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A DECISION PROCEDURE FOR A SUBLANGUAGE OF SET

THEORY INVOLVING MONOTONE ADDITIVE AND

MULTIPLICATIVE FUNCTIONS, II. THE MULTI-LEVEL CASE

DOMENICO CANTONE - CALOGERO G. ZARBA - JACOB T. SCHWARTZ

MLSS is a decidable sublanguage of set theory involving the predicates
membership, set equality, set inclusion, and the operators union, intersection,
set difference, and singleton.

In this paper we extend MLSS with constructs for expressing mono-
tonicity, additivity, and multiplicativity properties of set-to-set functions. We
prove that the resulting language is decidable by reducing the problem of de-
termining the satisfiability of its sentences to the problem of determining the
satisfiability of sentences ofMLSS.

In addition, we show an interesting model theoretic property ofMLSS,
the singleton model property, upon which our decidability proof is based.
Intuitively, the singleton model property states that if a formula is satisfiable,
then it is satisfiable in a model whose non-empty Venn regions are singleton
sets.
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1. Introduction.

Since many mathematical facts can be expressed in set-theoretic terms, it is
useful to design and implement a proof system based on the powerful formalism
of set theory. However, the expressive power of the full language of set theory
comes at the price of undecidability. It is therefore more practical to concentrate
on sublanguages of set theory.

Computable set theory [3], [6] is that area of mathematics and computer
science which studies the decidability properties of sublanguages of set theory.
It was initiated by the seminal paper of [10], which proved the decidability of:

– a multi-level syllogistic (MLS) involving membership, set equality, set
inclusion, union, intersection, and set difference;

– a multi-level syllogistic with singleton (MLSS) extending MLS with the
singleton operator.

In this paper we introduce the fragment of set theoryMLSSmf (multi-level
syllogistic with monotone functions), which extends MLSS with free set-to-
set function symbols and the following predicates for expressing monotonicity,
additivity, and multiplicativity properties of set-to-set functions:

– inc( f ), which holds iff f is increasing, that is, a ⊆ b → f (a) ⊆ f (b),
for all sets a, b;

- dec( f ), which holds iff f is decreasing, that is, a ⊆ b → f (b) ⊆ f (a),
for all sets a, b;

– add( f ), which holds iff f is additive, that is, f (a ∪ b) = f (a)∪ f (b), for
all sets a, b;

– mul( f ), which holds iff f ismultiplicative, that is, f (a∩b) = f (a)∩ f (b),
for all sets a, b;

– f � g, which holds iff f (a) ⊆ g(a), for every set a.

We prove that MLSSmf is decidable by providing a reduction algorithm
which maps each sentence of MLSSmf into an equisatisfiable sentence of
MLSS. Then the decidability ofMLSSmf will follow from the decidability of
MLSS.

An interesting and important model theoretic property of MLSS, which
we call the singleton model property, turned out to be essential for proving the
decidability ofMLSSmf, and gave us also a major insight on the reasons why
multilevel syllogistics are decidable. Intuitively, the singleton model property
ofMLSS states that if a suitably normalized formula in the languageMLSS is
satisfiable, then it is satisfiable in a model whose non-empty Venn regions are
singleton sets.
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1.1. Related work.

Our reduction algorithm is an augmentationmethod, that is, a method that
uses as a black box a decision procedure for a language L in order to obtain
a decision procedure for a nontrivial extension L ′ of L . Other augmentation
methods for set-theoretic languages can be found in [13], [14].

The literature abounds with decidability results for extensions of MLSS
involving uninterpreted function symbols. Ferro, Omodeo, and Schwartz [11]
and Beckert and Hartmer [1] proved the decidability of an extension ofMLSS
with uninterpreted function symbols, but with no monotonicity, additivity, and
multiplicativity constructs. Cantone and Zarba [9] proved the decidability of a
sublanguage of set theory with urelements4 and stratified sets involving mono-
tonicity constructs, but no additivity andmultiplicativityconstructs. Zarba, Can-
tone, and Schwartz [15] extended the result of [9] to also include additivity and
multiplicativity constructs.

Preliminary versions of the results presented in this paper can be found in
[7], [8], and [4].

1.2. Organization of the paper.

The paper is organized as follows. In Section 2 we formally define the
syntax and semantics of the languages MLS, MLSS and MLSSmf, and we
give other useful notions which will be needed subsequently. In Section 3
we present our reduction algorithm for mapping sentences of MLSSmf into
equisatisfiable sentences of MLSS. In Section 4 we prove that our reduction
algorithm is correct and we assess its complexity. In Section 5 we discuss the
singleton model property ofMLSS. Finally, in Section 6 we draw conclusions
from our work.

2. Preliminaries.

2.1. Von Neumann hierarchy of sets.

Most of the satisfiability problems studied in Computable Set Theory,
included the one in the present paper, are relative to the von Neumann hierarchy

4 Urelements (also known as atoms or individuals) are objects which contain no
elements but are distinct from the empty set. “Ur” is a German prefix meaning
“primitive” or “original”.
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of sets V defined inductively by:

V0 = ∅,

Vα+1 = P(Vα), for each ordinal α,

Vλ = ⋃
μ<λ

Vμ, for each limit ordinal λ,

V = ⋃
α∈O

Vα,

where P denotes the power-set operator and O is the class of all ordinals.
The axiom of regularity implies that every set belongs to some set Vα (see for
example [12]). Therefore for every set a we may define its rank by putting

rank(a) = least α such that a ∈ Vα+1.

We mention two very useful properties of the rank function which will be used
later:

(i) if a ∈ b, then rank(a) < rank(b);
(ii) if a ⊆ b, then rank(a) ≤ rank(b).

2.2. Multi-level syllogistic.

MLS (multi-level syllogistic) is the unquantified set-theoretic language
containing:

– an infinitely enumerable collection of variables;
– the constant ∅ (empty set);
– the operators ∪ (union), ∩ (intersection), and \ (set difference);
– the predicates ∈ (membership),= (set equality), and ⊆ (set inclusion);
– the propositional connectives ¬, ∧, ∨, →, ↔.

Example 1. Let x , y, z be variables. Then the expression

(1) ¬[(x \ y = ∅ ∧ z ∈ x )→ y �= ∅]
is an example of anMLS-formula.

An assignment A over a collection of variables V is any map from V
into the von Neumann hierarchy of sets V. Given an MLS-formula ϕ over a
collection V of variables, and an assignment A over V , we denote with ϕA

the truth-value of ϕ obtained by interpreting each variable x ∈ V with the set
xA, and interpreting the set symbols and logical connectives according to their
standard meaning. A model of anMLS-formula ϕ is an assignmentA such that
ϕA is true. AnMLS-formula ϕ is satisfiable if it has a model.

The satisfiability problem forMLS is the problem of determining whether
or not anMLS-formula ϕ is satisfiable. This problem is decidable [10].
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Example 2. The MLS-formula(1) in Example 1 is not satisfiable. In fact, for
every assignment A, if xA \ yA = ∅ and zA ∈ xA, it must be the case that
zA ∈ xA ∩ yA, which implies that yA �= ∅.

2.3. Extensions of MLS.

MLSS (multi-level syllogistic with singleton) is the unquantified set-
theoretic language extendingMLS with the singleton operator {·}. The seman-
tics of MLSS is defined similarly to the semantics of MLS. The satisfiability
problem forMLSS is decidable [10].

Example 3. Let x , y, z be variables. Then the expression

¬[(x = {y} ∧ x = y ∪ z) → y = ∅]
is an example of an unsatisfiable MLSS-formula. In fact, x = {y} ∧ x =
y ∪ z ∧ y �= ∅ implies y ∈ y , which contradicts the regularity axiom.

