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Abstract—We present an immune algorithm (IA) inspired by the
clonal selection principle, which has been designed for the protein
structure prediction problem (PSP). The proposed IA employs two
special mutation operators, hypermutation and hypermacromuta-
tion to allow effective searching, and an aging mechanism which is
a new immune inspired operator that is devised to enforce diver-
sity in the population during evolution.

When cast as an optimization problem, the PSP can be seen as
discovering a protein conformation with minimal energy. The pro-
posed IA was tested on well-known PSP lattice models, the HP
model in two-dimensional and three-dimensional square lattices’,
and the functional model protein, which is a more realistic biolog-
ical model.

Our experimental results demonstrate that the proposed IA is
very competitive with the existing state-of-art algorithms for the
PSP on lattice models.

Index Terms—Aging operator, clonal selection algorithms, func-
tional model proteins, hypermacromutation operator, hypermuta-
tion operator, immune algorithms (IAs), protein structure predic-
tion problem, two-dimensional HP model, three-dimensional HP
model.

I. INTRODUCTION

ARTIFICIAL Immune Systems (AISs) represent a field of
biologically inspired computing that attempts to exploit

theories, principles, and concepts of modern immunology to
design immune system-based applications in science and engi-
neering [1]–[3]. One role of the immune system (IS) is to protect
the host organism against attacks from antigens (i.e., viruses and
bacterias) and eliminate those cells that have been “infected.”
The IS provides an excellent example of a bottom up intelli-
gent strategy [4], through which adaptation operates at the local
level of cells and molecules, and useful behavior emerges at the
global level: this is exemplified by the immune humoral and cel-
lular responses.

AISs are proving to be a very general and applicable form
of bio-inspired computing. A great deal of work has gone into
developing algorithms that extrapolate basic immune processes
such as clonal selection, negative and positive selection, danger
theory, and immune networks [2]. To date, AIS have been
applied to areas such as machine learning [5], [6], optimization
[7]–[9], bioinformatics [9]–[11], robotic systems [12]–[14],
decision support systems [15], network intrusion detection [16],
[17], combinatorial optimization [18], [19], scheduling [20],
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anomaly detection [21], fault diagnosis [22], [23], computer
security [24], data analysis [10], [25], [26], virus detection [27],
and many other areas [1]–[3], [28]. The field of AIS appears
not only to be a powerful computing paradigm, but potentially
a prominent apparatus for improving the understanding of
biological data and systems [9], [29].

When one designs any computational solution, the nature of
the problem space should always be taken into account. This is
especially true in an emerging area such as AIS, and we must
avoid the one size fits all attitude that the authors of [30] warn us
against. With this in mind, and in the context of the framework
for AIS presented in [2], we introduce an immune algorithm
(IA) based on the clonal selection principle [9]. We employ
a new aging operator and specific mutation operators tailored
for the protein structure prediction problem (PSP) in the HP
model for two-dimensional (2-D) and three-dimensional (3-D)
lattices, and in the functional model proteins. Given the primary
sequence of a protein, the protein structure prediction problem
requires the identification of its native (tertiary) conformation
with minimum energy; while the protein folding problem re-
quires information about the possible pathways to folding and
unfolding. Since a protein’s structure determines its biological
function, it is very important to be able to predict the final spa-
tial conformation of the proteins. This paper is concerned only
with the static aspect, that is, how to predict the folded tertiary
structure of a protein, given its sequence of amino acids through
the use of lattice models.

This paper is structured as follows: Section II describes the
protein structure prediction problem in Dill’s model and in the
functional model protein; Section III presents the IA, inspired
by the clonal selection theory, for the protein structure predic-
tion problem; Section IV details the characteristic dynamics of
the implemented IA using an aging process; Section V describes
the technique used to partition the landscape of the PSP, and the
application of the aging process and memory B cells to improve
the overall performance of the algorithm; Section VI reports the
results for the 2-D HP model; Section VI-A describes previous
related works, and draws comparisons between these and the
proposed IA for the 2-D HP model; Section VII presents re-
sults for the 3-D HP model; Section VIII presents the results
obtained for the functional model protein; Section IX provides
a brief comparison between the IA and other biologically in-
spired algorithms; finally, concluding remarks are presented in
Section X.

