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AN EMBEDDING THEOREM FOR NON SMOOTH
VECTOR FIELDS OF STEP TWO
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1. Introduction.
In this note we prove the following embedding result.

Theorem 1.1. Let us consider in RN, N > 3, the vector fields
(1) Za(”a k=1,...,p,

where the coefficients a,((J ) belong to the classical Sobolev space W**N/3(RN).
Let us assume that for every j = 1,..., N

e zb<k>xk £ X X,
1<k<h<p

with b, of" € L¥®RN) and X", X" € L2NRY) for all j, k. h.
Then there exzsts a positive constant C, only depending on

N p
3) M= (D (e havys + 116 l1) +
j=1 k=1

+ ) (||Xk<a;k*")>||m+||Xh<a;k’h)>||w+||a}"”')>||oo))
1<k<h<p
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such that

p
o lulli o2 = C(Mlullz + Y- 11 Xull2)

k=1

for any u € CP(RV).

In (3) and (4) || - |l5,4 and || - ||; denote the norms in the classical Sobolev
space W*4(R") and in the space L(R"), respectively.

When the coefficients a,((’ ) are smooth the condition (2) implies that the
vector fields X, together with their commutator of step two [ X, X;], generate
the space RY at every point. Then, inequality (4) with a rougher positive
constant C is a consequence of a general result on smooth vector fields whose
Lie Algebra has maximum rank at every point: see for example [4], [5]. The
main novelty of our Theorem 1.1 lies in showing that the constant C in (4) only
depends on the quantity M in (3). We will prove Theorem 1.1 in Section 3.
Section 2 is devoted to the proof of a preliminary result that seems to have an
independent interest.

The question answered by Theorem 1.1 naturally arise in studying regular-
ity properties of viscosity solutions to the prescribed Levi-curvature equation in
R3. Given a C? function u on a open set Q@ C R?, the Levi-curvature of the
graph of u is the real number

(1+ @,uw)'?

5 =— X2u + X2u),
©) (L + (@2 + @y K %)
where

(6) Xy = 0y, + ay0y,, k=12

and the coefficients a; depend on the derivatives of u in the following way:

Oy, U — Oy, Uy, U

1 4 (3 u)?

Oy, U + Oy, udy,u
T+ @

a; = a;(Du) =
(7)

a, = ay(Du) =

Due to (5) the operator

(14 (@1)” + (@)’

2 2. _
(8) Xlu + XZM = —H(, M) (1 + (ax3u)2)1/2

’
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where H is a given real function defined on Q x R, is called the equation of the
prescribed Levi-curvature H. We explicitly remark that the left hand side of (8)
is a second order quasilinear operator whose characteristic form is

A, Dus £) := (X1, 6)* + (X2, £)? =
= (&) + a1(Du)&)? + (&, + ar(Du)s ).

Then

Alx, Du; £) >0, forany (x, Du;é),
A, Du; £) =0, when & = (—ay, —ay, 1).

As a consequence the operator in (8) has to be considered a quasilinear degen-
erate elliptic operator which is non-elliptic at any point (x, Du). For this reason
to viscosity solutions of (8) cannot be applied the well known regularity results
for viscosity solutions to (fully nonlinear) elliptic operator (see e.g. [1]).

Very recently Citti and the authors have introduced in [3] a new iteration
technique for studying regularity properties of Lipschitz-continuous viscosity
solutions to (8). When the prescribed curvature H is different from zero at every
point a crucial step of the previous mentioned iteration scheme is the embedding
inequality (4) in R? related to the vector fields X; in (6) with coefficients a;
given by (7). On the other hand, as it has been first noticed in [2], if X}, k =1, 2,
are these vector fields, the following identity formally holds:

[X1, X5] = Q0y,,
with
_Ha+w&+mﬁwz
B (1 + (3yyu)?)1/2

Then, if u is a Lipschitz-continuous solution to (8) with prescribed curvature H
bounded away from zero, then

0

9, =X, — LIx,. X,]
X, — 1 — =5 1y 21
! 0

3, = Xo — 20X, X,]
X, — 2 = 1y 21
? 0

1
Oy, = E[Xla X5]
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and condition (2) is (formally) satisfied. This remark makes Theorem 1.1
applicable to the iteration procedure in [3].