In this paper we focus on the satisfiability problem for the unquantified set-
theoretic language MLSSmf (multi-level syllogistic with singleton and mono-
tone functions), which extendsMLSS with an infinitely enumerable collection
of unary set-to-set function symbols and the predicates inc, dec, add , mul , and
�.

The semantics ofMLSSmf is defined similarly to the semantics ofMLS
andMLSS, with the only difference that if A is an (MLSSmf-)assignment and
f is a function symbol then f A is a class function from V into V. Moreover,
for any assignmentA we agree that:

– inc( f ) holds in A if and only if f A is increasing, that is, s ⊆ t →
f A(s) ⊆ f A(t), for all sets s, t ;

– dec( f ) holds in A if and only if f A is decreasing, that is, s ⊆ t →
f A(t) ⊆ f A(s), for all sets s, t ;

– add( f ) holds in A if and only if f A is additive, that is, f A(s ∪ t) =
f A(s) ∪ f A(t), for all sets s, t ;

– mul( f ) holds inA if and only if f A is multiplicative, that is, f A(s ∩ t) =
f A(s) ∩ f A(t), for all sets s, t ;

– f � g holds in A if and only if f A(s) ⊆ gA(s), for every set s .

Example 4. Let f, g be two set-to-set function symbols, and let x be a variable.
Then theMLSSmf-formula

¬[(add( f ) ∧ f � g) → f (∅) ⊆ g({x})]
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is unsatisfiable. Intuitively, this is due to the fact that every additive function is
also increasing.

Example 5. Let f, g : V → V be two class functions, and denote with f ◦ g,
f ∪ g, and f ∩ g the class functions defined by:

( f ◦ g)(x ) = f (g(x )),

( f ∪ g)(x ) = f (x )∪ g(x ),

( f ∩ g)(x ) = f (x )∩ g(x ).

Then, for any two additive class functions f1, f2, both f1 ◦ f2 and f1 ∪ f2
are additive. Moreover, for any two multiplicative class functions g1, g2, both
g1 ◦ g2 and g1 ∩ g2 are multiplicative.

Example 6. Let G : V → {false, true} be a class predicate, and let fG be the
class function defined by

fG (x ) = {y ∈ x : G(y)}.

Then fG is both additive and multiplicative.

Example 7. The unary union function Un , defined by Un(x ) = ⋃
y∈x

y , is

additive. The power-set function P , defined by P(x ) = {y : y ⊆ x}, is
multiplicative. The cartesian product function ×, defined by x × y = {(u, v) :
u ∈ x and v ∈ y}, is additive and multiplicative in both arguments.

2.4. Normalized literals.

In order to simplify details, we will often consider conjunctions of normal-
izedMLSSmf-literals of the form:

(2)
x = y, x �= y, x = y ∪ z, x = y \ z,
x = {y}, x = f (y), inc( f ), dec( f ),
add( f ), mul( f ), f � g.

Let ϕ be an MLSSmf-formula. By suitably introducing new variables, it is
possible to convert ϕ into an equisatisfiable formula ψ = ψ1 ∨ · · · ∨ ψk

in disjunctive normal form, where each ψi is a conjunction of normalized
MLSSmf-literals of the form (2). Thus, we have the following result.
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Lemma 8. The satisfiability problem for MLSSmf-formulae is equivalent to
the satisfiability problem for conjunctions of normalized MLSSmf-literals of
the form (2).

Similar results to the one in Lemma 8 also hold for the languages MLS
andMLSS, although with different groups of normalized literals.

Lemma 9. The satisfiability problem for MLS-formulae is equivalent to the
satisfiability problem for conjunctions of normalizedMLS-literals of the form:

(3) x = y, x �= y, x = y ∪ z, x = y \ z, x ∈ y.

Lemma 10. The satisfiability problem forMLSS-formulae is equivalent to the
satisfiability problem for conjunctions of normalizedMLSS-literals of the form:

(4) x = y, x �= y, x = y ∪ z, x = y \ z, x = {y}.

Unless otherwise specified, in the rest of this paper the word normalized
refers to literals of the form (2).

3. The reduction algorithm.

Let C be a conjunction of normalized MLSSmf-literals, and denote with
V = {x1, . . . , xn} and F the collections of variables and function symbols
occurring in C, respectively. In this section we describe a reduction algorithm
for converting C into an equisatisfiable conjunction C∗ ofMLSS-formulae.

We will use the following notation. Given a set a, P+(a) denotes the set
P(a) \ {∅}. Moreover, we denote with �j the set {α ∈ P+({1, . . . , n}) : j ∈ α},
for 1 ≤ j ≤ n.

The reduction algorithm is shown in Figure 1, and consists of three steps.
In the first step, we generate new variaboes whose intuitive meaning is as

follows:

– for each α ∈ P+({1, . . . , n}), the new variable vα is intented to represent
the Venn region

⋂
i∈α

xi \ ⋃
j /∈α

xj ;

– for each � ⊆ P+({1, . . . , n}), the new variablew f,� is intended to represent
the image of the set

⋃
α∈�

vα under the function f .

In the second step, we add to C appropriate MLSS-formulae whose
purpose is to model the variables vα and wf,� according to their intuitive
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Reduction algorithm

Input: a conjunction C of normalized MLSSmf-literals
Output: a conjunction C∗ ofMLSSmf-formulae

Notation

– V = {x1 , . . . , xn } is the collection of variables occurring in C;
– F is the collection of function symbols occurring in C;
– P+(a) = P(a) \ {∅}, for each set a;
– �j stands for the set {α ∈ P+({1, . . . , n}) : j ∈ α}, for 1 ≤ j ≤ n.

Step 1. Generate the following new variables:

vα , for each α ∈ P+({1, . . . , n}),
w f,� , for each f ∈ F and � ⊆ P+({1, . . . , n}).

Step 2. Add to C the followingMLSS-formulae:

vα = ⋃
i∈α

xi \ ⋂
j /∈α

xj , for each α ∈P+({1, . . . , n}),
and ⋃

α∈�

vα = ⋃
β∈m

vβ → w f,� = w f,m for each f ∈ F and �,m ⊆ P+({1, . . . , n}).

Step 3. Replace literals in C containing function symbols withMLSS-formulae as
follows:

xi = f (xj ) �⇒ xi = w f,lj

inc( f ) �⇒ ∧
�⊆m

(w f,� ⊆ wj,m

dec( f ) �⇒ ∧
�⊆m

(w f,m ⊆ wj,�

add( f ) �⇒ ∧
�,m
(w f,�∪m = w f,� ∪ w f,m

mul( f ) �⇒ ∧
�,m
(w f,�∩m = w f,� ∩ w f,m

f � g �⇒ ∧
�

(w f,� ⊆ wg,�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Figure 1: The reduction algorithm.
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meaning. In particular, the variables w f,� are modeled by noticing that for each

�,m ⊆ P+({1, . . . , n}), if ⋃
α∈�

vα = ⋃
β∈m

vβ then f
( ⋃

α∈�

vα

) = f
( ⋃

β∈m
vβ

)
.

Finally, in the third step we remove from C all literals involving function
symbols. This is done by replacing all literals of the form xi = f (xj ), inc( f ),
dec( f ), add( f ), mul( f ), and f � g with MLSS-literals involving only the
variables xi and the new variables wf,� .

We claim that our reduction algorithm is correct. More specifically, we
claim that if C∗ is the result of applying to C our reduction algorithm then:

– the reduction is sound, namely, if C is satisfiable, so is C∗ ;
– the reduction is complete, namely, if C∗ is satisfiable, so is C.

The next section proves that our reduction algorithm is sound and com-
plete, and therefore it yields a decision procedure forMLSSmf.