II. LATTICE MODELS FOR THE PSP

There are essentially five approaches to modeling the PSP:
molecular dynamics [31], Monte Carlo methods [32], statistical
mechanical models [33], [34], probabilistic road map-based
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[35], [36], and lattice models [37], [38]. The first two techniques
have been used to analyze the number and the characteristics of
folding pathways; the second two techniques are useful tools
for studying the folding landscape, while the final technique,
whilst having a fundamental theoretical relevance, cannot be
applied directly to real proteins. In this paper, we focus on
lattice models, in particular, we use the well-known Dill’s
lattice model, the HP model [39], and the “shifted” HP model
(also called functional model proteins) [40].

The HP model takes into account the hydrophobic interaction
as the main driving force in protein folding. The HP model in-
volves attraction—interaction only. The functional model pro-
teins, unlike Dill’s model, has a unique native fold with an en-
ergy gap between the native and the first excited state; the native
state is not maximally compact, and thus presents cavities or po-
tential binding sites, a key biological property required in order
to investigate ligand binding. To include these properties, the
functional model has both attractive and repulsive interactions.

A. The Dill’s Model

Proteins are sequences of amino acids. In the standard Dill’s
model, each amino acid is represented as a bead, and connecting
bonds are represented as lines. In this approach, the protein is
composed of a specific sequence of only two types of beads, H
(bead-Hydrophobic/non-polar) or P (bead-hydrophilic/Polar);
that is, the 20 amino acids can be divided into two classes:
H and P. This is usually called the HP model (or Dill model)
[39], where the label P is used to represent hydrophilic amino
acids because those amino acids are also polar. We reduce the
alphabet from 20 characters to 2, where our protein sequences
take the form of strings belonging to the alphabet .
Hydrophobic amino acids tend to come together to form a
compact core that excludes water. Due to the fact that the
environment inside cells is aqueous (primarily water), these
hydrophobic amino acids tend to be on the inside of a protein,
rather than on its surface. Hydrophobicity is one of the key
factors that determines how the chain of amino acids will fold
up into an active protein.

The whole conformation is embedded in a two or 3-D lattice,
which simply divides space into amino acid-sized units. Bond
angles only have limited discrete values, dictated by the struc-
ture of the lattice (for instance, square, triangular, or cubic [41],
[42]). A lattice site may either be empty or contain one bead. In
particular, on a 2-D square lattice, the HP model represents pro-
teins as 2-D self-avoiding walk chains of beads on the lattice,
i.e., two beads cannot occupy the same site of the lattice, and
each bead occupies only one lattice site connected to its chain
neighbors.

1) Protein Energy: For each conformation, one can evaluate
the value of the energy function: this allows for the modeling
of free energies of protein folds. The simplest form of energy
function counts the number of H-H-contacts. Each H-H topo-
logical contact has energy value , while all other contact inter-
action types (H-P, P-H, P-P) have energy value . Two amino
acids create H-H-contact if they are topological neighbors and
they are not connected by a bond. The goal is to find a confor-
mation with the lowest energy. In the HP model in general, the
residues’ interactions can be defined as follows:

Fig. 1. Convergence process for the protein sequence No. 1, at different energy
levels.

and . When and , we
have the typical interaction energy matrix for the standard HP
model [39]; while for and , we have the interac-
tion energy matrix for the shifted HP model [43]. For the Dill’s
model, the native conformation is the one that maximizes the
number of contacts H-H, i.e., the one that minimizes the free
energy function.

Regarding the functional model proteins (described in
Section VIII), in order to find binding pockets and the required
energy gap, the native conformation finds a tradeoff between
the number of H-H contacts (i.e., the attractive force) and the
non H-H contacts (i.e., the repulsive forces).

Fig. 1 shows snapshots of the IA during the convergence
process, when applied to the Protein sequence No. 1 (see Table I)
at different energy levels: from poor conformations to the native
conformation with Energy 9 (the H-H contacts are represented
by dotted lines, and the hydrophobic residues by black circles).

2) 2-D Square Lattice Standard HP Benchmarks: For our
experiments, we used the first nine instances of the Tortilla
2-D HP Benchmarks1 (the first eight sequences are taken from
[44], sequence 9 is taken from [45], the last three instances are
taken from [41]) to test the searching capability of the designed
IA. In Table I, is the optimal or best-known energy value,

, indicate repetitions of the relative symbol or
subsequence.