This application is the main motivation of the present note. We would like
to stress that embedding theorems for vector fields with non regular coefficients
seem to be crucial tools in studying regularity properties of weak solutions to
many classes of non linear degenerate elliptic equations. Our paper is a first
contribution in this direction.

2. A commutator theorem.

Let m € C*°(R") be such that
©) |DYm(&)] < cul&]7!

for any multi-index «. Let us denote by ¥ the Fourier transform and by T the
convolution operator related to

K = F'(m),
T:8—S8, Tv=K=xv.
From condition (9) it follows that m € L*®, K € C*®*(R" \ {0}) and
(10) |DK (x)] < cplx] N1

for any multi-index « (see [6], p. 26). Then K is a Calderon Zygmund
kernel and T is a continuous linear operator from L"(R") to itself, for every
rell, ool.

Given a smooth function a : R¥ — R, let us consider the commutator

[a, Tlv :=a(Tv) — T(av).

The main result of this section is the following theorem.
1,1
P + < 1.

Theorem 2.1. Let 1 < p <ocoand 1 < g < N be such that # < 7

Define

(an 11,1 1
r p g N’

Then, for any function a € C*°(R"),

(12) ||Dla, TIvl|, < cl|D%all,llvll,, YveCPRY)

where c is a positive constant independent on a and v. In (12) D denotes the
gradient operator in RN | while D?a stands for the hessian matrix of a.
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Proof. First of all, by using standard devices, we recognize that for every
function v € C°(R")

([a, TTv)(x) = /

» K(x — y)ax) —a()v(y)dy, xeRM.

Then, chosen a cut-off function n € C§° (RM), 0 < n < 1, such that n(x) = 0 if
|x] < 1/2 and n(x) =1 if |x| > 1,

la, Tlv = lin(l) R in S'(RY),

€—>
where

X =y N

Rovwi= [ K= (=)@ - ammoidy, xer?.
R
As a consequence
Dla,Tlv = lim DRcv i S'RY).
€—>

By computing the gradient of R.v we obtain

(PR = [ DK = yn(*=) @) = atymn) dy+

X—y
R €
1 —
2 [ &= o (*E )@ - apmart
€ JRrRN €

+ 0o [ ke - n(*)urdy =
RN €

= (RDv + RPv + RPv)(x).

Let n.(-) = n(é). From Calderon-Zygmund theory it follows that, as ¢ — 0,

K7, * v converges in LP(R") to a function w such that
(13) lwll, < cllvllp

where c is a positive constant only dependent on K and p. Then, as ¢ — 0,
R®v converges in §'(RV) to

R®v := Da - w.
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Moreover, thanks to (11) and (13),
(14) IRDv]l, < cllDall w0l
(by the classical Sobolev’s Theorem)
< cllD?all|v]l,.

Here and in the sequel we always denote by ¢ a positive constant independent
on a and v.
We now study the behaviour of R®®v. A change of variable gives

RPv(x) = ! / K(e)(D)@)(a(x) — a(x — e))v(x —€2)dz.

R

As € goes to zero the function (x, z) —> € '(a(x) — a(x — €z)) converges
to (x,z) —> (Da(x), z) uniformly on every compact subset of RY x RV,
Moreover, by estimate (10),

c
[((DK)(e2)| < |€Z|—N+1’

and 1

leVD(K (€2))] = " (DK )(e2)| < |Z|CT+1

where ¢ and c; are independent on €. Then, on every fixed compact C C
RN \ {0} {z — €VK(ez), € > 0} is a family of equibounded and equicon-
tinuous functions. As a consequence, taking a sequence €; | 0 if necessary,
K. (z) := €V K(ez) pointwise converges in R" \ {0} to a continuous function
Ky. Moreover, the convergence of K, to Ky is uniform on every compact subset
of RV \ {0}. Then, since Dn has compact support and Dn(z) = 0 for |z| < 1/2,

lim RPv(x) = ( f Ko(z)Dn(z){Da(x), z) dz) v(x) = RPv(x)
€—> RN

uniformly on every compact subset of R". Since
|IRPv| < ¢|Dal|v,
we get

2 2
(15) [|IR@v]|, < cliDall wu|Ioll, < clID%allglIvll,.
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We next estimate R{", the crucial part of DR.. First of all, we use the Taylor’s
formula to write