4. Correctness.

4.1. Soundness.

Let C be a satisfiable conjunction of normalizedMLSSmf-literals, and let
C∗ be the result of applying to C the reduction algorithm in Figure 1. The key
idea of the soundness proof is that, given a model A of C, a model B of C∗ can
be constructed in the most natural way if we remember the intuitive meaning of
the variables vα and wf,� .

Lemma 11. (Soundness). Let C be a conjunction of normalized MLSSmf-
literals, and let C∗ be the result of applying to C the reduction algorithm in
Figure 1. Then if C is satisfiable, so is C∗ .

Proof. Let A be a model of C, and denote with V = {x1, . . . , xn} and F the
collections of variables and function symbols occurring in C, respectively. We
claim that the assignment B defined by:

xB
i = xA

i , for each i ∈ {1, . . . , n},
vB

α =
⋂
i∈α

xA
i \

⋃
j /∈α

xA
j , for each α ∈ P+({1, . . . , n}),

wB
f,� = f A

(⋃
α∈�

vB
α

)
, for each f ∈ F and � ⊆ P+({1, . . . , n})

is a model of C∗ .
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To see this, note that formulae in C∗ can be partitioned into the following
categories:

(I) literals of the form x = y , x �= y , x = y ∪ z, x = y \ z and x = {y}
originally present in C;

(II) literals of the form vα = ⋃
i∈α

xi \ ⋂
j /∈α

xj ;

(III) formulae of the form
⋃
α∈�

vα = ⋃
β∈m

vβ → w f,� = w f,m ;

(IV) literals of the form xi = w f,�j , which replace literals of the form xi =
f (xj ) in C;

(V) conjunctions replacing literals of the form inc( f ), dec( f ), add( f ),
mul( f ), and f � g in C.

Literals of type (I) are true in B because they contain only variables in V ,
and by constructionB agrees withA on all such variables.

Concerning literals of type (II), we have

vB
α =

⋃
i∈α

xA
i \

⋂
j /∈α

xA
j =

⋃
i∈α

xB
i \

⋂
j /∈α

xB
j .

Concerning literals of type (III), let
⋃
α∈�

vB
α =

⋃
β∈m

vB
β . Then

f A
( ⋃

α∈�

vB
α

)
= f A

( ⋃
β∈m

vB
β

)
,

for every f ∈ F . Thus,

wB
f,� = f A

( ⋃
α∈�

vB
α

)
= f A

( ⋃
β∈m

vB
β

)
= wB

f,m ,

for every f ∈ F . Concerning literals of type (IV), let xi = f (xj ) be in C. Then
we have

xB
i = xA

i = f A
(
xA
j

)
= f A

( ⋃
α∈�j

vB
α

)
= wB

f,�j
,

where �j = {α ∈ P+({1, . . . , n}) : j ∈ α}.
Concerning literals of type (V), consider a literal of the form inc( f ) in C and
suppose that � ⊆ m, with �,m ⊆ P+({1, . . . , n}). We want to show that
the literal w f,� ⊆ wf,m occurring in C∗ is true in B. To do so, observe that,
since � ⊆ m, we have

⋃
α∈�

vB
α ⊆ ⋃

β∈m
vB

β . Since f A is increasing, we also have
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f A
( ⋃

α∈�

vB
α

)
⊆ f A

( ⋃
β∈m

vB
β

)
, and therefore wB

f,� ⊆ wB
f,m . The cases regarding

conjunctions introduced in C∗ to replace literals of the form dec( f ), add( f ),
mul( f ) and add( f ) can be treated similarly. �

4.2. Completeness.

Let C be a conjunction of normalized MLSSmf-literals. As before, let us
denote with V = {x1, . . . , xn} and F the collections of variables and function
symbols occurring in C, respectively. Also, let C∗ be the result of applying to C
the reduction algorithm in Figure 1. To show the completeness of our reduction
algorithm, we need to prove that if C∗ is satisfiable, so is C.

To do so, let B be a model of C∗ , and let us start to define an assignment
M over the variables and function symbols in C by letting

xM
i = xB

i , for each i = 1, . . . , n.

In order to define M over the function symbols in F , let us recall that the
intuitive meaning of a variable of the form w f,� is to represent the expres-
sion f (

⋃
α∈�

vα). Thus, our definition of fM should satisfy the property that

fM(
⋃
α∈�

vB
α ) = wB

f,� , for every � ⊆ P+({1, . . . , n}). But how do we define

fM(a) in the more general case in which a is not the union of sets of the
form vB

α ? The idea is to define suitably a discretization function λ : V →
P(P+({1, . . . , n})), and then let

fM(a) = wB
f,λ(a), for each f ∈ F and each set a.

To achieve completeness, we need a good discretization function.

Definition 12. Let C be a conjunction of normalized MLSSmf-literals and
let C∗ be the result of applying to C the reduction algorithm in Figure 1. A
discretization function λ : V → P(P+({1, . . . , n})) is good with respect to a
model B of C∗ if the following conditions hold:

(A) λ is increasing;
(B) λ is additive;
(C) λ is multiplicative;
(D) if a = ⋃

α∈�

vB
α then a = ⋃

α∈λ(a)
vB

α , for each � ⊆ P+({1, . . . , n}).
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Lemma 13. Let C be a conjunction of normalizedMLSSmf-literals, let C∗ be
the result of applying to C the reduction algorithm in Figure 1, and let B be
a model of C∗ . Assume that there exists a discretization function λ : V →
P(P+({1, . . . , n})) which is good with respect to B.

Then C is satisfiable.

Proof. Let V = {x1, . . . , xn} (resp. F ) be the collection of variables (resp.
function symbols) occurring in C. We now prove that the assignmentM defined
by

xM
i = xB

i , for each i = 1, . . . , n,
fM(a) = wB

f,λ(a), for each f ∈ F and each set a ∈ V,

is a model of C by showing that M satisfies all literals occurring in C.

Literals of the form x = y , x �= y , x = y ∪ z, x = y \ z, x = {y}. This literals
are true in M sinceM agrees with B on all variables in V .

Literals of the form xi = f (xj ). Let a = ⋃
α∈�j

vB
α , with �j = {α ∈

P+({1, . . . , n}) : j ∈ α}. Then, by property (D) of Definition 12, we have
a = ⋃

α∈λ(a)
vB

α , and therefore wB
f,�j

= wB
f,λ(a) . Since the literal xi = w f,�j is

in C∗ , we have xM
i = xB

i = wB
f,�j

= wB
f,λ(a) = fM(a) = fM

( ⋃
α∈�j

vB
α

)
=

fM
(
xB
j

)
= fM

(
xM
j

)
.

Literals of the form inc( f ), dec( f ), add( f ), mul( f ) and f � g. Let the literal
inc( f ) be in C, and let a ⊆ b. Since λ is increasing, λ(a) ⊆ λ(b), so that the
literal w f,λ(a) ⊆ wf,λ(b) must be in C∗ . We have fM(a) = wB

f,λ(a) ⊆ wB
f,λ(b) =

fM(b), implying that fM is increasing. Similarly one can prove that also all
literals of the form dec( f ), add( f ), mul( f ) and f � g in C are satisfied by
M. �

Remark 14. By a careful analysis of the above proof, it turns out that themono-
tonicity of the discretization function λ is only needed to show the satisfiability
of literals of the form inc( f ) and dec( f ). Likewise, the additivity of λ is needed
only for literals of the form add( f ) and the multiplicativity of λ is needed only
for literals of the form mul( f ). Finally, property (D) of λ (cf. Definition 12) is
only needed to prove the satisfiability of literals of the form xi = f (xj ).

