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ON THE NUMBER OF FINITE TOPOLOGICAL SPACES

LUCIO R. BERRONE

In this paper we deal with the problem of enumerating the finite
topological spaces, studying the enumeration of a restrictive class of them.
By employing simple techniques, we obtain a recursive lower bound for the
number of topological spaces on a set of 7 elements. Besides we prove some
collaterals results, among which we can bring a new proof (Cor. 1.5) of the
fact that p(n) — the number of partitions of the integer n — is the number of
non-isomorphic Boolean algebras on a set of n elements.

Introduction.

Throughout this paper, we work with topological spaces on a set of n
elements (n € N). In this sense, we denote < X,,7 > a topological space,
where X, is a set such that |X,| = n and 7 is a topology on X,,. The finite
topological spaces (FET.S.) < X,,, 1y >, < X,, 7, > are homeomorphic when
there exist a continuous and open preserving 1-1 map from < X,, t; > onto
< Xn, T2 >. We denote this fact 7; ~ 7, or, if s design the above map, 7§ = 1.

We denote .# (n) the set of ET.S. on X,,, more generally we write with [T
the set of ET.S. on X, which satisfies a topological property 7. For example,
% (n) denotes the class of connected F.T.S. on X,,.

If < X,7 >, <Y,0 > are two topological spaces with X NY = @, we
call sum of them (cf. [1], [5]) to the space < Z, p >, where Z = X U Y and
p={UUV :Uert,V eo}. Wealso say that p is the sum topology of v and
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o,an we write p = T D 0. For instance, if 7;(m) is the discrete topology on
X,,(m eN), we have 15,(m) = EB ().

With t;(m) we indicate the trivial topology on X,,(m € N), and if it is
unnecessary to specify the number m of points, we write simply t; (t; for the
discrete topology).

A property 7 of a topologlcal space < X, T > is said hereditary (weakly
hereditary) if all its subspaces (closed subspaces) have the property 7 too (cf.
[11, [5]). The property 7 is said additive if the sum of two spaces which satisfy
7 also satisfies 7.

If 7 is a topology on X,, we denote ¢ the topology whose open sets are
the closed sets of < X, T >.

With z(n) we symbolize the number of ET.S. on X,; i.e., t(n) = |£(n)|.
Furthermore, if 7 is a topological property, we put 7z (n) = | [](n)| (for instance,
c(n) =€ n))).

The problem of enumerating . (n) and the related problem of enumerating
all the T (n) different topologies on X, are rather complex (cf. [2], [4]). We only
known the exact values of t(n) forn <5, and T'(n) for n < 7 (cf. [2], [6], [7],
[91). For some successful attempts of counting particular classes of topologies,
the reader is referred to [6], [8] and [11]. In reference [10], the problem of the
cardinality of a topology = on X, is considered. In this paper we reduce the
problem of computing |.#(n)| to the enumeration of a certain subset Hy(n)
of € (n). By ignoring in the calculations the topologies in the class Hy(n), a
recursive lower bound for # () is derived. In passing, we will find a new way to
count the Boolean algebras on a set of »n elements.

1. Topologies which satisfy a weakly hereditary and additive property.

The central result of this section gives the number 7 (n) of topologies which
satisfy a weakly hereditary additive property IT as a function of the number 7, (1)
of connected topologies which satisfy IT. For this purpose, it will be useful to
consider the set &, of partitions of the integer n, i.e.,

Po=A{lniny...,mliny =ny > >my, meN,
(I<k=<n), ni+n+---+n=n}h

For the sake of convenience, an alternative way to denote a partition

[ni,ny..., 0] € P,
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is to write it as an n-tuple p = (p1, p2..., p»), Where p; indicates the number

of times that the part k appears in p.
For example, for the partition p = [4, 2,2, 1, 1, 1] of 11 we have

pilpl =3, palpl =2, pslpl =0, mlpl =1,

and
pelpl =0 forany 5 <k <11,

so that we can also write p in the form
r=G6,2010,0,0,0,0,0,0).

We base our analysis on the following:

Lemma 1.1. Let 7y, 7, ..., %, 7{, T3, ..., T, be connected topologies, and
k J

T =071 17 = @&t Thent ~ v’ ifand only if k = j and, except a
i=1 i=1

permutation of indexes, v; =~ t{ holds foralli = 1,2, ... k.

Proof.  Since 11, 73, ..., T are connected each one of them is the topology

induced for T on the respective component X, . Thus, k is the number of

components of 7.
Analogously, j is the number of components of t’ and, because this number

is a topological invariant, we obtain k = j. Moreover, foreachi = 1,2...,k
we have
T=71|x,~ 4 |x, = t; forany 1</ <k.
The converse is immediate. O

Let 7 be a weakly hereditary and additive property. If I1. denote the class
of connected topologies which satisfy 7, and p = [ny, n,,...,n;]is a partition
of n € N then, we obtain the following result.