1
a(x)—a(y) = (Da(y), x—y) + / (1= 1)(D%aly +1(x — y)(x —y) x — ) dt.
0

Then, denoting by 9; and 9;; the derivatives % and % respectively, we have
] L)
M r=y
16)  ROur) = | DK = y)(Da(y). x = yyn(—= vy dy+
R

_ 1
+ [ K=y [ (=00 = x = ydr) dy =

N
=¥ [ pre =0 - (S )aa0nm
j=1

RN

N 1
+ Z/O ( —t)(fRN DK (x = ) = y)xj — )
i j=1

' "(x ; y)aua(y +1(x — y))v(y)dy)dt.

The kernels
Ky j(2) := K@)z, h,j=1,...,N,

are Calderon-Zygmund kernels since
Ky =F (my ),

being

0
my, j(§) == a—s(fhm(-%))
j

C* functions satisfying the condition
|Dmy, j(§)] < cal§™

for any multi-index «. Then, as ¢ — 0, the first summation to the right hand
side of (16) converges to

N
> RM;av),

j=1
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where R/ is a linear continuous operator in L (R"). As a consequence
N
.
(17) 1Y RED@av)llr < cll(Dayvll, < cllDal] s |vll, <
i—1 N=q
J=

2
=< c|[Dallq4[|v]]p-

It remains to estimate the integrals in the second summation in the right hand
side of (16). The kernels

Kin j(z) := 0K (2)ziz
appearing in those integrals satisfy the estimates
|Kn.i j(@)] < clz] V.
Indeed, keeping in mind that | K}, ;(2)| < clz]™N with K »,j a Calderon-Zigmund

kernel,
|Kni i = 1z Kn,j(2)] < clz| M.

The second summation to the right hand side of (16) can be then estimated from
above by a positive constant, independent on €, times the function

1
1
w(x) = / (1-1) f —————v)IID%a(y + t(x — y)|dydr.
0 ry X — ¥l
Let us define
s:l—l—B, s’zl—l—i.
q p
Since
1 1 1
—+=-= + =4 2 -,
s s l+p/lgq 1+q/p p+q p+gq
we have

1 1 ) 1/s
ww = [[a=o( [ ——=hora)"

1/s

1 !
. </I;N mll)za()} +t(x — y))lv dy) dr

’
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(putting y + t(x — y) = z in the last integral)

1 s s’ , ,
= [Fa=n(raorin) " (raparn) " @ - o e -
0

where
rfm = [ =y o)y,

Reminding that T is a continuous linear operator from L™(R") to L™*(R")

with - =L — L forany 1 <m < N, we have
mx m N

s/p
TPl < c(fw(xwf’“dx) = cllvll;.

since

I s 1
r p N’
Analogously
/ / / S//q /
IT( D%l ), < c(f D%l 4 dx) " = el D%all]
R
since
s 1
r q N’

As a consequence, since
lwll, = C/ (T(J|")*(T(ID*al* )" dx <
RN

< clIT(HIITAD*al)I
we finally obtain
lwll, < cllvll,lID%ally.
This ends the proof of our Theorem.

