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AN EMBEDDING THEOREM FOR NON SMOOTH

VECTOR FIELDS OF STEP TWO

ERMANNO LANCONELLI - ANNAMARIA MONTANARI

1. Introduction.

In this note we prove the following embedding result.

Theorem 1.1. Let us consider in R
N , N ≥ 3, the vector �elds

(1) Xk =

N�

j=1

a
( j )
k ∂xj , k = 1, . . . , p,

where the coef�cients a
( j )
k belong to the classical Sobolev space W 2,2N/3(RN ).

Let us assume that for every j = 1, . . . , N

(2) ∂xj =

p�

k=1

b(k)j Xk +
�

1≤k<h≤p

α
(k,h)
j [Xk, Xh]

with b
(k)
j , α

(k,h)
j ∈ L∞(RN ) and Xkα

(k,h)
j , Xhα

(k,h)
j ∈ L2N (RN ) for all j, k, h.

Then there exists a positive constant C, only depending on

M :=

N�

j=1

� p�

k=1

�
||a

( j )
k ||2,2N/3 + ||b

(k)
j ||∞

�
+(3)

+
�

1≤k<h≤p

�
||Xk(α

(k,h)
j )||2N + ||Xh(α

(k,h)
j )||2N + ||α

(k,h)
j )||∞

��
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such that

(4) ||u||1/2,2 ≤ C
�
||u||2 +

p�

k=1

||Xku||2

�

for any u ∈C∞
0 (RN ).

In (3) and (4) || · ||s,q and || · ||q denote the norms in the classical Sobolev
space Ws,q(RN ) and in the space Lq(RN ), respectively.

When the coef�cients a
( j )
k are smooth the condition (2) implies that the

vector �elds Xk , together with their commutator of step two [Xk, Xh], generate
the space R

N at every point. Then, inequality (4) with a rougher positive
constant C is a consequence of a general result on smooth vector �elds whose
Lie Algebra has maximum rank at every point: see for example [4], [5]. The
main novelty of our Theorem 1.1 lies in showing that the constant C in (4) only
depends on the quantity M in (3). We will prove Theorem 1.1 in Section 3.
Section 2 is devoted to the proof of a preliminary result that seems to have an
independent interest.

The question answered by Theorem 1.1 naturally arise in studying regular-
ity properties of viscosity solutions to the prescribed Levi-curvature equation in
R

3. Given a C2 function u on a open set � ⊆ R
3, the Levi-curvature of the

graph of u is the real number

(5) H = −
(1 + (∂x3u)

2)1/2

(1 + (a1)2 + (a2)2)3/2
(X 2

1u + X 2
2u),

where

(6) Xk = ∂xk + ak∂x3 , k = 1, 2

and the coef�cients ak depend on the derivatives of u in the following way:

(7)

a1 = a1(Du) =
∂x2u − ∂x1u∂x3u

1+ (∂x3u)
2

,

a2 = a2(Du) = −
∂x1u + ∂x2u∂x3u

1 + (∂x3u)
2

.

Due to (5) the operator

(8) X 2
1u + X 2

2u = −H (·, u)
(1 + (a1)

2 + (a2)
2)3/2

(1 + (∂x3u)
2)1/2

,
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where H is a given real function de�ned on � × R, is called the equation of the
prescribed Levi-curvature H . We explicitly remark that the left hand side of (8)
is a second order quasilinear operator whose characteristic form is

A(x , Du; ξ ) := �X1, ξ�2 + �X2, ξ�2 =

= (ξ1 + a1(Du)ξ3)
2 + (ξ2 + a2(Du)ξ3)

2.

Then

A(x , Du; ξ ) ≥ 0, for any (x , Du; ξ ),

A(x , Du; ξ ) = 0, when ξ = (−a1, −a2, 1).

As a consequence the operator in (8) has to be considered a quasilinear degen-
erate elliptic operator which is non-elliptic at any point (x , Du). For this reason
to viscosity solutions of (8) cannot be applied the well known regularity results
for viscosity solutions to (fully nonlinear) elliptic operator (see e.g. [1]).

