
Basics of Computing
with Python

A.Y. 2020/2021

Prof. Alessandro Ortis

ortis@dmi.unict.it

mailto:battiato@dmi.unict.it

Basics of Computing
Prof. Alessandro Ortis

Dipartimento di Matematica e Informatica

(Office 362 – DMI Second Floor)

www.dmi.unict.it/ortis

Monday 10-13 Aula Multimediale DEI

Tuesday 15-18 Aula Multimediale DEI

Overall schedule: 60 hours

SYLLABUS
Introduction to programming

Programming languages

Programming languages: machine, assembly and high level.

Translation problem: compilation and interpretation.

Installation of the development environment for the Python language. First program:
Editing, Running, Debugging.

Constructs of Python language

Basic syntax, data types, predefined operators, I/O management.

Numbers and mathematical functions.

Flow control: constructs of selection and iterative.

Functions.

Built-in data structures in Python

Strings. Lists, Tuples, Dictionaries.

Advanced topics

Notable algorithms: Searching, Sorting, Merging. Basics of computational complexity.
Recursive functions.

Modules. Basics on the mathematical libraries NumPy and SciPy and the graphic
library PlotPy.

Syllabus:

http://syllabus.unict.it/insegnamento.php?id=16345

◼ Course goals:

◼ To develop problem solving and programming skills to
enable the student to design solutions to non-trivial
problems and implement those solutions in Python.

◼ To master the fundamental programming constructs of
Python, including variables, expressions, functions, control
structures, and arrays.

◼ To build a foundation for more advanced programming
techniques, including object-oriented design and the use of
standard data structures

http://syllabus.unict.it/insegnamento.php?id=16345

Books

A.Downey, Think Python, 2nd Ed., Grean Tea Press
(online available).

M.Lutz, Learning Python, 4th Ed., O'Reilly

(online available).

D.Pine, Introduction to Python for Science and
Engineering, SMTEBooks - CRC Press

online available).

Jessen Havill - Discovering Computer Science:
Interdisciplinary Problems, Principles, and Python
Programming Chapman and Hall/CRC;

Course Structure and Exams

All the material shown (slides and code fragments) is made
available to students in the Teams repository of the course.

Video projector is used for lectures in the classroom.
The slides are not intended to replace the reference texts but
represent a precise guide to the course topics. Many lessons will
be carried out in an interactive teacher-learners mode;

Practical classroom exercises are planned to familiarize the
learners with the drafting of Python code;

Some case studies in the field of small software design will be
discussed.

EXAMS: Programmming Scripts in Python

7

What did you actually learn?

PROGRAMMING SKILLS

PROBLEM-SOLVING SKILLS

CRITICAL-THINKING COMMUNICATION SKILLS

◼ problem-solving: the ability to take a problem, break it into
manageable pieces, design and organize a step-by-step solution

◼ programming: the ability to design and implement problem
solutions in the form of programs that can be understood and
executed by computers

◼ critical-thinking: the ability to analyze and identify the important
features of a problem, systematically test and evaluate solutions

◼ communications: the ability to express ideas in a clear and
precise manner, so that they could be understood by the
computer (code) or another person (code & comments)

What is programming?

in short: programming is the process of designing, writing,
testing and debugging algorithms that can be carried out by a
computer.

We encounter algorithms everyday: directions to dorm,

instruction manual, recipe

◼ people are smart, so spoken languages can be vague

◼ computers are not smart, so programming languages are
extremely picky

Programming is applied problem-solving

1. understand a problem

2. identify relevant characteristics

3. design an algorithm (step-by-step sequence of instructions to carry out a task)

4. implement the algorithm as a computer program

5. test the program by repeated (and carefully planned) executions

6. GO BACK AND REPEAT AS NECESSARY

Problem-solving example

◼ Sudoku is a popular puzzle craze

given a partially filled in 9x9 grid,
place numbers in the grid so that

• each row contains 1..9

• each column contains 1..9

• each 3x3 subsquare contains 1..9

if we wanted to write a program to solve Sudoku puzzles, must/should

it use the same strategies?

how do people solve these puzzles?