The 12 chosen HP instances are standard benchmarks used to
test the searching ability of heuristics methods and blind search
algorithms. These instances have been tested on more than 20
different algorithms (see Section VI-A and Table VII). Ana-
lyzing the HP model is very interesting and challenging for

1 http : // www.cs.sandia.gov / tech_reports / compbio / tortilla-hp-benchmarks
.html.
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TABLE I
2-D SQUARE LATTICE STANDARD HP BENCHMARKS FROM [41] AND [44]

computer scientists, but is considered unsatisfactory for many
biologists. Whilst proteins fold in nature in a matter of sec-
onds, computational biologists have found that folding proteins
to their minimum energy conformations is an unsolved opti-
mization problem. The PSP on the HP model has been shown to
be NP complete for 2-D [46] (NP-hardness is shown by a reduc-
tion from an interesting variation of the planar Hamilton cycle
problem), and 3-D lattices [47] (NP-hardness is shown by a re-
duction from a variation of the bin packing problem).

B. The Functional Model Proteins

In the HP model, the interaction between two hydrophobic
residues is , and zero for the other possible pairs (H-P, P-H,
and P-P), that is, the HP model involves one attraction interac-
tion (H with H) and three neutral interactions (H with P, P with
P), so that the energy matrix of the HP model may be written

(1)

There are many other folding codes, i.e., the number of dif-
ferent types of residues and the matrix of energies describing
the interactions between different kinds of residues. One im-
portant folding code is the “shifted” HP model (or functional
model proteins) [40]. This model has native folds that are not
maximally compact, and presents cavities or potential binding
sites which is a key biological property required in order to in-
vestigate ligand binding. To include these properties, the shifted
HP model has two bead types, and both attractive and repulsive
interaction. Thus, the shifted HP energy matrix is

(2)

The presence of binding sites in the shifted HP model allows
us to briefly discuss the biological relevance of the model. Such
sites support a significant number of proteins that can be clas-
sified as functional, with the ground states having lower degen-
eracies and more cooperative folding than the regular HP model
[48].

C. The Conformational Space Into Lattice

To embed a hydrophobic pattern into a lattice,
we have the following three methods [49].

1) Cartesian Coordinate: The position of residues is specified
independently from other residues.

2) Internal Coordinate: The position of each residue depends
upon its predecessor residues in the sequence. There are
two types of internal coordinate: absolute directions where
the residue directions are relative to the axes defined by the
lattice, and relative directions where the residue directions
are relative to the direction of the previous move.

3) Distance Matrix: The location of a given residue is com-
puted by means of its distance matrix.

Krasnogor et al. [49] performed an exhaustive comparative
study using evolutionary algorithms (EAs) with relative and
absolute directions. The experimental results show that relative
directions almost always outperform absolute directions over
square and cubic lattice, while absolute directions have better
performances when facing triangular lattices. Experimental
evidence suggests internal coordinates with relative directions
should be used. However, in general, it is difficult to assess the
effectiveness of direction encoding on an EA’s performance.

III. THE IMMUNE ALGORITHM

A. The Clonal Selection Principle

The theory of clonal selection [50], suggests that B and T
lymphocytes that are able to recognize the antigen, will start to
proliferate by cloning upon recognition of such antigen. When
a B cell is activated by binding an antigen (and a second signal
is received from T lymphocytes), many clones are produced in
response, via a process called clonal expansion. The resulting
cells can undergo somatic hypermutation, creating offspring B
cells with mutated receptors. The higher the affinity of a B cell to
the available antigens, the more likely it will clone. This results
in a Darwinian process of variation and selection, called affinity
maturation. The increase in size of these populations couples
with the production of cells with longer than expected lifetimes,
assuring the organism a higher specific responsiveness to that
antigenic attack in the future. This gives rise to immunological
memory which is demonstrated by the fact that, when the host
is first exposed to the antigen, a primary response is initiated;
in this phase the antigen is recognized and immune memory is
developed. When the same antigen is encountered in the future,
a secondary immune response is initiated. This results from the
stimulation of cells already specialized and present as memory
cells: a rapid and more abundant production of antibodies is ob-
served. The secondary response can be elicited from any antigen
that is similar, although not identical, to the original one that es-
tablished the memory. This is known as cross-reactivity.
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TABLE II
PSEUDOCODE OF THE IA

B. The Clonal Selection Algorithm

The proposed IA (see Table II) employs two entity types: anti-
gens (Ag) and B cells. The Ag models the hydrophobic-pattern
of the given protein, that is a sequence , where
is the protein length, i.e., the number of amino acid in the pro-
tein sequence. The B cell population, , represents a set of
candidate solutions in the current fitness landscape at each gen-
eration . The B cell, or B cell receptor, is a sequence of di-
rections (with , and

), where each , with , is a rela-
tive direction [49] with respect to the previous direction
(i.e., there are relative directions) and the nonrelative di-
rection. Hence, we obtain an overall sequence of length .
The sequence specifies a 2-D conformation which is suitable
for computing the energy value of the hydrophobic-pattern of
the given protein.