Lemma 1.2. The number wt|ny, ny, ..., ng] of topologies that verify m and have
components X, Xp,, ..., X,, is
(1) + pilpl =1\ [ 7.(2) + p2lp] — 1
wlny, ny, ..., 0] =
‘ (1) —1 m.(2) -1
(e + palpl - 1
w.(n) — 1 ’

where T, (k) indicates the number of connected topologies on Xy which satisfy
IT.
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Proof. Define the sets
[ny, ny, ..., 0] = {t €Il(n) : 7 has components X, , X,,, ..., X, },
and
H=A{(t,n,...,w) 5 €Cmn)NTn), 1 <i<k).
In view of the hypothesis we can show that the maps
|| : ny,ny..., 0]~ H

T (T % Ty, T lx,,)s

ny

and
©: H — Il[ny, ny, ..., ¢nl

k
T D1,
i=1

are well-defined. In fact, since 7 is a weakly hereditary property and the

components are closed subspaces, 7 | x, satisfies v foralli = 1,2,...,k;
i.e., ”||” is well-defined. Furthermore, 7 is an additive property, which means

k
thatif (1, 75,..., %) € H then @ 1; € [1[ny, no, ... , h]. This proves the well-
i=1

definition of @.
| Since it verifies

Do H = ll‘I[nl,nz,..‘,nk] ’ ” o = IH’
we conclude
n[n‘ls Ry, ..., nk] - ln[nl’ na, oo, nk], = 'HL

and from Lemma 1.1 we obtain

(g = T D T alpl=1) (7@ +p(p) - 1)
\ mM-1 7e(2) — 1

___<m<n>+pn[p]—1>. .

m.(n) — 1

Theorem 1.3. Under the same assumptions of Lemma 1.2, the number (n) of
topologies which satisfy T1 can be expressed in the form

3 7e(1) + p1lpl = 1\ [ 7. (2) + p2[p] — 1
m(n) = Z ( (1) — 1 )( me(2) — 1 )

PEP,
() + palp] - 1
e (n) — 1 '
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Proof. Obviously, we have w(n) = ) n.[p]. Lemma 1.2 applies. O
peEP,

Corollary 1.4. For eachneN,
_ c(+pilpl =1\ [c(@) + pa[p] — 1
t(”)""pé,‘( c(l)y—1 )( c@2) -1 )
e+ palp] -1
c(n)y—1

holds.

Examples of application (separation properties).

It is well known that the separation properties Ty, % (regularity) and
¥ (normality) are weakly hereditary properties of the topological spaces.
Furthermore, Ty and Z are hereditary, (cf. [5]). One can easily verify that this
properties are also additive, and therefore Theorem 1.3 holds.

Particularly interesting is the application of Theorem 1.3 to Z(n), because
it enables us to directly enumerate this class. In fact, if T € Z(n) N € (n) it must
be T = 1;(n); thus, foreachn e N, r.(n) = 1 and

1 -1 1+ —1
rm) =) ( +_/101£p1] )( f{pl] )
: pe?,
1+ n —1

PP,

where p(n) is the partition function of number theory.
In [3] it is shown that Z(n) is isomorphic with the class of (non- 1somorph1c
to each other) Boolean algebras on X,,, so that we find the following known result:

Corollary 1.5. There exist p(n) non-isomorphic to each other Boolean algebras
of n elements.
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2. Connected topologies.

As a consequence of Corollary 1.4 we deduce that once known, for
1 <k < n, c(k) — the number of connected topologies on X — it is possible to
compute the number ¢ (n) of topologies on X,,. By means of the following result,
we advance in this way to determinate £ (n).

Lemma 2.1. Foreachn > 1is
cn) =1+t +---+1t(n—1)+un),

where
un) =[{rebm): U{Ver:V#X,) =X}

Proof. Letn > 1 and, foreacht € ¥(n), X, = U{Ver:V #* X,} be; we
define in € (n) the following relation: '

T, 2 €F(n), 7y ~ 1, ifandonlyif |X,|= | X, 1.

It is easy to prove that ”~” is an equivalence relation which splits € (n) in
(n+1) classes H(k) ={t€¥(n) : |X;| =k} (k=0,1,...,n). Next we will
enumerate these classes. Obviously we have

H@O) ={te¥€®) :|X;| =0}={nm)},
so that |H (0)| = 1. We affirm that, foreach 1 <k <n — 1, the maps

oy H(k) — Z (k)
T oy(t) =1~ {X,},

are bijective.

Infact,let1 <k <n—1befixedand r € 7 (k). By defining 7' = t U{X,}
~we have that /€ H (k) and o, (1') = 7; therefore oy is surjective.