Programming is a means to an end

◼ important point: programming is a tool for solving problems

◼ computers allow people in many disciplines to solve problems
they couldn’t solve without them

◼ — natural sciences, mathematics, medicine, business, …

◼ to model this, many exercises will involve writing a program,
then using it to collect data & analyze results

PAPER FOLDING PUZZLE: if you started with a regular sheet of paper and

repeatedly fold it in half, how many folds would it take for the thickness of

the paper to reach the sun?

▪ what information do you need (e.g., distance of sun)?

▪ what data values do you need to store and update?

▪ what is the basic algorithm?

recall, distance to sun is ~93.3 million miles

→ 93,300,000 mi x 5,280 ft/mi x 12 in/ft

→ 5,911,488,000,000 inches

Folding puzzle solution
in Scratch

Folding puzzle solution
in Python

Where do we start?
◼ explore programming concepts using graphical

way to represent algorithms

◼ we will explore your creative side, while building
the foundation for programming

◼ learn-by-doing, so be prepared to design &
experiment & create

◼ no previous programming experience is assumed

◼ will then segue into Python (v. 3) programming

◼ transfer programming concepts into a powerful &
flexible scripting language

◼ classes will mix lecture and hands-on
experimentation, so be prepared to do things!

hardware vs. software

◼The easiest way to tell the difference between hardware and
software is to kick it. If it hurts your toe, it’s hardware.

◼Carl Farrell

basic terminology:

▪ hardware – the physical components of the computer

e.g., processor (Intel Core i5, AMD A6, Intel Pentium Mobile)

memory (RAM, cache, hard drive, floppy drive, flash stick)

input/output devices (keyboard, mouse, monitor, speaker)

▪ software – programs that run on the hardware

e.g., operating system (Windows 7, Mac OS X, Linux)

applications (Word, Excel, PowerPoint, RealPlayer, IE, Firefox)

development tools (JDK, BlueJ, .NET, IDLE, Scratch)

History of computing technology

When were "modern" computers invented?

When were computers accessible/affordable to individuals?

When was the Internet born?

When was the Web invented?

How did Bill Gates get so rich?

the history of computers can be divided into generations, with

each generation defined by a technological breakthrough

0. gears and relays

➔ 1. vacuum tubes

➔ 2. transistors

➔ 3. integrated circuits

➔ 4. very large scale integration

➔ 5. parallel processing & networking

Generation 0: Mechanical Computers

◼ 1642 – Pascal built a mechanical calculating
machine

◼ used mechanical gears, a hand-crank, dials and
knobs

◼ other similar machines followed

1805 – the first programmable device was Jacquard's loom

◼ the loom wove tapestries with elaborate, programmable patterns

◼ a pattern was represented by metal punch-cards, fed into the loom

◼ using the loom, it became possible to mass-produce tapestries, and even reprogram it to

produce different patterns simply by changing the cards

mid 1800's – Babbage designed his "analytical engine"

◼ its design expanded upon mechanical calculators, but was programmable via punch-
cards (similar to Jacquard's loom)

◼ Babbage's vision described the general layout of modern computers

◼ he never completed a functional machine – his design was beyond the technology of

the day

Generation 0 (cont.)

1930's – several engineers independently built "computers" using
electromagnetic relays

◼ an electromagnetic relay is physical switch, which can be opened/closed
via electrical current

◼ relays were used extensively in early telephone exchanges

◼ Zuse (Nazi Germany) – his machines were destroyed in WWII

◼ Atanasoff (Iowa State) – built a partially-working machine with his grad
student

◼ Stibitz (Bell Labs) – built the MARK I computer that followed the designs
of Babbage

 limited capabilities by modern standards: could store only 72
numbers, required 1/10 sec to add, 6 sec to multiply

 still, 100 times faster than previous technology

Generation 1: Vacuum Tubes

◼ mid 1940's – vacuum tubes replaced relays

◼ a vacuum tube is a light bulb containing a
partial vacuum to speed electron flow

◼ vacuum tubes could control the flow of
electricity faster than relays since they had no
moving parts

◼ invented by Lee de Forest in 1906

1940's – hybrid computers using vacuum tubes and relays were built

COLOSSUS (1943)
◼ first "electronic computer", built by the British govt. (based on

designs by Alan Turing)
◼ used to decode Nazi communications during the war
◼ the computer was top-secret, so did not influence other

researchers

ENIAC (1946)
◼ first publicly-acknowledged "electronic computer", built by

Eckert & Mauchly (UPenn)
◼ contained 18,000 vacuum tubes and 1,500 relays
◼ weighed 30 tons, consumed 140 kwatts

Generation 1 (cont.)