At each generation , there is a B cell population of size
. The initial population, time , is randomly generated in

such a way that each B cell of , is a self-avoiding confor-
mation. There are two main functions within the algorithm.

Evaluate(P) which computes the fitness function value of
each B cell ; hence is the energy of confor-
mation coded in the B cell receptor ; and Termination_Condi-
tion() which returns true if a solution is found, or a maximum
number of fitness function evaluations is reached.

The implemented IA, like all IAs based on the clonal selection
principle outlined above, is characterized by cloning of B cells
with higher antigenic affinity, affinity maturation, and hyper-
mutation of offspring B cells. Within our approach, we employ
three immune operators: cloning, hypermutation and aging, and
a standard evolutionary operator: the -selection operator.

1) Static Cloning Operator: The cloning operator [4], [18],
simply clones each B cell times producing an intermediate
population of size . Throughout this paper,
we will refer to this as static cloning operator, as opposed to a
proportional cloning operator (used in the pattern recognition

version of CLONALG [8]), which clones B cells proportion-
ally to their antigenic affinities. Experimental results for PSP
using such an operator (not shown in this paper), show a fre-
quent premature convergence during the population evolution.
In fact, proportional cloning allows B cells with high affinity
values to survive for many more generations, and the process
can easily become trapped in local minima.

2) Hypermutation Operators: The hypermutation operators
act on the B cell receptor of the clone population . The
number of mutations is determined by a specific function,
mutation potential, with their being several mutation potentials
in existence [51]. In the same research paper, some significant
hypermutation operators are discussed and quantitatively com-
pared with respect to their success rate and computational cost.
The authors of the paper investigated the searching capability
of the IAs based on clonal selection principle using static, pro-
portional and inversely proportional hypermutation operators
and hypermacromutation operator. Analyzing the parameter
surface for each variation operator and the performance on a
complex “toy problem,” the trap functions, and the 2-D HP
model, clarifies that few different and useful hypermutation
operators exist, namely: inversely proportional hypermutation,
static hypermutation, and hypermacromutation operators. It
appears that making use of inversely proportional hypermu-
tation and hypermacromutation can contribute to finding the
best experimental results for the 2-D HP model. As a conse-
quence of these results, we implemented the IA presented in
this paper, with inversely proportional hypermutation operator
and a hypermacromutation operator. The hypermutation and
the hypermacromutation operators mutate the B cell receptors
using different mutation potentials.

If during the mutation process, a constructive mutation oc-
curs, the mutation procedure will move on to the next B cell. We
call such an event: Stop at the first constructive mutation (FCM).
We adopted such a mechanism to slow down (premature) con-
vergence, thus allowing a more detailed search through the land-
scape. A different policy would make use of mutations ( -
mut), where the mutation procedure performs all mutations
determined by the potential for the current B cell. With this
policy, however, and for the problems which are faced in this
paper, the implemented IA did not provide good results [51].

a) Inversely Proportional Hypermutation: The inversely
proportional hypermutation operator, makes mutations in-
versely proportional to the fitness value. In particular, at each
generation , the operator will perform at most the following
mutations:

if

if
(3)

with , and the current best fitness value or the
best-known value. In this case, has the shape of an
hyperbola branch.

In [51], the hypermutation operators obtained by varying the
parameter , were thoroughly tested. Studying the parameter
surfaces of the trap functions and the PSP, the authors discov-
ered that for the hypermutation operator, inversely proportional
to the fitness function value [modeled by (3)], the best values
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Fig. 2. Example of the hypermacromutation operator applied in the range [i; j]
(in bold face the values successfully mutated).

for the parameter are located in the range . In par-
ticular, for the sequences 1, 2, 3, 4, and 12 the best value for

is 0.4; for the sequences 5, 6, 9, 10, and 11 the best value is
; for the sequence 7 the best value is ; and for

the sequence 8 the value is .
b) Hypermacromutation Operator: For the hyperma-

cromutation operator [52] (previously introduced in [53] as
“macromutation operator”), the number of mutations is deter-
mined by a simple random process which does not use functions
depending upon constant parameters. Attempts are made to
mutate each B cell receptor times, whilst maintaining the
self-avoiding property. The number of mutations is at most