To prove the injectivity we chose 1, 7, € H (k) such that (1)) & a; (12);
i.e., there exist a bijection s : X;, — X, such that (g (11))* = ax(1;). There
obviously exist a bijective map § : X,, — X, such that § | x,, = §; we will prove

that tf = 13. Infact, if V € 1; there are two possibilities:
VX, o V=X,

In the first case §(V) = (§ IXrl Y(V) = s(V) € 1 (because (o (71))" = ax(12)),
whileif V = X, wehave §(V) = §(X,) = X, € 1. Thus, rf C 1;. Analogously
we can prove that t{ D 1,, and therefore 1; ~ 1.
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To complete the proof it is enough to see that
up) =Mn)={re€m): X; =X,}|. O

Note that H (n) is the class of connected topological spaces on X, such that
there exist a nontrivial open covering of X,. Until now we can not compute the
last term u(n) = |H (n)| in the expression of c¢(n) in Lemma 2.1. However, we
can simplify this problem by splitting H (n) by means of the ”dual” equivalence

) d )
relation "~ of ”~’; that 1s
d ) . -
1, € H(n), 1y~71, ifandonlyif |Y|=|Y,,]|,

where, foreach T € H(n), wedefine Y, =N{V et : V £ @}
In this manner, if we denote with H,(n) the class

{reHm):|Y:|=k} (k=0,1,...,n),

we get the following result.

Lemma 2.2. It verifies u(1) = u(2) = 0 and, forn > 2,
n—-2
u(n) = w(n);
k=0

where we have written ui(n) = |Hy(n)|.

Proof. By examining the topologies of .#(1) and .#(2) we can prove that
u(l) = u(2) = 0. If n > 2 we only must complete the above discussion by
showing that u,_(n) = u,(n) = 0 or, equivalently, that H, _;(n) = H,(n) = @.
To this end, we realize thatif T € H,(n) itis Y; = X,, and therefore itis V = X,
foreach openset Ver,V # @. Then, X, =U{Ver:V # X,} = @ and this
is a contradiction because X, = X, # (. Now, if we suppose that there exists
t € H,_1(n), Y, would be the unique atomic element of the lattice < 7, C>,
and |Y;| = n — 1. Since 7 € ¥(n) it must necessarily be T = {4, Y;, X,.}; then
X.: =Y, # X,, which is a contradiction again. O

Next lemma shows that the computations of u;(n) (k > 2) can be reduced
to computing u;(m) with an appropriate m.

Lemma 2.3. Ifn >3 and k > 2, then up(n) = u;(n — k + 1).
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Proof. Assume that n > 3, k > 2. We define the map

B:Hy(n)— Hm-—k+1)
T B(r)={V-Y :Ver),

where Y] = Y, — {x} with x € ¥, fixed. A similar argument to the one used in
the proof of Lemma 2.1 shows that 8 is bijective. g

Remark 2.4. From Lemma 2.3 we derive that up(n) =ui(1) =0, u,_1(n) =
u1(2) = 0 as we have directly proved in Lemma 2.2. We can also obtain that
Up—2(n) = u1(3) =1 and u,_3(n) = u1(4) = 4 (see the diagrams of topologies
of Z(3) and #(4) in [3]).

At this point, the problem of calculating #(n) has been reduced to obtain
up(k), uy(k) for 1 < k < n. As regards uy(k) we have the following result.

Lemma 2.5. u,(1) = u;(2) = 0 and, forn > 3,
ui(n) =t(m—1) —[14+t(1) +---+t(n —2)],

holds.

Proof. In view of the remark above is u;(1) = u;(2) = 0. For n > 3 we will
consider two cases depending on whether the lattice < T — {#J}, C> has one or
more than one atomic elements.

1°) < 7 — {@}; > has a unique atomic element which we denote A;.
This case can only occur when n > 4 (see the diagram below). According
to the equivalence relation
=1 ifandonlyif [A,|=[A,],
we split the class

A={teH|(n):<t—{0},C> admits a unique atom}

in the classes Ay = {r €A : |A;| =k}, 2 <k < n —2). Next we putnA;c in
bijective correspondence with H,_;(n — 1) through the map

ViiAy = Hei(n—1)
Ty ={V-Y,:Ver— {7}
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Thus, the number of topologies in H;(n) such that < 7 — {@J}, C> has a
unique atom is

n—2 n—-2
2.1) S 1A =D [Hei(n = 1)| =

=un—1)+un -1+ +u, 3(n —1).

Xn
{x1, %2, ...y Xpn_2, Xp_1} {x1, %2, ..., Xpe2, X}
{XI, x27 ey xn—2}
{x1}
)

2°) < t — {@}, C€> has more than one atomic element.