◼ COLOSSUS and ENIAC were not general purpose computers
◼ could enter input using dials & knobs, paper tape
◼ but to perform a different computation, needed to reconfigure

von Neumann popularized the idea of a "stored program" computer
◼ Memory stores both data and programs

◼ Central Processing Unit (CPU) executes by loading program instructions from memory and executing them in
sequence

◼ Input/Output devices allow for interaction with the user

virtually all modern machines follow this
von Neumann Architecture

(note: same basic design as Babbage)

programming was still difficult and tedious
◼ each machine had its own machine language, 0's & 1's corresponding to the settings of physical components

◼ in 1950's, assembly languages replaced 0's & 1's with mnemonic names

e.g., ADD instead of 00101110

Generation 2: Transistors

◼ mid 1950's – transistors began to replace tubes

◼ a transistor is a piece of silicon whose conductivity
can be turned on and off using an electric current

◼ they performed the same switching function of
vacuum tubes, but were smaller, faster, more
reliable, and cheaper to mass produce

◼ invented by Bardeen, Brattain, & Shockley in 1948
(earning them the 1956 Nobel Prize in physics)

some historians claim the transistor was the most
important invention of the 20th century

computers became commercial as cost dropped
high-level languages were designed to make programming more natural

◼ FORTRAN (1957, Backus at IBM)
◼ LISP (1959, McCarthy at MIT)
◼ BASIC (1959, Kemeny at Dartmouth)
◼ COBOL (1960, Murray-Hopper at DOD)

the computer industry grew as businesses could afford to
buy and use computers

Eckert-Mauchly (1951), DEC (1957)
IBM became market force in 1960's

http://www.nationmaster.com/encyclopedia/Image:Grace-Hopper.jpg

Generation 3: Integrated Circuits

◼ mid 1960's - integrated circuits (IC) were produced
◼ Noyce and Kilby independently developed techniques

for packaging transistors and circuitry on a silicon
chip (Kilby won the 2000 Nobel Prize in physics)

◼ this advance was made possible by miniaturization &
improved manufacturing

◼ allowed for mass-producing useful circuitry

1971 – Intel marketed the first microprocessor, the
4004, a chip with all the circuitry for a calculator

1960's saw the rise of Operating Systems
◼ recall: an operating system is a collection of programs that manage peripheral devices and other resources

◼ in the 60's, operating systems enabled time-sharing, where users share a computer by swapping jobs in and out

◼ as computers became affordable to small businesses, specialized programming languages were developed

Pascal (1971, Wirth), C (1972, Ritchie)

Generation 4: VLSI

◼ late 1970's - Very Large Scale Integration (VLSI)

◼ by the late 1970's, manufacturing advances allowed placing hundreds of
thousands of transistors w/ circuitry on a chip

◼ this "very large scale integration" resulted in mass-produced microprocessors
and other useful IC's

◼ since computers could be constructed by simply connecting powerful IC's and
peripheral devices, they were easier to make and more affordable

Generation 4: VLSI (cont.)

with VLSI came the rise of personal computing
◼ 1975 - Bill Gates & Paul Allen founded Microsoft

Gates wrote a BASIC interpreter for the first PC (Altair)

◼ 1977 - Steve Wozniak & Steve Jobs founded Apple
went from Jobs' garage to $120 million in sales by 1980

◼ 1980 - IBM introduced PC
Microsoft licensed the DOS operating system to IBM

◼ 1984 - Apple countered with Macintosh
introduced the modern GUI-based OS (which was mostly developed at Xerox)

◼ 1985 - Microsoft countered with Windows

1980's - object-oriented programming began
◼ represented a new approach to program design which views a

program as a collection of interacting software objects that model
real-world entities