Very recently Citti and the authors have introduced in [3] a new iteration
technique for studying regularity properties of Lipschitz-continuous viscosity
solutions to (8). When the prescribed curvature H is different from zero at every
point a crucial step of the previous mentioned iteration scheme is the embedding
inequality (4) in R

3 related to the vector �elds Xk in (6) with coef�cients ak
given by (7). On the other hand, as it has been �rst noticed in [2], if Xk, k = 1, 2,
are these vector �elds, the following identity formally holds:

[X1, X2] = Q∂x3 ,

with

Q = H
(1 + (a1)

2 + (a2)
2)3/2

(1 + (∂x3u)
2)1/2

.

Then, if u is a Lipschitz-continuous solution to (8) with prescribed curvature H
bounded away from zero, then

∂x1 = X1 −
a1

Q
[X1, X2],

∂x2 = X2 −
a2

Q
[X1, X2],

∂x3 =
1

Q
[X1, X2]
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and condition (2) is (formally) satis�ed. This remark makes Theorem 1.1
applicable to the iteration procedure in [3].

This application is the main motivation of the present note. We would like
to stress that embedding theorems for vector �elds with non regular coef�cients
seem to be crucial tools in studying regularity properties of weak solutions to
many classes of non linear degenerate elliptic equations. Our paper is a �rst
contribution in this direction.

2. A commutator theorem.

Let m ∈C∞(RN ) be such that

(9) |Dαm(ξ )| ≤ cα|ξ |−|α|

for any multi-index α. Let us denote by F the Fourier transform and by T the
convolution operator related to

K = F
−1(m),

T : S
� → S

�, T v = K ∗ v.

From condition (9) it follows that m ∈ L∞ , K ∈C∞(RN \ {0}) and

(10) |DαK (x )| ≤ c�
α|x |−N−|α|

for any multi-index α (see [6], p. 26). Then K is a Calderon Zygmund
kernel and T is a continuous linear operator from Lr (RN ) to itself, for every
r ∈ ]1, ∞[.

Given a smooth function a : R
N → R, let us consider the commutator

[a, T ]v := a(T v) − T (av).

The main result of this section is the following theorem.

Theorem 2.1. Let 1 < p < ∞ and 1 < q < N be such that 1
N

< 1
p

+ 1
q

< 1.
De�ne

(11)
1

r
:=

1

p
+

1

q
−

1

N
.

Then, for any function a ∈C∞(RN ),

(12) ||D[a, T ]v||r ≤ c||D2a||q ||v||p, ∀v ∈C∞
0 (RN )

where c is a positive constant independent on a and v. In (12) D denotes the
gradient operator in R

N , while D2a stands for the hessian matrix of a.
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Proof. First of all, by using standard devices, we recognize that for every
function v ∈C∞

0 (RN )

([a, T ]v)(x ) =

�

RN

K (x − y)(a(x )− a(y))v(y) dy, x ∈ R
N .

Then, chosen a cut-off function η ∈C∞
0 (RN ), 0 ≤ η ≤ 1, such that η(x ) = 0 if

|x | < 1/2 and η(x ) = 1 if |x | > 1,

[a, T ]v = lim
�→0

R�v in S
�(RN ),

where

(R�v)(x ) :=

�

RN

K (x − y)η
�x − y

�

�
(a(x ) − a(y))v(y) dy, x ∈ R

N .

As a consequence

D[a, T ]v = lim
�→0

DR�v in S
�(RN ).

By computing the gradient of R�v we obtain

(DR�v)(x ) =

�

RN

DK (x − y)η
�x − y

�

�
(a(x ) − a(y))v(y) dy+

+
1

�

�

RN

K (x − y)(Dη)
� x − y

�

�
(a(x )− a(y))v(y) dy+

+ (Da)(x )

�

RN

K (x − y)η
�x − y

�

�
v(y) dy =

= (R(1)
� v + R(2)

� v + R(3)
� v)(x ).

Let η�(·) = η
�

·
�

�
. From Calderon-Zygmund theory it follows that, as � → 0,

Kη� ∗ v converges in L p(RN ) to a function w such that

(13) ||w||p ≤ c||v||p

where c is a positive constant only dependent on K and p. Then, as � → 0,
R(3)

� v converges in S
�(RN ) to

R(3)v := Da · w.
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Moreover, thanks to (11) and (13),

(14) ||R(3)v||r ≤ c||Da|| Nq
N−q

||v||p

(by the classical Sobolev�s Theorem)

≤ c||D2a||q ||v||p.