, in the range , with and being two
random integers such that (see Fig. 2). The
number of mutations is independent from the fitness function
and any other parameter. The hypermacromutation operator for
each B cell receptor, randomly selects a perturbation direction,
either from left to right or from right to left

.
In general, the mutation operators perturb the B cells pop-

ulation , generating the new populations and
, respectively. Each B cell is a feasible candidate

solution of the HP model (for simplicity in 2-D using relative
encoding, it is straightforward to extend to 3-D using other
encoding schemes), making a self-avoiding walk chain on the
lattice, . Hence,
given a protein conformation sequence , the mutation op-
erator randomly selects a direction , , or
a subsequence ( and

); then, for each relative direction , it ran-
domly selects a new direction . If the new
conformation is again self-avoiding, then the operator accepts
it, otherwise, the process is repeated using the last direction

, .
3) Aging Operator: This operator is designed to generate di-

versity, in an attempt to avoid getting trapped in local minimum.
Although it is an operator inspired by the observation in the im-
mune system that there is an expected mean life for the B cell
[54], the aging operator can be thought of as a general problem-
and algorithm-independent operator.

The aging process attempts to capitalize on the immunolog-
ical fact that B cells have a limited life span, and that memory
B cells have a longer life span. Starting from this basic obser-
vation, the aging operator eliminates old B cells from the pop-

ulations , and . The parameter sets the
maximum number of generations allowed for generated B cells
to remain in the population. When a B cell is old it
is erased from the current population, no matter what its fit-
ness value is. We call this strategy, static pure aging. During the
cloning expansion, a cloned B cell inherits the age of its parent.
After the hypermutation phase, a cloned B cell which success-
fully mutates, i.e., it obtains a better fitness value, will be consid-
ered to have age equal to 0. Thus, an equal opportunity is given
to each “new genotype” to effectively explore the fitness land-
scape. We note that for greater than the maximum number of
allowed generations, the IA works essentially without the aging
operator. In such a limited case, the algorithm employs a strong
elitist selection strategy.

The aging operator is implemented by extending the B cells
data structure with a counter , which is initialized as
at generation and whenever a cloned B cell is successfully
mutated. B cells are selected for survival, only if its life

. The age of each B cell is incremented by one for each of
the surviving B cells. If the surviving B cells are less than
(the population size), new B cells are randomly created (with

) and are added by the Elitist_Merge function into the
population.

Within the literature there is a similar mechanism of the
aging process using evolution strategies (ES) [55], where the
authors allow a life span, , for each parent of a -ES or a

-ES. A parent older than generations is not considered
further in the selection process, leaving the new offspring to
enter into the population at the next generation. This mecha-
nism allows a more flexible variation of the selection scheme
between the two extreme cases , that is -ES, and

, that is -ES. As noted by the authors of the above
cited paper, this mechanism has not been properly investigated
and appears to be a “standalone” research work.

4) -Selection With Birth Phase and No Redundancy:
A new population , of B cells, for the next-genera-
tion , is obtained by selecting the best B cells which “sur-
vived” the aging operator, from the populations ,
and . No redundancy is allowed. Thus, each B cell re-
ceptor is unique, i.e., each genotype is different from all other
genotypes in the current population . If only B cells
survived, then the Elitist_Merge function creates new B
cells (Birth phase). Hence, the -selection operator (with

and , or if both variation operators
are activated) reduces the offspring B cell population (created
by cloning and hypermutation operators) of size to a
new parent population of size . The selection operator
identifies the best elements from the offspring set and the old
parent B cells, thus guaranteeing monotonicity in the evolution
dynamics.

The properties of each immune operator are relatively well
understood: the cloning operator explores the attractor basins
and valleys of each candidate solution; the hypermutation op-
erators introduce innovations by exploring the current popula-
tion of B cells; the aging operator creates diversity during the
search process. The selection evolutionary operator directs the
search process toward promising regions of the fitness landscape
and exploits the information coded within the current popula-
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Fig. 3. Average fitness function values of P , P , P and the best B cell receptor on protein sequence Seq2, with parameter values d = 10,
dup = 2, and � = 5.

tion. While selection is a universal problem- and algorithm-in-
dependent operator, hypermutation, and in general mutation and
crossover operators are specific operators that focus on the struc-
ture of the given landscape.