◼ Smalltalk (Kay, 1980), C++ (Stroustrup, 1985), Java (Sun, 1995)

Generation 5: Parallelism/Networks

◼the latest generation of computers is still hotly debated
◼ no new switching technologies, but changes in usage have occurred

◼parallel processing has become widespread
◼ multi-core processors provide simple parallelism, can spread jobs across cores

◼ similarly, high-end machines (e.g. Web servers) can have multiple CPU's
◼ in 1997, highly parallel Deep Blue beat Kasparov in a chess match

most computers today are networked

◼ the Internet traces its roots to the 1969 ARPANet

mainly used by government & universities until the late 80s/early 90s

◼ the Web was invented by Tim Berners-Lee in 1989, to allow
physics researchers to share data

1993: Marc Andreessen & Eric Bina developed Mosaic

1994: Andreesen & Netscape released Navigator

1995: Microsoft released Internet Explorer

▪ in 2009, 55% of American adults connected to Internet wirelessly,
>30% using a smart phone

(Internet Software Consortium & Netcraft, April 2010.)

◼late 40’s / early 50’s:
programmers coded
directly in machine
language

◼ each machine had its
own set of instructions
(sequences of 0's & 1's)
corresponding to its
underlying hardware

→ extremely tedious,

error-prone

011111110100010101001100010001100000000100000010000000010000000000000000000000
0010000000000000
01000000000000000000000000000000001000
00010100001000000000000000000000000000
000000000000000001101001010000000000
000001000000000000000000100000000001011100111001101101000011100110111010001110
010011101000110000101100010000000000010111001110100011001010111100001110100000
000000010111001110010011011110110010001100001011101000110000100000000001011100
111001101111001011011010111010001100001011000100000000000101110011100110111010
001110010011101000110000101100010000000000010111001110010011001010110110001100
001001011100111010001100101011110000111010000000000001011100110001101101111011
011010110110101100101011011100111010000000000000000000000000000000000100111011
110001110111111100100000001001100000000000000000000000010010000000100100110000
000000000000101010000000000000000000000001001001000010010101000000000000001000
000000000000000000000000000000000010000000000000000000000001010000000010000000
000000000100010010000000100000000000000010000000101010000000000000000000000001
001001000010010101000000000000001000000000000000000000000000000000000010000000
000000000000000001011000000010000000000000001000010000000000000000000001000000
001000000000000000000000000100000011100011111100000000010001000000111101000000
0010010000110010101101100011011000
110111101110111011011110111001001101100011001000010000100000000000000000000000
0010000000000000000000000000000000000000
000000000000000000000000000000001000000000011111111111100010000000000000000000
0000000000001000
0000100000000001111111111110001000
00011000000000000000000000
011000
00100000000000000000000000000000000000
001100000000
000000000000001000000000000000000000000000011010000000000000000000000000000000
0000000000000000000000000000000000000100
0000000000000010001000
0000000001000100011000000000
0001000000000000000000
000000000000000000000000000000000001011000000000000000000000000000000000000000
0000000000000000000000000000000100
000000011010010001001000
000100100000000000000000000000100000000000000000000000000110111000000000000000
0001000000000000000000000000
000000000000011010000110010101101100011011000110111100101110011000110111000001
110000000000000110011101100011011000110011001001011111011000110110111101101101
011100000110100101101100011001010110010000101110000000000101111101010001010111
110111000101110100011011110110010000000000010111110101111101101100011100110101
111101011111001101110110111101110011011101000111001001100101011000010110110101
010000010001100101001000110111011011110111001101110100011100100110010101100001
011011010101111101010010001101110110111101110011011101000111001001100101011000
010110110100000000010111110101111101101100011100110101111101011111001101110110
111101110011011101000111001001100101011000010110110101010000010000110110001100
000000011001010110111001100100011011000101111101011111010001100101001000110111

Evolution of Programming Languages

◼mid 1950’s: assembly
languages replaced numeric
codes with mnemonic
names

◼ an assembler is a program
that translates assembly
code into machine code

◼ input: assembly language
program

◼ output: machine language
program

◼ still low-level & machine-
specific, but easier to
program

◼

gcc2_compiled.:

.global _Q_qtod

.section ".rodata"

.align 8

.LLC0: .asciz "Hello world!"