Lemma 13 shows that the existence of good discretization functions is
enough to ensure the completeness of our reduction algorithm. But how do
we define good discretization functions?
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As a first attempt, given an arbitrary model B of C∗ , let us put

λ+
B(a) = {α ∈ P+({1, . . . , n}) : vB

α ∩ a �= ∅}, for each set a.

It is easy to see that λ+
B satisfies properties (A), (B), and (D) of Definition 12.

However, in general λ+
B is not multiplicative. As a counter-example, assume

that there exist two disjoint sets a, b and some α ⊆ P+({1, . . . , n}) such that
a ∩ vB

α �= ∅ and b ∩ vB
α �= ∅. Then α ∈ λ+

B(a) ∩ λ+
B(b) but λ

+
B(a ∩ b) = ∅.

By Remark 14, in the proof of Lemma 13 the hypothesis that λ+
B is

multiplicative is used only to show that the literals of the form mul( f ) in C are
satisfied by M. Therefore, if we defineMLSSmf+ to be the language obtained
fromMLSSmf by removing the symbolmul , we get the followingpartial result.

Lemma 15. Let C be a conjunction of normalizedMLSSmf+ -literals and let
C∗ be the result of applying to C the reduction algorithm in Figure 1. Then if
C∗ is satisfiable, so is C.

By combining Lemma 11 and Lemma 15 we obtain immediately the
decidability ofMLSSmf+ .

Theorem 16. The satisfiability problem forMLSSmf+ is decidable.

As a second attempt to find a good discretization function, let us put

λ×
B(a) = {α ∈ P+({1, . . . , n} : ∅ �= vB

α ⊆ a}, for each set a.

It is easy to see that λ×
B satisfies properties (A), (C), and (D) of Definition 12.

However, in general λ×
B is not additive. As a counter-example, assume that there

exist two sets a, b and some α ⊆ P+({1, . . . , n}) such that vB
α ⊆ a∪b, vB

α �⊆ a,
and vB

α �⊆ b. Then α ∈ λ×
B(a ∪ b) but α /∈ λ×

B(a) ∪ λ×
B(b).

By Remark 14, in the proof of Lemma 13 the hypothesis that λ×
B is additive

is used only to show that the literals of the form add( f ) in C are satisfied byM.
Therefore, if we defineMLSSmf× to be the language obtained fromMLSSmf
by removing the symbol add , we get the following partial result.

Lemma 17. Let C be a conjunction of normalizedMLSSmf× -literals and let
C∗ be the result of applying to C the reduction algorithm in Figure 1. Then if
C∗ is satisfiable, so is C.

By combining Lemma 11 and Lemma 17we obtain at once the decidability
ofMLSSmf× .

Theorem 18. The satisfiability problem forMLSSmf× is decidable.
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So far, it appears as neither λ+
B nor λ×

B are good discretization functions.
However, assume that we have a model B of C∗ such that:

(5) |vB
α | ≤ 1, for each α ∈ P+({1, . . . , n}).

Then it is easy to see that in this case λ+
B and λ×

B coincide, and therefore they are
both additive and multiplicative. Thus, both λ+

B and λ×
B are good discretization

functions with respect to any model B of C∗ satisfying (5).
But do models of C∗ satisfying (5) exist? The following lemma gives an

affirmative answer to this question.

Lemma 19. Let C be a conjunction of normalizedMLSSmf-literals, and let C∗
be the result of applying to C the reduction algorithm in Figure 1. Assume also
that C∗ is satisfiable. Then there exists a model B of C∗ such that |vB

α | ≤ 1, for
each α ∈ P+({1, . . . , n}).

The proof of Lemma 19 is very technical and will be given in Section 5.
For now, we just mention that the result of Lemma 19 is a consequence of a
model theoretic property of conjunctions of normalized MLSS-literals, called
the singleton model property, which will be discussed in more detail in
Section 5.

Combining Lemma 19 with Lemma 13 we can finally obtain the complete-
ness of our reduction algorithm, using either λ+

B or λ×
B as a good discretization

function with respect to a model B of C∗ satisfying (5).

Lemma 20. (Completeness). Let C be a conjunction of normalizedMLSSmf-
literals and let C∗ be the result of applying to C the reduction algorithm in
Figure 1. Then if C∗ is satisfiable, so is C.

Combining Lemma 11 and Lemma 20, we obtain the decidability of
MLSSmf.

Theorem 21. (Decidability). The satisfiability problem forMLSSmf is decid-
able.

4.3. Complexity issues.

Let C be a conjunction of normalized MLSSmf-literals containing n
distinct variables and m distinct function symbols. It turns easily out that
the formula C∗ , which results by applying to C the reduction algorithm in
Figure 1, involves O(2n) variables of type vα , with α ∈ P+({1, . . . , n}), and
O(m · 22n ) variables of type w f,�, where f is a function symbol in C and
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� ⊆ P+({1, . . . , n}). Moreover, the collective size of all formulae generated
in Step 2 is

O(n · 2n) + O(m · 2n · 22n+1 ),
and the collective size of all formulae generated in Step 3 is bounded by

O(p · 22n+1 ),
where p is the number of literals in C of type

x = f (y), inc( f ), dec( f ), add( f ), mul( f ), f � g.

Thus, if we denote with K the size of C, since m, n, p ≤ K , we have the
following upper bound on the size of C∗ :

O(K · 2K · 22K+1
).

Finally, to estimate the complexity of our decision procedure, we must take
into account that the formula C∗ must then be tested for satisfiability, and it is
known that the satisfiability problem for MLSS is NP -complete [5]. Though
the satisfiability test for MLSS is quite efficient in practice, it becomes very
expensive when run on such large formulae as C∗ .

5. The singleton model property.

The language MLSS enjoys an interesting model-theoretic property: the
singleton model property. This property states that if C is a satisfiable conjunc-
tion of normalizedMLSS-literals of the form (4), then there exists a model M
of C whose non-empty Venn regions all are singleton sets.

We shall derive the singleton model property for conjunctions of normal-
izedMLSS-literals as a by-product of a proof of the decidability ofMLSS. The
proof which will be given below is based on the places approach and follows
much the same lines of [2].

5.1. Places and Venn regions.

The notion of place has been one of the most important and successful tools
in computable set theory for deriving decidability results for several extensions
ofMLS. Intuitively, places are a syntactic device for representing the non-empty
proper regions of the Venn diagram of a given model.
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Definition 22. (Venn diagrams and regions). A VENN DIAGRAM is any finite
collection of sets.

Let D = {a1, . . . , an} be a Venn diagram. A set a ∈ V is a PROPER VENN
REGION of D if a = ⋂

i∈α

ai \ ⋃
j /∈α

aj , for some non-empty α ⊆ {1, . . . , n}. The

NON-PROPER VENN REGION of D is the class V \
n⋃
i=1

ai . A VENN REGION of D is

either a proper Venn region of D or the non-proper Venn region of D.

Definition 23. (Places). Let V be a collection of variables. A PLACE of V is
any non-nullmap π : V → {0, 1}.

Thus, ifA is an assignment over a collection of variables V = {x1, . . . , xn},
for each ∅ �= α ⊆ {1, . . . , n}, the proper region σ = ⋂

i∈α

xA
i \ ⋃

j /∈α

xA
j of the Venn

diagram {xA : x ∈ V } can be conveniently represented by the place πσ of V
defined by putting

πσ (xi) =
{
1 if i ∈ α

0 otherwise.