Here and in the sequel we always denote by c a positive constant independent
on a and v.

We now study the behaviour of R(2)
� v. A change of variable gives

R(2)
� v(x ) = �N−1

�

RN

K (�z)(Dη)(z)(a(x ) − a(x − �z))v(x − �z) dz.

As � goes to zero the function (x , z) �−→ �−1(a(x ) − a(x − �z)) converges
to (x , z) �−→ �Da(x ), z� uniformly on every compact subset of R

N × R
N .

Moreover, by estimate (10),

|(DK )(�z)| ≤
c

|�z|N+1
,

and
|�N D(K (�z))| = �N+1|(DK )(�z)| ≤

c1

|z|N+1
,

where c and c1 are independent on � . Then, on every �xed compact C ⊆

R
N \ {0} {z �→ �N K (�z), � > 0} is a family of equibounded and equicon-

tinuous functions. As a consequence, taking a sequence �j ↓ 0 if necessary,
K�(z) := �N K (�z) pointwise converges in R

N \ {0} to a continuous function
K0. Moreover, the convergence of K� to K0 is uniform on every compact subset
of R

N \ {0}. Then, since Dη has compact support and Dη(z) = 0 for |z| < 1/2,

lim
�→0

R(2)
� v(x ) =

� �

RN

K0(z)Dη(z)�Da(x ), z� dz
�
v(x ) =: R(2)v(x )

uniformly on every compact subset of R
N . Since

|R(2)v| ≤ c|Da||v|,

we get

(15) ||R(2)v||r ≤ c||Da|| Nq
N−q

||v||p ≤ c||D2a||q ||v||p.
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We next estimate R(1)
� , the crucial part of DR� . First of all, we use the Taylor�s

formula to write

a(x )−a(y) = �Da(y), x− y�+

� 1

0

(1− t)�D2a(y+ t(x− y))(x − y), x− y� dt .

Then, denoting by ∂j and ∂i j the derivatives
∂

∂ xj
and ∂ 2

∂ xi∂ xj
, respectively, we have

R(1)
� v(x ) =

�

RN

DK (x − y)�Da(y), x − y�η
�x − y

�

�
v(y) dy+(16)

+

�

RN

DK (x − y)η
� x − y

�

�
v(y)

� � 1

0

(1− t)�D2a(y)(x − y), x − y�dt
�
dy =

=

N�

j=1

�

RN

DK (x − y)(xj − yj )η
� x − y

�

�
∂j a(y)v(y) dy+

+

N�

i, j=1

� 1

0

(1 − t)
��

RN

DK (x − y)(xi − yi )(xj − yj ) ·

· η
�x − y

�

�
∂i j a(y + t(x − y))v(y) dy

�
dt .

The kernels
Kh, j(z) := ∂h K (z)zj , h, j = 1, . . . , N,

are Calderon-Zygmund kernels since

Kh, j = F
−1(mh, j ),

being

mh, j (ξ ) :=
∂

∂ξj
(ξhm(ξ ))

C∞ functions satisfying the condition

|Dαmh, j (ξ )| ≤ cα|ξ |−α

for any multi-index α. Then, as � → 0, the �rst summation to the right hand
side of (16) converges to

N�

j=1

R(1, j )(∂j av),
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where R(1, j ) is a linear continuous operator in Lr (RN ). As a consequence

(17) ||

N�

j=1

R(1, j )(∂j av)||r ≤ c||(Da)v||r ≤ c||Da|| Nq
N−q

||v||p ≤

≤ c||D2a||q ||v||p.

It remains to estimate the integrals in the second summation in the right hand
side of (16). The kernels

Ki,h, j(z) := ∂h K (z)zi zj

appearing in those integrals satisfy the estimates

|Kh,i, j (z)| ≤ c|z|−N+1 .

Indeed, keeping in mind that |Kh, j (z)| ≤ c|z|−N with Kh, j a Calderon-Zigmund
kernel,

|Kh,i, j (z)| = |zi ||Kh, j(z)| ≤ c|z|−N+1 .

The second summation to the right hand side of (16) can be then estimated from
above by a positive constant, independent on � , times the function

w(x ) =

� 1

0

(1 − t)

�

RN

1

|x − y|N−1
|v(y)||D2a(y + t(x − y))| dydt .