.section ".text"

.align 4

.global main

.type main,#function

.proc 04

main: !#PROLOGUE# 0

save %sp,-112,%sp

!#PROLOGUE# 1

sethi %hi(cout),%o1

or %o1,%lo(cout),%o0

sethi %hi(.LLC0),%o2

or %o2,%lo(.LLC0),%o1

call __ls__7ostreamPCc,0

nop

mov %o0,%l0

mov %l0,%o0

sethi %hi(endl__FR7ostream),%o2

or %o2,%lo(endl__FR7ostream),%o1

call __ls__7ostreamPFR7ostream_R7ostream,0

nop

mov 0,%i0

b .LL230

nop

.LL230: ret

restore

.LLfe1: .size main,.LLfe1-main

Evolution of Programming Languages

◼ late 1950's – present:
◼ high-level languages allow the
◼ programmer to think at a
◼ higher-level of abstraction

◼ a compiler is a program that translates
◼ high-level code into machine code

◼ input: C language program
◼ output: machine language program

◼ similar to assembler, but more complex

◼ an interpreter is a program that reads and executes each
language statement in sequence

◼ Python programs are first compiled into a virtual machine
language (bytecode)

◼ then the bytecode is executed by an interpreter (Python Virtual
Machine)

/* Hello World in C */

#include<stdio.h>

main() {

printf("Hello World");

}

def HelloWorld():

""" Simple Python function that displays

a message """

print "Hello World!"

HelloWorld()

Evolution of Programming Languages

Evolution of Programming Languages

Several programming languages have been proposed since
1950. They can be grouped in different ways (e.g.,
paradigm, level of abstraction, purpose, etc.)

Language Year Principal usage Paradigm

Fortran 1954 Numerical computations Imperative

Cobol 1959 General Imperative

Pascal 1971 General Imperative

Prolog 1972 Artificial Intelligence Logic

C 1974 General, system programming Imperative

C++ 1979 General Object Oriented

Python 1991 General Object Oriented

Java 1995 General Object Oriented

Evolution of Programming Languages

’50 ’60 ’70 ’80 ’90 2000

High level
languages

Low level
languages

Several programming languages have been proposed since
1950. They can be grouped in different ways (e.g.,
paradigm, level of abstraction, purpose, etc.)

Evolution of Programming Languages

’50 ’60 ’70 ’80 ’90 2000

High level
languages

Low level
languages

Machine Language

Several programming languages have been proposed since
1950. They can be grouped in different ways (e.g.,
paradigm, level of abstraction, purpose, etc.)

Evolution of Programming Languages

’50 ’60 ’70 ’80 ’90 2000

High level
languages

Low level
languages

Machine Language

Assembler

Fortran, Cobol

Several programming languages have been proposed since
1950. They can be grouped in different ways (e.g.,
paradigm, level of abstraction, purpose, etc.)

Evolution of Programming Languages

’50 ’60 ’70 ’80 ’90 2000

High level
languages

Low level
languages

Machine Language

Assembler

Fortran, Cobol

Pascal, C

Prolog

Several programming languages have been proposed since
1950. They can be grouped in different ways (e.g.,
paradigm, level of abstraction, purpose, etc.)

Evolution of Programming Languages

’50 ’60 ’70 ’80 ’90 2000

High level
languages

Low level
languages

Machine Language

Assembler

Fortran, Cobol

Pascal, C

Prolog

C++

Several programming languages have been proposed since
1950. They can be grouped in different ways (e.g.,
paradigm, level of abstraction, purpose, etc.)

Evolution of Programming Languages

’50 ’60 ’70 ’80 ’90 2000

High level
languages

Low level
languages

Machine Language

Assembler

Fortran, Cobol

Pascal, C

Prolog

C++

Python, Java

Several programming languages have been proposed since
1950. They can be grouped in different ways (e.g.,
paradigm, level of abstraction, purpose, etc.)