It is to be noticed that in the literature the notion of place has usually been
defined relative to a given conjunction C of normalized literals. In particular, a
place of C has been characterized by requiring that, when considered as a truth
assignment over the variables of C (regarded as propositional letters), it satisfies
the following associated propositional conjunction CP

CP = {x ↔ y : the literal x = y is in C} ∪
{x ↔ (y ∨ z) : the literal x = y ∪ z is in C} ∪
{x ↔ (y ∧ ¬z) : the literal x = y \ z is in C}

(cf. conditions (C1)–(C3) of Definition 25 below).

The way in which places are used to represent models of set-theoretic
formulae is illustrated by the following elementary case. Let C be a conjunction
of set literals of the form

(6) x = y, x �= y, x = y ∪ z, x = y \ z,

and let V be the collection of variables occurring in C. Given a set model M
for C, we can construct its syntactic representation as the collection of places

C,M corresponding to the non-empty proper regions of the Venn diagram
{xM : x ∈ V }. It can easily be checked that the following adequacy conditions
are then verified
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(i) each place π ∈ 
C,M satisfies the associated propositional conjunction CP ,
when considered as a truth assignment over V ; and

(ii) for every literal of type x �= y in C, there exists a place π ∈ 
ϕ,M such
that π (x ) �= π (y), i.e. π satisfies the propositional formula ¬(x ↔ y) (cf.
condition (C4) of Definition 25 below).

Moreover, as will be shown below, with any system of places satisfying
the above conditions (i) and (ii) we can associate a corresponding canonical
assignment which satisfies C. Therefore, since the existence of such systems
can be checked effectively, we have a decision procedure for conjunctions of
literals of type (6).

5.2. Place frameworks, adequacy conditions, and syntactic descriptions.

When in addition to literals of type (6) our conjunction C contains also
literals of type x = {y}, i.e. C is a conjunction of normalized MLSS-literals,
the adequacy conditions become more involved and they are better stated in
terms also of a variables map denoted by at . It turns out that the map at needs
to be defined only over singleton variables, namely those variables which occur
in terms of type {x} in C. For such variables, at(x ) is intended to denote the
place corresponding to the Venn region which contains xC.

Systems of places are therefore generalized to place frameworks according
to the following definition.

Definition 24. (Place frameworks). A PLACE FRAMEWORK is a quadruple
(V ,W, 
, at) such that

– V is a collection of variables;
– W is a subset of V ;
– 
 is a collection of places of V ;
– at is a map from W into
.

Then the adequacy conditions can be stated as follows.

Definition 25. (Adequacy conditions). Let C be a conjunction of normalized
MLSS-literals, let V be the collection of variables occurring in C, and let W be
the collection of variables occurring in terms of type {x} in C, called SINGLETON
VARIABLES. A place framework (V ,W, 
, at) is ADEQUATE for C if it satisfies
the following conditions:

(C1) if x = y is in C, then π (x ) = π (y), for each π ∈ 
;
(C2) if x = y ∪ z is in C, then π (x ) = 1 if and only if π (y) = 1 or π (z) = 1,

for each π ∈ 
;
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(C3) if x = y \ z is in C, then π (x ) = 1 if and only if π (y) = 1 and π (z) = 0,
for each π ∈ 
;

(C4) if x �= y is in C, then π (x ) �= π (y), for some π ∈ 
;
(C5) if x = {y} is in C, then

(C5.1) at(y) is the unique place π ∈ 
 such that π (x ) = 1;
(C5.2) if at(z) = at(y), for some variable z ∈W , then π (z) = π (y), for
every π ∈ 
;
(C5.3) if C contains a literal x1 = {y1} such that π (y1) = π (y) for every
π ∈ 
, then at(y1) = at(y);

(C6) the relation ≺ over 
 is acyclic, where ≺ is defined by putting π1 ≺ π2
if and only if there exists a literal of the form x = {y} in C such that
π1(y) = π2(x ) = 1.

As already observed, (C1)–(C3) correspond to the condition (i) stated
in the previous section, whereas (C4) is just condition (ii). Condition (C5)
characterizes syntactically literals of type x = {y}. Finally, condition (C6) is
the syntactic counterpart of the axiom of regularity, which forbids membership
cycles (cf. [12]).

Any given assignment can suitably be represented by means of its syntactic
description, according to the following definition.

Definition 26. (Syntactic descriptions). LetA be a set assignment defined over
a collection V of variables, and let W be a subset of V .

We define the COLLECTION OF PLACES 
 and Variables Map at : W → 


associated with A, V , and W as follows.
Let � be the collection of the non-empty proper regions of the Venn

diagram {xA : x ∈ V }. With each σ ∈ � we associate a place πσ : V → {0, 1}
such that πσ (x ) = 1 if and only if σ ⊆ xA, for every variable x ∈ V . Then we
put


 = {πσ : σ ∈ �}.
In addition, for each variable w ∈W we denote by σw the unique region of the
Venn diagram {xA : x ∈ V } such that wC ∈ σw . Then we put

at(w) = πσw
, for w ∈W.

The SYNCTATIC DESCRIPTION OF A RELATIVE TO V AND W is the place frame-
work (V ,W, 
, at), where 
 and at are respectively the collection of places
and variables map associated with A, V , and W .

It turns out that the syntactic description of a model of a given conjunction
C of normalized MLSS-literals is a place framework which is adequate for C.
This is proven in the following lemma.



A DECISION PROCEDURE FOR A SUBLANGUAGE OF SET. . . 151

Lemma 27. Let C be a conjunction of normalizedMLSS-literals, let V be the
collection of variables occurring in C, and let W be the collection of singleton
variables of C, namely variables occurring in terms of type {x} in C. Let us
assume that C is satisfiable and let A be a model of C. Then the syntactic
description (V ,W, 
, at) of A relative to V and W is adequate for C.

Proof. Let C, V , W , A be as in the hypotheses, and let (V ,W, 
, at) be the
syntactic description of A relative to V and W . We prove that (V ,W, 
, at) is
adequate for C by verifying that all conditions (C1)–(C6) in Definition 25 are
satisfied.

Concerning (C1), let the literal x = y be in C, and assume that πσ (x ) = 1,
for some non-empty region σ of the Venn diagram {xA : x ∈ V }. Then
σ ⊆ xA = yA, implying πσ (y) = 1. Conditions (C2) and (C3) can be verified
much in the same way.

To verify (C4), let the literal x �= y be in C. Then xA �= yA and therefore
there must exist a non-empty Venn region σ such that σ ⊆ (xA\yA)∪(yA\xA).
Thus, πσ (x ) �= πσ (y) follows.

Concerning (C5), let the literal x = {y} be in C. Assume first that
π (x ) = 1. Then there exists a non-empty Venn region σ such that π = πσ

and σ ⊆ xA. But then σ = {yA} and therefore at(y) = πσ = π . On the
other hand, if at(y) = π , then there exists a non-empty Venn region σ such
that yA ∈ σ and πσ = π . But then σ ⊆ xA, implying πσ (x ) = 1, namely
π (x ) = 1, thus proving (C5.1). Next, let at(z) = at(y), for some z ∈ V . Then,
zA, yA ∈ σ ⊆ xA, for some Venn region σ . Hence zA = yA, so that it follows
immediately that π (z) = π (y), for every π ∈ 
, namely condition (C5.2) holds.

Finally, assume that C contains a literal x1 = {y1} such that π (y1) = π (y),
for every π ∈ 
. Then yA

1 and y
A contain the same non-empty Venn regions,

so that they are identical. Hence at(y1) = at(y), proving that condition (C5.3)
holds.

