kutta espliciti: formulazione, errore locale di troncamento e analisi della assoluta stabilità . Cenni sui metodi impliciti. Risoluzione di problemi ai limiti tramite differenze finite.

Cenni di programmazione in Matlab.

Elementi di calcolo delle probabilità. Richiami di calcolo combinatorio: disposizioni semplici, permutazioni, combinazioni semplici. Spazi di probabilità: definizione, proprietà elementari, probabilità condizionale, indipendenza, teorema delle probabilità totali e teorema di Bayes. Variabili aleatorie discrete e continue: densità, funzione di ripartizione, densità congiunte e marginali, densità condizionali, indipendenza. Speranza matematica, momenti, varianza, covarianza, coefficiente di correlazione lineare. Disuguaglianza di Chebyshev. Legge della somma di due variabili aleatorie. Funzione di sopravvivenza. Calcolo di leggi e rispettive proprietà: distribuzione ipergeometrica, geometrica, binomiale, multinomiale, di Poisson, normale, leggi gamma, leggi esponenziali, leggi chi-quadro. Convergenza in probabilità e legge dei grandi numeri. Convergenza in legge, teorema limite centrale e approssimazione normale.

Statistica. Rappresentazione di dati, distribuzioni di frequenze, indici statistici, quantili empirici. Stimatori non distorti per media, varianza e proporzioni. Intervalli di confidenza per la media, sia nel caso in cui la varianza è nota che nel caso in cui la varianza è incognita, per la varianza e per le proprorzioni. Distribuzione t di Student e chiquadro. Analisi di regressione: generalità. Regressione lineare: equazioni normali dei minimi quadrati per la determinazione della retta di regressione. Proprietà degli stimatori di pendenza e ordinata all'origine della retta di regressione.

Testi consigliati

- 1) G. Monegato, Cento pagine di ... Elementi di Calcolo Numerico, Libreria Universitaria Levrotto e Bella, Torino
- 2) A. Quarteroni, R. Sacco, F. Saleri, Matematica Numerica, Springer
- 3) V. Comincioli, Analisi Numerica: metodi, modelli, applicazioni, McGraw-Hill
- 4) P. Baldi Calcolo delle probabilità e statistica, McGraw-Hill
- 5) D. C. Montgomery, G. C. Runger Applied statistics and probability for engineers, J. Wiley
- 6) R. Scozzafava *Incertezza e probabilità*, Zanichelli
- 7) A. Rotondi, P. Pedroni, A. Pievatolo Probabilità Statistica e Simulazione, Springer