Evolution of Programming Languages

Low level languages

Early programmers could only use the so-called Machine
Language: sequenceso of 0s and 1s.

Evolution of Programming Languages

Low level languages

Early programmers could only use the so-called Machine
Language: sequenceso of 0s and 1s.

The level of abstraction has been augmented with the
introduction of the Assembly language, in which the
instructions (sequences of 0s and 1s) were encoded with
symbolic names (es., mov, add)

Evolution of Programming Languages

Low level languages

Early programmers could only use the so-called Machine
Language: sequenceso of 0s and 1s.

The level of abstraction has been augmented with the
introduction of the Assembly language, in which the
instructions (sequences of 0s and 1s) were encoded with
symbolic names (es., mov, add)

The only available operations with such languages are: load
values into registers, basic arithmetic, compare values,
move to a specific line of code.

Evolution of Programming Languages

High level languages

Exploit keywords in english, which help the programmer to
undersand and remember the language instructions.

Evolution of Programming Languages

High level languages

Exploit keywords in english, which help the programmer to
undersand and remember the language instructions.

The program must be then processed by an interpreter or
a compiler which translates it into a program in machine
language (interpretable by the machine).

Evolution of Programming Languages

High level languages

Exploit keywords in english, which help the programmer to
undersand and remember the language instructions.

The program must be then processed by an interpreter or
a compiler which translates it into a program in machine
language (interpretable by the machine).

Rapid developing and debugging, however the code is less
efficient and requires more resources (e.g., memory,
environment tools, etc.)

◼ Some influential ones:

◼ FORTRAN

◼ science / engineering

◼ COBOL

◼ business data

◼ LISP

◼ logic and AI

◼ BASIC

◼ a simple language

Languages

If you want to know more…
◼check out the following (purely optional) links

Inventors: The History of Computers

Computer Museum History Center

Transistorized! from PBS.org

Apple Computer Reading List

The History of Microsoft

Internet Pioneers: Tim Berners-Lee

Internet Pioneers: Marc Andreessen

Wikipedia entry on Programming Languages

Webopedia entry on Programming Languages

Python Official Website

http://inventors.about.com/library/blcoindex.htm
http://www.computerhistory.org/
http://www.pbs.org/transistor/index.html
http://www.landsnail.com/apple/links.htm
http://en.wikipedia.org/wiki/History_of_Microsoft
http://www.ibiblio.org/pioneers/lee.html
http://www.ibiblio.org/pioneers/andreesen.html
http://en.wikipedia.org/wiki/Programming_language
http://www.webopedia.com/TERM/p/programming_language.html
http://www.python.org/

◼ code or source code: The sequence of instructions in a program.

◼ syntax: The set of legal structures and commands that can be
used in a particular programming language.

◼ output: The messages printed to the user by a program.

◼ console: The text box onto which output is printed.

◼ Some source code editors pop up the console as an external window,
and others contain their own console window.

Programming basics

Compiling and interpreting
◼ Many languages require you to compile (translate) your program

into a form that the machine understands.

◼ Python is instead directly interpreted into machine instructions.

compile execute

outputsource code
Hello.java

byte code
Hello.class

interpret

outputsource code
Hello.py

Expressions
◼ expression: A data value or set of operations to compute a value.

Examples: 1 + 4 * 3

42

◼ Arithmetic operators we will use:

◼ + - * / addition, subtraction/negation, multiplication, division

◼ % modulus, a.k.a. remainder

◼ ** exponentiation

◼ precedence: Order in which operations are computed.

◼ * / % ** have a higher precedence than + -

1 + 3 * 4 is 13

◼ Parentheses can be used to force a certain order of evaluation.

(1 + 3) * 4 is 16

Integer division
◼ When we divide integers with / , the quotient is also an integer.

3 52

4) 14 27) 1425

12 135

2 75

54

21

◼ More examples:
◼ 35 / 5 is 7

◼ 84 / 10 is 8

◼ 156 / 100 is 1

◼ The % operator computes the remainder from a division of integers.