To show that also condition (C6) is satisfied, it is enough to verify that
πσ ′ ≺ πσ ′′ implies rank(σ ′) < rank(σ ′′), for any two non-empty Venn
regions σ ′ and σ ′′ of {xA : x ∈ V }. Indeed, if this is the case, then a cycle
π1 ≺ π2 ≺ . . . ≺ πm ≺ π1 in 
 would entail a cycle rank(σ1) < rank(σ2) <

. . . < rank(σm ) < rank(σ1), where the σi ’s are the Venn region corresponding
to the places πi ’s, for i = 1, . . . ,m, a contradiction. Thus, let πσ ′ ≺ πσ ′′ , for
two given non-empty Venn regions σ ′ and σ ′′ . Then there exists a literal of the
form x = {y} such that πσ ′ (y) = πσ ′′ (x ) = 1, so that σ ′ ⊆ yA ∈ xA = σ ′′ .
Therefore, properties (i) and (ii) of the function rank listed in Subsection 2.1
yield rank(σ ′) < rank(σ ′′). �
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5.3. Canonical assignments.

Next we show how we can construct canonical assignments in correspon-
dence of a place framework which is adequate for a given conjunction C of
normalized MLSS-literals. This will be done in such a way that the resulting
canonical assignments will satisfy C.

Definition 28. (Canonical assignments). Let C be a conjunction of normalized
MLSS-literals and let (V ,W, 
, at) be a place framework which is adequate
for C. Let ≺ be the relation over 
 defined by putting π1 ≺ π2 if and only if
there exists a literal of the form x = {y} in C such that π1(y) = π2(x ) = 1. Let
{uπ : π ∈ 
 \ range(at)} be any collection of sets such that
– uπ �= uπ ′ , for every two distinct places π, π ′ ∈ 
 \ range(at);
– |uπ | ≥ |
|, for every π ∈ 
 \ range(at).
Using the chosen sets uπ ’s and followingany linear ordering which extends

the relation ≺, whose existence is ensured by condition (C6) of Definition 25,
we put

π =
{ {uπ }, if π /∈ range(at),

{ ⋃
π ′≺π

π ′}, if π ∈ range(at),

for each place π ∈ 
. The resultingmap π �→ π is called a PLACE REALIZATION
OF 
.

Finally, we define an assignmentM over V by putting

xM =
⋃

π(x)=1
π,

for each variable x ∈ V . The assignmentM is called a CANONICAL ASSIGNMENT
RELATIVE TO (V ,W, 
, at) (and C).

As anticipated, canonical assignments relative to a given conjunctionC are
models of C.

Lemma 29. Let C be a conjunction of normalized MLSS-literals over a set
V = {x1, . . . , xn} of variables and let M be a canonical assignment relative to
a given place framework which is adequate for C. Then M satisfies C.

Proof. Let (V ,W, 
, at) be a place framework which is adequate for a given
conjunction C of normalizedMLSS-literals and let {uπ : π ∈ 
 \ range(at)}
be a collection of sets such that

– uπ �= uπ ′ , for every two distinct places π, π ′ ∈ 
 \ range(at);
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– |uπ | ≥ |
|, for every π ∈ 
 \ range(at).

Let π �→ π be the place realization of 
 relative to {uπ : π ∈ 
 \
range(at)} and let M be the canonical assignment relative to {uπ : π ∈

 \ range(at)} defined by

xM =
⋃

π(x)=1
π,

for each variable x ∈ V .
We intend to show that M is a model of C, whose non-empty proper Venn

regions are just the sets π ’s.
Thus, we show first that the sets π ’s are non-empty and pairwise disjoint.

By construction, it is immediate to see that they are all singletons, so in
particular they are non-empty. To show that they are also pairwise disjoint,
we proceed by contradiction. Thus, let π ′ ∩ π ′′ �= ∅, for some distinct places
π ′, π ′′ ∈ 
. Let ≺+ be any linear ordering of 
 which extends ≺, where ≺
is the relation over 
 defined by putting π1 ≺ π2 if and only if there exists a
literal of the form x = {y} in C such that π1(y) = π2(x ) = 1. Let (π1, π2) be
the ordered pair in 
2 such that

(a) π1 ∩ π2 �= ∅;
(b) π1 ≺+ π2;
(c) the sets π ’s such that π ≺+ π2 are pairwise disjoint.

We must consider the following cases:

– |{π1, π2} ∩ range(at)| = 0;
– |{π1, π2} ∩ range(at)| = 1;
– |{π1, π2} ∩ range(at)| = 2.

The first case is ruled out by the very definition of the sets π ’s, since by
construction all uπ ’s are taken pairwise distinct. The second case is ruled out
by observing that the cardinality of the element of π ′ is greater than or equal
to |
|, for each π ′ /∈ range(at), whereas the cardinality of the element of π ′′
is strictly less than |
|, for each π ′′ ∈ range(at). Thus, we may assume that
π1, π2 ∈ range(at). Let x1 = {y1} and x2 = {y2} be literals in C such that
π1 = at(y1) and π2 = at(y2). By (a), we have

⋃
π ′≺π1

π ′ = ⋃
π ′′≺π2

π ′′ . Hence, by

(b) and (c), we have that

π ≺ π1 if and only if π ≺ π2, for every π ∈ 
.

Therefore, (C5.1) and (C5.2) imply that

π (y1) = π (y2), for every π ∈ 
,
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so that, by (C5.3), we have at(y1) = at(y2), namely π1 = π2 holds, which is a
contradiction.

We prove next thatM is a model of C by showing that it satisfies all literals
in C.

Literals of the form x = y . Let the literal x = y be in C. Then, by (C1),
xM = ⋃

π(x)=1
π = ⋃

π(y)=1
π = yM.

Literals of the form x = y ∪ z and x = y \ z. These cases are similar to the
case of literals of the form x = y , but using properties (C2) and (C3) in place
of (C1).

Literals of the form x �= y . Let the literal x �= y be in C. Then, by (C4), there
exists a place π0 such that π0(x ) �= π0(y). Since all sets π ’s are non-empty
and pairwise disjoint, we have ∅ �= π0 ⊆ (xM \ yM) ∪ (yM \ xM), proving that
xM �= yM.

Literals of the form x = {y}. Let the literal x = {y} be in C, and let π0 = at(y).
Then, by (C5.1), π0 is the unique place π ∈ 
 such that π (x ) = 1, so that
xM = π0 = { ⋃

π≺π0

π}. Thus, in order to prove that xM = {yM} it is enough
to show that

⋃
π≺π0

π = ⋃
π(y)=1

π . Since the sets π ’s are non-empty and pairwise

disjoint, this amount to show that π ≺ π0 if and only if π (y) = 1, for every
π ∈ 
. To this end, let π (y) = 1. Then, by the very definition of the relation ≺
we have that π ≺ π0. Conversely, if π ≺ π0, then there exists a literal of the
form u = {v} in C such that π0(u) = π (v) = 1. Therefore π0 = at(v), so that
(C5.2) yields π (y) = 1.

This concludes the proof of the lemma. �

5.4. Singleton model property and decidability of MLSS.

Lemmas 27 and 29 allow us to establish easily the singleton model prop-
erty for conjunctions of normalized MLSS-literals. Indeed, let C be such a
conjunction over a set of variables V and assume that it is satisfiable by a model
A. Then, from Lemma 27, the syntactic description B of A is a place frame-
work which is adequate for C. Hence, by Lemma 29, any canonical assignment
M relative to B satisfies C and since, by construction, all proper regions of the
Venn diagram {xM : x ∈ V } have cardinality at most 1, we are done. Thus, we
have:
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Theorem 30. (Singleton model property). Let C be a satisfiable conjunction of
normalizedMLSS-literals over a set V = {x1, . . . , xn} of variables. Then there
exists a model M of C such that∣∣∣∣∣⋂

i∈α

xM
i \

⋃
j /∈α

xM
j

∣∣∣∣∣ ≤ 1, for each α ∈ P+({1, . . . , n}).