Finally, it is worth noting that representation and mutation
operators presented in this section use a discrete coding. They
work on an alphabet of three letters for relative di-
rections in 2-D square lattices, and on an alphabet of six let-
ters (where , , and

) for relative directions in 3-D cubic lattice (see
Section VII). Hence, the work described in this paper is appli-
cable only in the context of discrete coding. In Table II, we out-
line the pseudocode of the proposed IA.

IV. IA DYNAMICS

In this section, we discuss the characteristic dynamics of the
proposed IA. The population size is set to and the maximum
number of fitness function evaluations allowed is set to ,
for minimal values and 10 , with ,

and . All the values reported in this section are
averaged on 100 independent runs.

In Fig. 3, we show the average fitness values of populations
and the best fitness value when the IA

faces the PSP instance , ,
( and minimum energy value known ).

In this figure, we can see how the four curves decrease, al-
most monotonically, approximately in the first 20–40 gener-
ations, whereas in the remaining generations all four curves
reach a steady-state dynamics. The small oscillations are due
to the random nature of the overall process governing the hy-
permutation and the hypermacromutation operators. The higher
the average fitness of the hypermutated and hypermacromutated
clones, the higher is the diversity in the current population [19].

A. Maximum Information Gain Principle

To analyze the learning process, we use an entropy function,
the Information Gain. This measures the quantity of informa-

tion the system discovers during the learning phase [19]. To this
end, we define the B cells distribution function as the ratio
between the number, , of B cells at time with fitness func-
tion value , and the total number of B cells

(4)

It follows that the information gain can be defined as:

(5)

The gain is the amount of information the system has already
learnt from the given problem instance with respect to the ran-
domly generated initial population (the initial distribu-
tion). Once the learning process begins, the information gain
increases monotonically until it reaches a final steady state (see
Fig. 4). This is consistent with the idea of a maximum informa-
tion-gain principle of the form .

Fig. 5 shows the information gain curves for and
. For the IA learns a greater amount of infor-

mation than for , in fact, in the inset plot, the standard
deviation obtained with is greater than .

In the axis log plot 4, it is evident how the information gain
is a more informative measure than the mean fitness. The stan-
dard deviation, the uncertainty over the population of a given
generation (see the inset plot in Fig. 4), decreases quickly in
the first ten generations. In fact, the IA converges to the global
minimum in this temporal window. After this “threshold” the
standard deviation suddenly increases, producing strong oscil-
lations; that is, strong uncertainty regarding the current popula-
tions for .

The mean value is essentially constant during all generations.
For example, in the first generation, the IA gains more infor-
mation than in the second, because it generates more construc-
tive mutations. Thus, the population at generation ex-
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Fig. 4. Information gain, mean fitness versus generations of IA on protein sequence Seq2, with parameter values d = 10, dup = 2, and � = 5. Inset plot
displays standard deviation.

Fig. 5. Information gain and standard deviation versus generations on protein sequence Seq2 varying � 2 f1; 5g.

tracts more informative building blocks than the population at
the second generation.

B. Searching Ability of Hypermutation and
Hypermacromutation

To understand the searching ability of hypermutation opera-
tors when across a range of parameter values, we performed a
set of experiments on the PSP instance, . The duplication
parameter varies from 1 to 10 and the aging parameter
is drawn from the set .
We note that setting the parameter at a higher value than
the possible number of generations is equivalent to giving the
B cell an infinite life, in effect, we turn off the aging operator.

As a function of and , we show the success rate (SR).
The 3-D plots obtained are characteristic parameter surfaces
for the given operator. We set the population size to a minimal
value , to emphasize the property of each operator when
working with few B cells (points) in the conformational space.
This strategy provides a good measure of the “real” performance
of single hypermutation procedures. In addition, the Termina-
tion_Condition() function is allowed at most 10 fit-
ness function evaluations and we performed for each value pair
of the parameters 100 independent runs. Using the and
(average number of evaluations to solution) values, our experi-
mental protocol has the following three objectives:

1) to plot the characteristic parameter surface of each hyper-
mutation operator;
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Fig. 6. SR versus parameter values dup and � for the sequence 2. The surface parameters of the combination of inversely proportional hypermutation and
hypermacromutation operators.

2) to analyze the joint effects of hypermacromutations and
hypermutations;

3) to find the best settings of the parameter values for each
operator and for their combination, such that, the best de-
limited region on the parameter surfaces maximizes the SR
value and minimizes the AES value.