3 43
4) 14 5) 218

12 20
2 18

15
3

Computer Programming Basics

Computer Programming Basics

◼ Computer programs are a detailed set of
instructions given to the computer

◼ They tell the computer:
1. What actions you want the computer to perform

2. The order those actions should happen in

◼ An effective program therefore needs:
1. A thorough understanding of the problem

2. A well thought-out, step-by-step solution to the problem

HOW TO EAT A BANANA:
A DETAILED LIST OF INSTRUCTIONS

1. Using your hand, get a yellow crescent-
shaped fruit called a “banana”

2. Peel the outer skin off the banana (by
breaking off the outer stem and peeling back
the yellow peel)

3. Eat the banana

1. Put a small section of banana in your mouth

2. Bite down on the banana

3. Chew the banana by opening and closing your
mouth

4. Once the banana has been chewed, swallow the
banana

5. Repeat until banana is finished

4. Throw out the used banana peel

Computer Programming Basics

◼ A procedure that outlines
◼ What actions you want the computer to perform

and

◼ The order in which they happen

is called an ALGORITHM

◼ An ALGORITHM is basically an outline for how your
computer program will work

Computer Programming Basics

◼Developing an Algorithm is really just a
type of Problem Solving

◼We have to:
◼READ and understand the problem
◼THINK about different solutions to
the problem

◼DESIGN an approach that will solve
the problem

◼IMPLEMENT that design
◼TEST to see if it works

IF NEEDED

Computer Programming Basics

◼ THINKING about the solution often means
breaking down complex tasks into smaller,
easier to understand tasks

◼ These tasks must be well-defined so that we
understand what the action is acting on
◼ e.g. telling a person to grab a banana will only work

if the person knows what a banana is

◼ The tasks have to be easy to understand
◼ e.g. telling a person to PEEL a banana will only work

if they understand what peeling means

Computer Programming Basics

• The ORDER in which actions are performed is

also very important

• Consider the following 2 algorithms that tell Mr.

Solomon how to get ready in the morning

We’ll call them the “Rise-and-Shine Algorithms”

Computer Programming Basics

RESULT

◼ Mr. Solomon arrives in a
great mood ready to
teach ☺

RESULT

◼ Mr. Solomon arrives in
not too great a mood
since he’s soaking wet

RISE AND SHINE 1

• Get out of bed

• Take off pyjamas

• Take a shower

• Get dressed

• Eat breakfast

• Drive to school

RISE AND SHINE 2

• Get out of bed

• Take off pyjamas

• Get dressed

• Take a shower

• Eat breakfast

• Drive to school

Computer Programming Basics

◼ When the algorithm is written out as a well-thought series
of steps, it is sometimes called PSEUDOCODE

◼ It is written in easy to understand language, but is written
very similar to the way that you would code it into your
Python Scripts

Computer Programming
Basics

• The algorithm can also be written as a

FLOW CHART

• The FLOW CHART is a graphic organiser

(a picture that helps organize your

thoughts)

• It uses a collection of basic symbols that

are used to organize your algorithm

• These symbols are connected by arrows that

show how the algorithm “flows”

Computer Programming
Basics

FLOW CHART SYMBOLS

TERMINAL – the beginning or ending

of a program

INPUT/OUTPUT – where the user of the

program is asked for information (INPUT) or
where the program displays a result (OUTPUT)

PROCESSING – shows any

mathematical operation

CALL – shows any other pieces of the

program that are called upon

DECISION – represents any action where the

computer is making a decision

Computer Programming Basics

START

READ A VALUE

MULTIPLY THE VALUE

BY 2 AND STORE IN x

DISPLAY THE VALUE

ENTERED AND x

STOP

e.g. a Basic Flow Chart

Computer Programming Basics
START

EAT BREAKFAST

GET DRESSED

TAKE A SHOWER

TAKE OFF PYJAMAS

GET OUT OF BED

DRIVE TO SCHOOL

END

Examples

Examples

Exercise

Exercise

Variables
◼ variable: A named piece of memory that can store a value.

◼ Usage:
◼ Compute an expression's result,
◼ store that result into a variable,
◼ and use that variable later in the program.