Denote B = {t € Hi(n) :< v — {#}, C> admits more than one atomic
element }; if T € B, y1(t) is not generally connected but, if () is connected
then y;(t) € Hy(n — 1). In the latter case we can define

vm:B—> Hmn—-—1DU[I(n—-1)—-FHh —1)]
T »E)={V-Y,: Vet —{0}}.

We can easily prove that y; is a bijective map; furthermore
v, i Hyn—DU[I(r—1)—€(n—1)]— B

T > yz_l(r) ={lU {{x,} UV :Ver),

where {x,} = X, — X,,_1.
Since Ho(n — D N[F(n—1) —F(n — 1)] = @ we obtain

(2.2) |B| = Ho(n = D|+|F(n—1) ~Fn—1)| =

=ugn - +tn—-1)—cr —1).
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Finally from (2.1), (2.2) and Lemmas 2.1, 2.3 we obtain, for n > 3,

ui(m) =ltn -1 —ctn—1) +uo(n — DI+ [wy(n — 1) +--- +
+up3(n —1)]
=tn—1)—cn—-1)4+umrn—-1)
=tlh—D—-[1+t(M+---+tr -2 +un— D] +u@n—1)
=t—1D—-[1+tD)+ - +1t(n—2)]. O
To count the class Hy(rn) for each n € N, i.e., to determinate ug(n), is still
an open problem. We emphasize that
Hym) ={te€m):U{Ver: V£X,}=X,,N{Ver:V 0} =0}

in words, Hy(n) is the class of connected topological spaces on X, such that
there exist a non-trivial open covering {Vi, Va, ..., V,,} of X,, with the property
NVi:i=1,2,...,m}=40.

Next lemma, whose proof is immediate, establishes that H, (n) is a closed-
under-complementation class of connected topologies.

Lemma 2.6. © € Hy(n) if and only if t° € Hy(n).

3. A lower bound for ¢(n).

The tools employed above fail when we attempt to apply them to the class
Hy(n). Table 1 shows the known values of uy(n). It would not be too much
tedious to calculate u((6) by hand, which would permit us to know exactly 7(6).
Instead of this, we will derive a recursive lower bound for 7 (n).

Because the just proved lemmas, we have

~ cM+plpl=1) [c@+plpl -1}
t(n) = p;n ( c(1) — 1 >< c2) -1 )
e+ palpl =1
cn) — 1 ’

c)=1+1(1)+ - +tn—1)+un),

un) =uo(n) +ug(m) + - +u,_2(n), (n>2),

ug(n) =u(n—k+1), (n >3, k>2),

u(n) =t -1 - A +t(M)+---+t(n—~2), (n>3),
ur(l) =u1(2) = uo(1) = uo(2) = uo(3) = 0.

and
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By assuming uy = 0 in the previous equations we can recursively

generate sequences it1(n), u(n), c(n), t(n), (n € N), which respectively bounds
from below u;(n), u(n), c(n), t(n). After some simplifications in the previous

equations, we obtain

_o c() + pilel =1\ [ 2 + pa[p] — 1
r(n)—Z( c1) — 1 )( c@2) —1 >

peP,
[ cm) + pulp] -1
é(n) — 1 ’
cm) =14+t 4+ +tn—1D+um),
um) =u;(n) +ia(n—1 + -+ a3,
din)=tn—1) - A +t(1)+---+i(n—2)),
ur(l) =u;2) =0,

and as we said, for each n € N, it verifies
uy(n) <ui(n), w(n) <u(n), c(n) <cn), t(n) <t(n).

Table 2 shows the values of c(n) and #(n) for n < 26. Obviously, the
approximation to the real values c(n), ¢ (n) become worse as »n increases.

Acknowledgements.

The autor is greatly indebted to Mabel Tidball and Silvia Reyes for their
translation of this paper, and specially to Antonio Turato for the accomplishment
of Table 2. He wishes also to express his gratitude to Roberto Gonzdles for his

critical lecture of the paper.

=S

<
e
—

=
—

(&, TN S UV I NG RN
o

Table 1



98 LUCIO R. BERRONE

n cn) t{n) n c¢(n) t(n)

1 1 1 14 6094264 9919325

2 2 3 15, 22142446 34762196

3 3 9 - 16 77957045 126685043

4 19 31 17 282855142 443457430

5 67 104 18 994612970 1620190932
6 230 378 19 3616380372 5669289741

7 837 1307 20 12716154460 20666163712
8 2924 4763 21 46140386749 72436845175
9 10616 16661 22 162439818252 264275295237
10 37341 60823 23 589979304704 924944167448

11 135729 212698 24 2074581240341 3375757685294
12 477044 776600 25 7535866044222  11814289003965
13 1733465 2717089 26 26498455800151 43112847789841

Table 2
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