We wish to stress the fact that the result of Theorem 30 is specific to
conjunctions of normalized MLSS-literals of the form (4). Other MLSS-
formulae do not enjoy necessarily the singleton model property. Consider for
instance the following satisfiable conjunction ofMLS-literals:

C = {x1 ∈ y, x2 ∈ y, x1 �= x2, x1 /∈ x2, x2 /∈ x1}.

Then, it is easy to see that the Venn region yM \ (xM
1 ∪ xM

2 ) cannot be a
singleton set, for any model M of C, since it must contain at least the two
distinct elements xM

1 and xM
2 . In fact, it could be shown that despite the fact

that MLS is a sublanguage of MLSS, it does not enjoy the singleton model
property, regardless of the normalization adopted.

Lemmas 27 and 29 can also be used to show the decidability of MLSS.
Indeed, let C be a conjunction of normalizedMLSS-literals. If C is satisfiable,
then it has a model A, so that, by Lemma 27, the syntactic description of A
is a place framework which is adequate for C. Conversely, if there exists a
place framework B which is adequate for C, then, by Lemma 29, any canonical
assignment relative to B satisfies C. Thus, we have proven

Lemma 31. A conjunction of normalized MLSS-literals is satisfiable if and
only if there exists a place framework which is adequate for it.

Lemmas 31 and 10, and the fact that the collection of all possible place
frameworks (V ,W, 
, at) is finite, for any finite sets of variables V and W ,
yield immediately the decidability ofMLSS.

Theorem 32. (Decidability of MLSS). The satisfiability problem forMLSS is
decidable.
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5.5. An application of the singleton model property.

Our final goal is to prove Lemma 19, which states that if C is a con-
junction of normalized MLSSmf-literals over the collection of variables V =
{x1, . . . , xn} and C∗ is the result of applying to C the translation algorithm in
Figure 1, then there exists a model B of C∗ such that |vB

α | ≤ 1, for each
α ∈ P+({1, . . . , n}), provided that C∗ is satisfiable. We recall that, loosely
speaking, the variables vα , for α ∈ P+({1, . . . , n}), are constrained so as to
represent the proper Venn regions of x1, . . . , xn .

It could therefore be expected that Lemma19 is a direct consequence of the
singleton model property for conjunctions of normalizedMLSS-literals proven
in Theorem 30. Unfortunately, this is not the case, since in general

– C∗ can contain non-normalized conjuncts;
– the sets vB

α ’s are not proper regions of the Venn diagram {xB : x occurs in
C∗}, but of the smaller Venn diagram {xB : x ∈ V }.
A major step towards the proof of Lemma 19 is the following technical

result.

Lemma 33. Let C be a conjunction of normalizedMLSS-literals over a col-
lection V of variables, and let U be a subset of V . Assume that there exists a
model B of C such that:

(a) uB ∩ vB = ∅, for any two distinct variables u, v ∈U;
(b) if a literal of the form x �= y or of the form x = {y} is in C, then there are

subsets L, M of U such that xB = ⋃
u∈L

uB and yB = ⋃
u∈M

uB .

Then there exists a model M of C such that |uM| ≤ 1, for each u ∈U.
Proof. Let B be a model for C satisfying properties (a) and (b) of the lemma.
Also, let B = (V ,W, 
, at) be the syntactic description of the assignment B
relative to V and W , where W is the collection of singleton variables occurring
in C (cf. Definition 25). By Lemma 27, the place framework B is adequate for
C.

Our aim is to exploit properties (a) and (b) in order to define another place
framework B′ = (V ,W, 
′, at ′) which is adequate for C and such that

(�) for each u ∈U , there exists at most one place π ∈ 
′ such that π (u) = 1.

Indeed, by Lemma 29 and (�), it would easily follow that any canonical
assignmentM relative to B′ and C would be a model of C such that |uM| ≤ 1,
for each u ∈U .

We begin by proving the following property.
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Fact 1. There are no two distinct variables u, v ∈U such that π (u) = π (v) =
1, for any place π ∈ 
.

Proof. Let us assume by contradiction that π (u) = π (v) = 1, for some distinct
variables u, v ∈ U and place π ∈ 
, and let σ be the region of the Venn
diagram {xB : x ∈ V } corresponding to the place π . Then we would have
∅ �= σ ⊆ uB ∩ vB , contradicting the hypothesis uB ∩ vB = ∅. �

Next we define a relation ∼ over 
 by putting

π1 ∼ π2 if and only if π1 = π2 or π1(u) = π2(u) = 1, for some u ∈U.

We claim that ∼ is an equivalence relation. Clearly ∼ is reflexive and symmet-
ric. For the transitivity, let us assume that π1 ∼ π2 and π2 ∼ π3. If either
π1 = π2 or π2 = π3, then we have plainly π1 ∼ π3; otherwise there must exist
variables u, v ∈U such that π1(u) = π2(u) = 1 and π2(v) = π3(v) = 1. Since
π2(u) = π2(v) = 1, Fact 1 implies that u and v must coincide. Therefore we
have π1(u) = π3(u) = 1, proving that π1 ∼ π3.

Notice that in general π1 ∼ π2 does not imply that π1(x ) = π2(x ), for
every variable x ∈ V . Nevertheless, if π1 ∼ π2 then π1(u) = π2(u) holds, for
every variable u ∈U . In fact, we can prove the following stronger property.
Fact 2. If π1 ∼ π2 , then π1 and π2 agree on all variables x ∈ V such that
xB = ⋃

u∈L
uB , for some subset L of U .

Proof. Let π1 ∼ π2 and let x ∈ V be such that xB = ⋃
u∈L

uB , for some L ⊆ U .

The proposition is trivial if π1 = π2. Thus, let us assume that π1 �= π2, so that
there must exist a variable u0 ∈U such that π1(u0) = π2(u0) = 1. Let σ be the
non-empty region of the Venn diagram {yB : y ∈ V } corresponding to π1. We
have σ ⊆ uB

0 and therefore the pairwise disjointness of the sets u
B yields that

σ is a subset of xB if and only if u0 ∈ L , i.e., π1(x ) = 1 if and only if u0 ∈ L .
Likewise, we have π2(x ) = 1 if and only if u0 ∈ L . Hence, π1 and π2 agree on
x . �

For each π ∈ 
, we denote by [π ] ∼ the equivalence class of ∼ containing
π . Also, we denote by 
/ ∼ the set of all equivalence classes of ∼.

In order to define a new place framework adequate for C and satisfying (�),
we fix a choice map ·r from 
/ ∼ into 
 such that

p
r ∈ p, for every p ∈ 
/ ∼,

and we define 
′ ⊆ 
 and at ′ : W → 
′ as follows:

′ = {[π ]r∼ : π ∈ 
},

at ′(y) = [at(y)]r∼, for each y ∈W.
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Next we show that the place frameworkB′ = (V ,W, 
′, at ′) is adequate for C,
by verifying that it satisfies conditions (C1)–(C6) of Definition 25. We will use
the fact that, as observed at the beginning of the proof, the syntactic description
B = (V ,W, 
, at) of B (from whichB′ has been derived) is adequate for C.

Conditions (C1)–(C3) are plainly satisfied by B′, since they are satisfied
by B and 
′ ⊆ 
.