Let us de�ne

s = 1 +
p

q
, s � = 1 +

q

p
.

Since
1

s
+

1

s �
=

1

1 + p/q
+

1

1+ q/p
=

q

p + q
+

p

p + q
= 1,

we have

w(x ) ≤

� 1

0

(1 − t)
��

RN

1

|x − y|N−1
|v(y)|s dy

�1/s
·

·
��

RN

1

|x − y|N−1
|D2a(y + t(x − y))|s

�

dy
�1/s�

dt



AN EMBEDDING THEOREM FOR NON SMOOTH. . . 119

(putting y + t(x − y) = z in the last integral)

=

� 1

0

(1 − t)
�
T (|v|s )(x )

�1/s�
T (|D2a|s

�

)(x )
�1/s�

(1 − t)−N/s�+(N−1)/s�dt =

=

� 1

0

(1 − t)1−1/s�dt
�
T (|v|s )(x )

�1/s�
T (|D2a|s

�

)(x )
�1/s�

,

where

T f (x ) =

�

RN

|x − y|−N+1 f (y) dy.

Reminding that T is a continuous linear operator from Lm (RN ) to Lm∗(RN )
with 1

m∗
= 1

m
− 1

N
for any 1 < m < N, we have

||T (|v|s)||r ≤ c
� �

|v(x )|sp/sdx
�s/p

= c||v||sp,

since
1

r
=
s

p
−

1

N
.

Analogously

||T (|D2a|s
�

)||r ≤ c
��

RN

|D2a(x )|s
�q/s�dx

�s�/q
= c||D2a||s

�

q

since
1

r
=
s �

q
−

1

N
.

As a consequence, since

||w||rr ≤ c

�

RN

(T (|v|s))r/s (T (|D2a|s
�

))r/s
�

dx ≤

≤ c||T (|v|s )||r/sr ||T (|D2a|s
�

)||r/s
�

r ,

we �nally obtain
||w||r ≤ c||v||p||D

2a||q .

This ends the proof of our Theorem.

Corollary 2.1. Suppose the hypotheses of Theorem 2.1 are satis�ed. Then, for
any j ∈ {1, . . . , N},

||[a∂j , T ]v||r ≤ c||a||2,q ||v||p.
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Proof. We �rst note that

[a∂j , T ]v = a∂j (T v) − T (a∂jv) =

= ∂j (aT v) − (∂j a)T v − T (∂j (av)) + T ((∂j a)v)

(since [T , ∂j] = 0)

= ∂j

�
(aT v) − T (av)

�
+ [T , ∂ja]v = ∂j [a, T ]v + [T , ∂ja]v.

From Theorem 2.1 we get

||∂j [a, T ]v||r ≤ C||D2a||q ||v||p.

On the other hand, since T is a Calderon-Zigmund operator,

||[T , ∂ja]v||r ≤ ||T ((∂j a)v)||r + ||(∂j a)T v||r

≤ C||(∂j a)v||r + ||∂j a|| Nq
N−q

||T v||p

≤ C||∂j a|| Nq
N−q

||v||p ≤ C||a||2,q ||v||p.

The thesis follows.

3. Embedding theorem.

In this section we prove our main result.

Proof of Theorem 1.1. We �rst remark that the W 1/2,2 norm of a real function
u ∈C∞

0 (RN ) is equivalent to

||u||2 +

N�

j=1

||F −1(JF (∂j u))||2

where
J (ξ ) := (1 + |ξ |2)−1/4, ξ ∈ R

N .

On the other hand, de�ning

(18) mj (ξ ) := ξj J
2(ξ ) =

ξj

(1 + |ξ |2)1/2
,
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by Parseval�s identity we have

||F −1(JF (∂j u))||
2
2 =

� 1

2π

�N �

RN

J 2F (∂j u)F (∂j u)dξ =(19)

=
� 1

2π

�N �

RN

−i mjF (u)F (∂j u)dξ =

=

� 1

2π

�N �

RN

F

�
− i mjF (u)

�
∂j udξ =

=

�

RN

F −1
�
i mjF (u)

�
∂j udξ =

=

�

RN

(Tju)∂j udξ.

In the last term we have set

Tju := F
−1

�
i mjF (u)

�
.