◼ assignment statement: Stores a value into a variable.
◼ Syntax:

name = value

◼ Examples: x = 5

gpa = 3.14

x 5 gpa 3.14

◼ A variable that has been given a value can be used in expressions.
x + 4 is 9

◼ Exercise: Evaluate the quadratic equation for a given a, b, and c.

Variable names
◼ some reserved words cannot be used for variable names

Python libraries tend to use underscores for multi-word variable names

first_name number_of_sides feet_to_meters

we will utilize the more modern (and preferred) camelback style
firstName numberOfSides feetToMeters

note: capitalization matters, so firstName ≠ firstname

Variables & assignments
◼ Variables are used to store values that could be accessed &

updated

◼ e.g., the lines spoken by the sprites in conversation

◼ e.g., the number of spins and player bankroll for slots

◼ In Python can create a variable and assign it a value

◼ the variable name must start with a letter, consist of letters, digits &
underscores (note: no spaces allowed)

◼ an assignment statement uses '=' to assign a value to a variable

◼ general form: VARIABLE = VALUE_OR_EXPRESSION

◼ age = 20

◼ secondsInDay = 24 * 60 * 60

◼ secondsInYear = 365 * secondsInDay

◼ name = "Prudence"

◼ greeting = "Howdy " + name

Number types
◼ Python distinguishes between different types of numbers

◼ int integer values, e.g., 2, -10, 1024,
99999999999999

◼

◼ ints can be specified in octal or hexidecimal bases using '0o' and
'0x' prefixes

◼ 0o23 → 238 → 1910 0x1A → 1A16 → 2610

▪ float floating point (real) values, e.g., 3.14, -2.0, 1.9999999

scientific notation can be used to make very small/large values clearer

1.234e2 → 1.234 x 102
→ 123.4 9e-5 → 9 x 10-5

→ 0.00009

▪ complex complex numbers (WE WILL IGNORE)

Real numbers
◼ Python can also manipulate real numbers.

◼ Examples: 6.022 -15.9997 42.0 2.143e17

◼ The operators + - * / % ** () all work for real numbers.

◼ The / produces an exact answer: 15.0 / 2.0 is 7.5

◼ The same rules of precedence also apply to real numbers:
Evaluate () before * / % before + -

◼ When integers and reals are mixed, the result is a real number.

◼ Example: 1 / 2.0 is 0.5

◼ The conversion occurs on a per-operator basis.
◼ 7 / 3 * 1.2 + 3 / 2

◼ 2 * 1.2 + 3 / 2

◼ 2.4 + 3 / 2

◼ 2.4 + 1

◼ 3.4

Numbers & expressions
◼ standard numeric operators are provided

+ addition 2+3 → 5 2+3.5 → 5.5

– subtraction 10–2 → 8 99–99.5 → -0.5

* multiplication 2*10 → 20 2*0.5 → 1.0

/ division 10/2.5 → 4.0 10/3 → 3.333…

** exponent 2**10 → 1024 9**0.5 → 3.0

◼ less common but sometimes useful

% remainder 10%3 → 1 10.5%2 → 0.5

// integer division 10//4.0 → 2.5 10//4 → 2

Math commands
◼ Python has useful commands for performing calculations.

◼ To use many of these commands, you must write the following at
the top of your Python program:
from math import *

Command name Description

abs(value) absolute value

ceil(value) rounds up

cos(value) cosine, in radians

floor(value) rounds down

log(value) logarithm, base e

log10(value) logarithm, base 10

max(value1, value2) larger of two values

min(value1, value2) smaller of two values

round(value) nearest whole number

sin(value) sine, in radians

sqrt(value) square root

Constant Description

e 2.7182818...

pi 3.1415926...

http://docs.python.org/lib/module-math.html

Exercises

- Given an integer number n:
1. Is it odd/even?

2. Is a multiple of k?

3. Is it a prime number?

- Given a series of N integer numbers compute:
1. The overall sum (product);

2. The average;

3. The minimum and maximum value;

4. To count the number of elements greater (lesser) than a number
k

5. ….

Factorial

◼ https://runestone.academy/runestone/books/published/pythonds/i
ndex.html

https://runestone.academy/runestone/books/published/pythonds/index.html