Concerning (C4), let the literal x �= y be in C. Then there exists π0 ∈ 


such that π0(x ) �= π0(y). By (b), there exist L, M ⊆ U such that xB = ⋃
u∈L

uB

and yB = ⋃
u∈M

uB . Since [π0]r∼ ∼ π0, Fact 2 implies that [π0]r∼(x ) = π0(x ) and

[π0]r∼(y) = π0(y), so that [π0]r∼(x ) �= [π0]r∼(y).
In order to verify condition (C5), let us assume that the literal x = {y}

occurs in C. Then, by condition (b) of the lemma, we have xB = ⋃
u∈L

uB and

yB = ⋃
u∈M

uB, for some L, M ⊆ U . We first consider subcondition (C5.1). By

the adequacy of B, at(y) is the unique place π ∈ 
 such that π (x ) = 1. Let
π ′ ∈ 
′ be such that π ′(x ) = 1. Since 
′ ⊆ 
, we have π ′ = at(y), so that
π ′ = [π ′]r∼ = [at(y)]r∼ = at ′(y). Conversely, since at ′(y) ∼ at(y), by Fact 2
we have (at ′(y))(x ) = (at(y))(x ) = 1.

Concerning subcondition (C5.2), let at ′(z) = at ′(y), for some singleton
variable z ∈ W . Then [at(z)]r∼ = [at(y)]r∼, so that at(z) ∼ at(y). If
at(z) = at(y), then, by the adequacy of B, we have [π ]r∼(z) = [π ]r∼(y), for
every π ∈ 
. On the other hand, if (at(z))(u0) = (at(y))(u0) = 1, for some
u0 ∈U , then zB ∈ uB

0 and y
B ∈ uB

0 . Moreover, since {yB} = xB = ⋃
u∈L

uB , by

condition (a) of the lemma we have xB = uB
0 , so that y

B = zB . Therefore, we
have again [π ]r∼ = [π ]r∼(y), for every π ∈ 
.

For subcondition (C5.3), let x1 = {y1} be a literal occurring in C such
that [π ]r∼(y1) = [π ]r∼(y), for every π ∈ 
. By condition (b) of the lemma,
yB
1 = ⋃

u∈M1

uB , for some M1 ⊆ U . Then, since π ∼ [π ]r∼ , Fact 2 implies that

π (y1) = [π ]r∼(y1) = [π ]r∼(y) = π (y), for every π ∈ 
. Therefore yB
1 = yB, so

that at(y1) = at(y) and a fortiori we have at ′(y1) = [at(y1)]r∼ = [at(y)]r∼ =
at ′(y).

Finally, concerning condition (C6), let ≺′ be the relation on 
′ defined by
putting π ′

1 ≺′ π ′
2 if and only if there exists a literal x = {y} in C such that

π ′
1(y) ≺′ π ′

2(x ), for every π ′
1, π ′

2 ∈ 
′. Since ≺′ is the restriction on 
′ of the
analogous relation ≺ relative to the place framework B, from the adequacy of
B it plainly follows that ≺′ is acyclic too.

Summing up, we have proven that the place framework B′ =



A DECISION PROCEDURE FOR A SUBLANGUAGE OF SET. . . 159

(V ,W, 
′, at ′) is adequate for C.
LetM be any canonical assignment relative to the place frameworkB′ and

let π �→ π be its underlying place realization, so that

xM =
⋃

π (x)=1
π∈
′

π, for each x ∈ V .

By Lemma 29, our conjunction C is satisfied by M.
In order to complete the proof of the lemma, it only remains to show that

|uM| ≤ 1, for every u ∈ U . Thus, let u ∈ U . Since all sets π ’s are pairwise
disjoint singletons, it is enough to show that uM ⊆ π ′, for some π ′ ∈ 
′, i.e.
there is at most one place π ′ ∈ 
′ such that π ′(u) = 1. Indeed, let us assume that
[π1]r∼(u) = [π2]r∼(u) = 1, for some π1, π2 ∈ 
. Then, by the very definition of
∼, we have π1 ∼ [π1]r∼ ∼ [π2]r∼ ∼ π2, so that [π1]∼ = [π2]∼, and therefore
[π1]r∼ = [π2]r∼ .

Hence the lemma is proven. �
We finally have everything we need to prove Lemma 19. For convenience,

we restate it.

Lemma 2. Let C be a conjunction of normalized MLSSmf-literals over the
collection of variables V = {x1, . . . , xn}, and let C∗ be the result of applying
the translation algorithm in Figure 1 to C. Then, if C∗ is satisfiable, there exists
a model B of C such that |vB

α | ≤ 1, for each α ∈ P+({1, . . . , n}).
Proof. Let us assume that C∗ is satisfiable, and let ϕ = ψ1 ∨ . . . ∨ ψk be a
disjunctive normal form of C∗ . By suitably adding new variables, it is possible
to construct a disjunction ϕ′ = ψ ′

1 ∨ . . . ∨ ψ ′
k equisatisfiable with ϕ and such

that ψ ′
i is a conjunction of normalized MLSS-literals, for each i = 1, . . . , k.

This can be achieved by first transforming C∗ into disjunctive normal form and
then by applying to each of its disjuncts rules of the following types, until each
of them contains only normalizedMLSS-literals:

– if i0, i1 ∈ α ⊆ P({1, . . . , n}), then replace a literal of the form vα =⋃
i∈α

xi \ ⋂
j /∈α

xj by the set of literals

{vα = z1 \ z2, z1 =
⋃
i∈α

xi, z2 =
⋂
j /∈α

xj },

where z1 and z2 are newly introduced variables;
– replace each literal of the form x = y ∩ z by the set of literals

{x = y \ w, w = y \ z},
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where w is a newly introduced variable;
– replace each literal of the form x ⊆ y by the literal y = y ∪ x ;
– etc.

In addition, by a careful analysis of the translation algorithm in Figure 1, it
is easy to see that

– all variables of the form vα , where α ∈ P+({1, . . . , n}), must be in ψ ′
i ,

– ifB is a model of ψ ′
i and U is the set of variables {vα : α ∈ P({1, . . . , n})},

then ψ ′
i satisfies the conditions (a) and (b) of Lemma 33,

for i = 1, . . . , k.
Since we are assuming that C∗ is satisfiable, at least one of the ψ ′

j ’s must
be satisfiable, for some j ∈ {1, . . . , k}. Therefore, by applying Lemma 33 to ψ ′

j
(with respect to the set of variables U = {vα : α ∈ P+({1, . . . , n})}), it follows
that there exists a modelM of ψ ′

j (and hence of C
∗) such that |vα| ≤ 1, for each

α ∈ P+({1, . . . , n}), thus proving the lemma. �

6. Conclusions.

We presented a decision procedure for the set-theoretic sublanguage of set
theoryMLSSmf extendingMLSS with constructs for expressing monotonicity,
additivity, and multiplicativity properties of set-to-set functions. The decision
procedure consists of a reduction algorithm which maps each sentence of
MLSSmf into an equisatisfiable sentence of MLSS. Then the decidability of
MLSSmf follows from the decidability ofMLSS.

Our work can have applications in an interactive proof environment in
which the user helps the system by telling which expressions are monotonic,
while our decision procedure performs the tedious combinatorical steps. For
instance, when proving the validity of the formula

(7) { f (x ) : x ∈ a \ v} ⊆ { f (x ) : x ∈ (a ∪ b) \ v},

the user can instruct the system with the insight that the function

F(u) = { f (x ) : x ∈ u \ v}

is increasing in u. Then, the system would conclude that to prove that is valid,
it suffices to prove that

(8) inc(F) → F(a) ⊆ F(a ∪ b)
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is valid. Since (8) is an MLSSmf-formula, its validity can be automatically
proven by our decision procedure.

Future directions of research may involve extensions of our decision proce-
dure to handle other constructs related to set-to-set functions, such as injectivity
and surjectivity of functions, as well as a fixed-point operator onmonotone func-
tions. Moreover, we are currently working on singling out convenient syntactic
restrictions which allow a speed-up of the reduction process.
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