Fig. 6 shows the surface parameters of the inversely propor-
tional hypermutation operator and the combination of inversely
proportional hypermutation and hypermacromutation operators
(surface in bold face): the hypermacromutation extends the re-
gion with high SR values, and in particular improves the region
where the inversely proportional hypermutation operator alone
performed poorly ( and ). The
highest peak, , is obtained for and
with .

V. PARTITIONING THE FUNNEL BY MEMORY B CELLS

Folding energy landscapes are funnel-like, which means that
many conformations have high energy and few have low energy.
More formally, protein conformations having high free energy
(a single point on an energy landscape) have high conforma-
tional entropy and states having low free energy (native state and
other deep minima) have low conformational entropy. Discrete
models have this characteristic, in particular, in the HP model
where the energy level is a funnel landscape [44]; for example,
the seq. 1 of the benchmarks (see Table I) over 83,779,155 valid
conformations have approximately 66 10 conformations with
high “energy” (i.e., 0 or 1), and only four conformations in the
native state with minimal energy (see [44, Table I]).
Starting from this simple topological observation, we can de-
duce that within the funnel landscape the hardest area to search
is the middle region: it is typically rugged with many local
minima.

For this reason, we partition the funnel landscape in three
regions where in the rugged middle region we allocate B cells
with a longer life span, called memory B cells.

If the native fold has energy value , we have

energy levels, thus the boundary of the first partition and sec-
ondary partition are, respectively

and

Hence, the B cells with energy in the range

have a life span , the B cells with energy in the range

have a longer life span , while all the B cells with
energy have the same life span of B cells in the first
partition .

Fig. 7 shows the partitioning of the funnel landscape of the
PSP problem in three regions. The B cells either belong to the
top region or to the bottom region and have life span , while
the memory B cells belong to the middle region and have life
span .

Theoretical findings in [56] and experimental results under-
taken by ourselves which are not reported in this paper, show
that the hardest region to search is the middle. Typically, it is
rugged containing many local minima. Therefore, we only apply
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Fig. 7. Partitioning of the funnel landscape using memory B cells.

memory B cells to such a region. Conformations whose energy
value is in the middle region, are allowed to mature.

VI. RESULTS FOR THE 2-D HP MODEL

In this section, we show the overall performances of the IA for
the protein structure prediction problem for the 2-D HP model
using the well-known tortilla benchmarks (see Table I). The ex-
periments were performed with population size , du-
plication parameter , and maximum number of fitness
function evaluations 10 . All the experimental results
reported in this section are averaged over 30 independent runs.

Table III shows the number of energy evaluations required on
the best run to achieve the optimum, (or the best value found),
by a genetic algorithm (GA) and a Monte Carlo approach as
reported in [44], the multimeme algorithm [57], the estimation
of distribution algorithms (EDA) [58], and the IA for eight in-
stances in the 2-D HP model used in [41] (see [41, Table 6]) and
in [59] (see [59, Table 3]) as test bed for the folding algorithms.
Gaps in Table III indicate that the particular folding algorithm
has not been tested on the respective protein instance. As we can
see, the IA obtains the lowest number of energy evaluations, ex-
cept for the protein instance 4 where the EMC approach reaches
a lower number of energy evaluations, and for the protein in-
stance 8, where the EDAs obtain a conformation with 41 topo-
logical contacts.

For the sake of completeness, we must note the generality of
the MMA algorithm; it has been tested on the HP model and
functional model proteins using various lattices, 2-D and 3-D
square and triangular lattice, without any modification to the
algorithm. It would appear that the algorithm performs robustly
across all the models [41], [42], [57].

Tables IV and V show the results obtained by the IA using no
memory B cells, and memory B cells. For each protein instance,
and for each value of , the tables report the SR, AES, best
found energy value (b.f.), mean and standard deviation values.
In bold face, we show the best results reached for each instance
of the tortilla benchmarks, sorted first by SR value, then by AES
value. For , we sort them by the following ordered cri-
teria: best found conformation, mean and standard deviation.

TABLE III
COMPARISONS OF ENERGY EVALUATIONS FOR THE 2-D HP MODEL

By observing the performance of the IA with no memory B
cells (Table IV), we can see how the IA using does
substantially better in 8 out of 12 PSP instances, while the IA
using a longer life span, , does better in the remaining
four PSP instances. Both IA versions reach the best-known con-
formations with maximal success rate, , for the PSP
instances: 1, 2, 3, 6, 9, 10, 11, 12; for the protein sequences 4
and 5, the IA with obtains higher success rate values
than with , while for the protein sequences 7 and 8, the
IA is not able to reach the best-known minima, and it appears to
become trapped in local minima.

