## Number Systems and Binary Arithmetic

A.Y. 2020/2021 Prof. Alessandro Ortis

ortis@dmi.unict.it

#### **Introduction to Numbering Systems**

- We are all familiar with the decimal number system (Base 10). Some other number systems that we will work with are:
  - Binary → Base 2
    Octal → Base 8
    Hexadecimal → Base 16

#### **Characteristics of Numbering Systems**

- 1) The digits are consecutive.
- 2) The number of digits is equal to the size of the base.
- 3) Zero is always the first digit.
- 4) The base number is never a digit.
- 5) When 1 is added to the largest digit, a sum of zero and a carry of one results.
- 6) Numeric values are determined by the implicit positional values of the digits.



## **Significant Digits**



# **Binary Number System**

- Also called the "Base 2 system"
- The binary number system is used to model the series of electrical signals computers use to represent information
- O represents the no voltage or an off state
- 1 represents the presence of voltage or an on state

# **Binary Numbering Scale**

| <u>Base 2</u><br>Number | <u>Base 10</u><br>Equivalent | Power                 | <u>Positional</u><br><u>Value</u> |
|-------------------------|------------------------------|-----------------------|-----------------------------------|
| 000                     | 0                            | <b>2</b> <sup>0</sup> | 1                                 |
| 001                     | 1                            | <b>2</b> <sup>1</sup> | 2                                 |
| 010                     | 2                            | <b>2</b> <sup>2</sup> | 4                                 |
| 011                     | 3                            | <b>2</b> <sup>3</sup> | 8                                 |
| 100                     | 4                            | <b>2</b> <sup>4</sup> | 16                                |
| 101                     | 5                            | <b>2</b> <sup>5</sup> | 32                                |
| 110                     | 6                            | <b>2</b> <sup>6</sup> | 64                                |
| 111                     | 7                            | 27                    | 128                               |

# **Decimal to Binary Conversion**

- The easiest way to convert a decimal number to its binary equivalent is to use the *Division Algorithm*
- This method repeatedly divides a decimal number by 2 and records the quotient and remainder
  - The remainder digits (a sequence of zeros and ones) form the binary equivalent in least significant to most significant digit sequence

## **Division Algorithm**

#### **Convert 67 to its binary equivalent:**

 $67_{10} = X_2$ Step 1: 67 / 2 = 33 R 1 Divide 67 by 2. Record quotient in next row Step 2: 33 / 2 = 16 R 1 Again divide by 2; record quotient in next row Step 3: 16 / 2 = 8 R 0 Repeat again Step 4: 8 / 2 = 4 R 0. Repeat again Step 5: 4 / 2 = 2 R 0 Repeat again Step 6: 2 / 2 = 1 R 0 Repeat again STQP when quotient equals 0 Step 7: 1 / 2 = 0 R 1  $1000011_{2}$ 

# **Binary to Decimal Conversion**

- The easiest method for converting a binary number to its decimal equivalent is to use the *Multiplication Algorithm*
- Multiply the binary digits by increasing powers of two, starting from the right
- Then, to find the decimal number equivalent, sum those products

## **Multiplication Algorithm**

#### **Convert (10101101)**<sub>2</sub> to its decimal equivalent:



**173**<sub>10</sub>

## **Octal Number System**

- Also known as the Base 8 System
- Uses digits 0 7
- Readily converts to binary
- Groups of three (binary) digits can be used to represent each octal digit
- Also uses multiplication and division algorithms for conversion to and from base 10

# **Hexadecimal Number System**

- Base 16 system
- Uses digits 0-9 & letters A,B,C,D,E,F
- Groups of four bits represent each base 16 digit

| Decimal | Hexadecimal |  |
|---------|-------------|--|
| 0       | 0           |  |
| 1       | 1           |  |
| 2       | 2           |  |
| 3       | 3           |  |
| 4       | 4           |  |
| 5       | 5           |  |
| 6       | 6           |  |
| 7       | 7           |  |
| 8       | 8           |  |
| 9       | 9           |  |
| 10      | A           |  |
| 11      | В           |  |
| 12      | С           |  |
| 13      | D           |  |
| 14      | E           |  |
| 15      | F           |  |

#### **Decimal to Hexadecimal Conversion**

Convert 830<sub>10</sub> to its hexadecimal equivalent:

$$830 / 16 = 51 R 14 - = E in Hex$$
  
 $51 / 16 = 3 R 3$   
 $3 / 16 = 0 R 3$   
 $33E_{16}$ 

### **Hexadecimal to Decimal Conversion**

Convert 3B4F16 to its decimal equivalent:

Hex Digits



### **Binary to Hexadecimal Conversion**

- The easiest method for converting binary to hexadecimal is to use a substitution code
- Each hex number converts to 4 binary digits

| Substitution Code |          |          |          |  |
|-------------------|----------|----------|----------|--|
| 0000 = 0          | 0100 = 4 | 1000 = 8 | 1100 = C |  |
| 0001 = 1          | 0101 = 5 | 1001 = 9 | 1101 = D |  |
| 0010 = 2          | 0110 = 6 | 1010 = A | 1110 = E |  |
| 0011 = 3          | 0111 = 7 | 1011 = B | 1111 = F |  |