By using identity (2) in the last term of (19) we obtain

�

RN

(Tju)∂j u =

p�

k=1

��

RN

(Tju)b
(k)
j Xku

�
+(20)

+
�

1≤k<h≤p

��

RN

(Tju)α
(k,h)
j (XkXh − XhXk)u

�

(integrating by parts the second term in the right hand side)

=

p�

k=1

��

RN

(Tju)b
(k)
j Xku

�
+

�

1≤k<h≤p

��

RN

X ∗
k ((Tju)α

(k,h)
j )Xhu−

−

�

RN

X ∗
h((Tju)α

(k,h)
j )Xku

�
.

The functionmj in (18) satis�es condition (9) so that Tj is a Calderon Zygmund
operator. As a consequence

�
�
�

�

RN

(Tju)b
(k)
j Xku

�
�
� ≤ ||Tju||2||b

(k)
j ||∞||Xku||2 ≤(21)

≤ C||u||2 ||b
(k)
j ||∞||Xj u||2.
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Corollary 2.1 will enable us to estimate

�

RN

X ∗
k (α

(k,h)
j Tju)Xhu.

We �rst note that

X ∗
k (α

(k,h)
j Tju) = X ∗

k (α
(k,h)
j )Tju − α

(k,h)
j Xk(Tju) =

= X ∗
k (α

(k,h)
j )Tju − α

(k,h)
j Tj(Xku) − α

(k,h)
j [Xk, Tj]u =

(by using (1) in the last term)

= X ∗
k (α

(k,h)
j )Tju − α

(k,h)
j Tj (Xku) − α

(k,h)
j

N�

i=1

[a(i)k ∂i , Tj]u.

Then

�
�
�

�

RN

X ∗
k (α

(k,h)
j Tju)Xhu

�
�
� ≤ ||X ∗

k (α
(k,h)
j )||2N ||Tju|| 2N

N−1
||Xhu||2+(22)

+ ||α
(k,h)
j ||∞||Tj(Xku)||2||Xhu||2 + ||α

(k,h)
j ||∞

� N�

i=1

||[a(i)k ∂i , Tj]u||2

�
||Xhu||2.

On the other hand by (9)

||X ∗
k (α

(k,h)
j )||2N ≤ ||Xk(α

(k,h)
j )||2N +

N�

i=1

||α
(k,h)
j ∂i (a

(i)
k )||2N ≤

≤ ||Xk(α
(k,h)
j )||2N + ||α

(k,h)
j ||∞

� N�

i=1

||∂i (a
( j )
k )||2N

�
.

By the classical embedding W 2,2N/3(RN ) ⊆ W 1,2N (RN ) we get the following
estimate:

(23) ||X ∗
k (α

(k,h)
j )||2N ≤ C(M), 1 ≤ k < h ≤ p, j = 1, . . . , N.

Analogously

(24) ||X ∗
h(α

(k,h)
j )||2N ≤ C(M), 1 ≤ k < h ≤ p, j = 1, . . . , N.
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Since Tj is a Calderon-Zigmund operator we also have

(25) ||Tju|| 2N
N−1

≤ C||u|| 2N
N−1

, ||Tj(Xku)||2 ≤ C||Xku||2.

Finally, by Corollary 2.1 with p = 2N
N−1

, q = 2N
3
, r = 2, we have

(26) ||[a(i)k ∂i , Tj]u||2 ≤ C||a(i)k ||2,2N/3||u|| 2N
N−1

.

Collecting (19)�(26) we obtain

||u||21/2,2 ≤ C(M)
�
||u||2 + ||u|| 2N

N−1

� p�

k=1

||Xku||2+(27)

+C(M)
� p�

k=1

||Xku||2

�2

+ ||u||22.

Keeping in mind the classical Sobolev embedding W 1/2,2(RN ) ⊆ L
2N
N−1 (RN )

and the obvious estimate ||u||2 ≤ ||u||1/2,2, from (27) we obtain

||u||21/2,2 ≤ C(M)||u||1/2,2

p�

k=1

||Xku||2 + C(M)
� p�

k=1

||Xku||2

�2

+ ||u||22 ≤

≤
1

2
||u||21/2,2 + (2C2(M) + C(M))

� p�

k=1

||Xku||2

�2

+ ||u||22.

From this estimate the inequality (4) immediately follows.
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