Corollary 2.1. Suppose the hypotheses of Theorem 2.1 are satisfied. Then, for
any je{l,..., N},

llad;, TTvll» < cllallz,qllv]]p-
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Proof. We first note that
[ad;, Tlv = ad;(Tv) — T(ad;v) =
=0;(aTv) — (d;a)Tv — T(9;(av)) + T((9;a)v)
(since [T, 9;] = 0)
= 0; <(aTU) — T(av)) + [T, 0;alv = 0;[a, TIv + [T, 9;a]v.
From Theorem 2.1 we get
10;[a, T1vll» < Cl|ID?allql|v]],.
On the other hand, since T is a Calderon-Zigmund operator,
T, 9;alvll, < [IT((@;a)v)ll, + [|(8;a)Tvl|,

= ClI;a)vlly + [19;all x [T v]l,

= Cllg;all x [Vl = Cllall2q|lv]lp-

The thesis follows.

3. Embedding theorem.
In this section we prove our main result.

Proof of Theorem 1.1. We first remark that the W'/%2 norm of a real function
u € C°(RY) is equivalent to

N
luell2 + Z IF 1 F @)l

j=1
where

JE =+ seRM
On the other hand, defining

§

(18) mj(§) =& J(E) = T ED2
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by Parseval’s identity we have

1 \N -
a9 I uFGulE = (5) [ SFGDE @ -

_ (%)N /R =i m FGOF@u)ds =
()" (o -
:/ 71 (i myFw)djud =

o

= / (Tju)ojudé.
RN

In the last term we have set
T = 7 (im; Fw).

By using identity (2) in the last term of (19) we obtain

p
20) /RN(Tju)aju - kZ_; (/RN(TJ.M)bjﬁmxku)Jr

+ Z (LN(EM)a;k’h)(Xth —Xth)M)

1<k<h<p

(integrating by parts the second term in the right hand side)

> /R N(Tju)b}")Xku) + > | /R X{(Tal ) X

14
k=1 1<k<h<p

- f X (e X ).
RN

The function m; in (18) satisfies condition (9) so that 7 is a Calderon Zygmund
operator. As a consequence

@ [ @b X < Tl b1 Xl <
R

)
< Cllull211b; Mool | X jull2-
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Corollary 2.1 will enable us to estimate
k.h
/ X " Tu) X pu.
RN

We first note that
k.h k.h k.h
X,f(ozj(. )Tju) = X,f(aj(. ))Tju — oz](. )Xk(Tju) =
= X" Tju — af " T(Xu) — o[ X, Tjlu =

(by using (1) in the last term)
J

N
k,h k,h k,h i
= X; (" Tju — a7 (X ) — &> a8, Tiu.
i=1

Then

(22) ) / X T X < 11XE ") an 1 Tyl s 1 Xpllo+
R
N .
e PN T Xl 2l Xl + N oo (3 M, T,]u||2)||xhu||2.
i=1
On the other hand by (9)

N
(k,h (k,h (k,h (@
11X Mlaw < X eCorflaw + D e 3@ 1oy <

i=1
N .
< X0l + e loo (D 131 low )

i=1
By the classical embedding W22V/3(RN) € W2N(RN) we get the following
estimate:
23)  IXp@ )y =CM), 1<k<h<p, j=1,..N.
Analogously

@4 1X5@ " ly <CM), 1<k<h<p j=1...N.
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Since T is a Calderon-Zigmund operator we also have

(25) Tjull v < Cllufl 2, |[Tj(Xzw)ll2 < ClI Xgull2.
Finally, by Corollary 2.1 with p = %, q= %, r = 2, we have
(26) a8, Tylulla < Clla” 1o w311l 2

Collecting (19)—(26) we obtain

p
@7) ||u||%/2,2sC(M>(||u||2+||u||%)2||xku||z+
k=1

p
(32 1Xeull) + ull.

k=1

Keeping in mind the classical Sobolev embedding W!/22(RY) < L1 (RY)
and the obvious estimate |[u||, < [|u||12,2, from (27) we obtain

P P 5
18 5.2 = CODIull 22 D Xaullo + COD( Y 11Xeull2)” -+ 1ulf =<
k=1 k=1

1 . 2
< 5l 2.0+ @C* M) + COD)( Y I1Xsull) -+ l1ul .
k=1

From this estimate the inequality (4) immediately follows.
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