In Table V, we present the results obtained by the IA
using memory B cells, with the following aging values

, . We can
see how the IA when using , performs
better in 8 out of 12 PSP instances, reaches (for the first time)

for the protein sequence No. 4 and increases the
success rate value for the protein sequence No. 5 obtaining

.
When comparing the results obtained by the IA with memory

B cells (Table V) and without memory B cells (Table IV) we are
able to see that the IA with memory B cells with aging values

, outperforms the IA without memory B
cells. In fact, this version reaches the best-known conformations
with maximal success rate, , for the PSP instances: 1,
2, 3, 4, 6, 9, 10, 11, 12; 9 out of 12 PSP instances; and for the
protein sequence No. 5 obtains the highest success rate value,

.
Therefore, with the IA using memory B cells, and

(see Table V), we find it is able to locate the best-
known energy values with maximum success rate on 9 pro-
tein instances over 12. For protein sequence 5, IA obtains a

, while for the instances 7 and 8 (the “hard in-
stances”), the IA reaches only suboptimal energy values, respec-
tively, 35, and 39 with high mean, and standard deviation
values. To improve these protein instances we include in the IA,
a special local search procedure known as the Long Range Move
(as defined and used in [59]). This procedure tries to escape a
local minimum by unfolding the candidate solutions when they
are trapped in a local minimum.

In [59], one of the key features of the improved ant colony
optimization method is the Long Range Move (LRM). This
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TABLE IV
RESULTS OF THE IA WITH NO MEMORY B CELLS FOR THE 2-D HP MODEL

TABLE V
RESULTS OF THE IA WITH MEMORY B CELLS FOR THE 2-D HP MODEL

local search, as noted by the authors, mimics the folding
process of the real proteins, where a moving residue will
typically push its neighbors in the chain to different positions.
The first step of the procedure selects a direction in a given
conformation uniformly at random. The second step of the
procedure randomly changes the direction, and then modifies the
directions of the remaining residues probabilistically. The local

search starts a “chain reaction” that loops until a self-avoiding
path condition is held. Practically, this procedure allows a
given conformation to fold and unfold moves to escape local
minima in the multiple-minima funnel landscape. Since the
above cited procedure is obviously time consuming, as in
[59], we apply it to the best conformation in the current
population of the algorithm.
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TABLE VI
RESULTS OF THE IA WITH LRM FOR THE 2-D HP MODEL,

PROTEIN INSTANCES 5, 7, AND 8

In Table VI, we report the results of the IA using the long
range move (IA WITH LRM), for the hard instances, protein se-
quences 5, 7, and 8. By inspecting the table, we note that for
instance 5 the IA obtains poor results, while for sequence 7,
although the IA does not reach the best-known energy value
( 36), the algorithm with the long range move always reaches
the suboptimal energy value 35, which is the best result ob-
tained for the IA. It is worthy of note, that the longest protein
sequence the IA with LRM reaches the best-known energy value

42 with mean 39.2 and .

A. Comparison With State-of-Art Folding Algorithms

In this section, we briefly present related works for the 2-D
HP model. We present this here, as it allows us to show compar-
ative results of our proposed approach, and current state-of-art
algorithms that are used on this problem.

The first application of EAs on the HP model was in [44]:
a GA is employed, and conformations are changed by a muta-
tion operator that follows the conventional Monte Carlo steps
(MCmutation operator), and by a crossover operator. The au-
thors found that the GA is superior to conventional Monte Carlo
methods (MC, LONG MC, and MULTIPLE MC).

In [60], there is an improved version of the simple GA (SG)
using a new crossover operator (systematic crossover), the
SGA-S: it couples the best candidate solutions, tests every pos-
sible crossover point, and selects the two best conformations for
the next generation. In addition, the authors implemented a new
search strategy, the SGA with systematic crossover and pioneer
search, SGA-SC-P, which tried to prevent the population from
becoming too homogeneous, moving to a new search region
every ten generations.

A famous metaheuristic for combinatorial optimization is the
Memetic Algorithm. Memetic algorithms are EAs that include in
the evolutionary cycle a local search procedure [61]. The Mul-
timeme algorithm (MMA) [41], [61] is a memetic algorithm
that self-adaptively selects from a set of local searchers, which
heuristic to use during the search process for different instances.
The MMA has been used on different protein structure models
with results competitive with other techniques [41].

To improve the performance of the GA, in [62] the authors
proposed a hybrid algorithm of GA and tabu search (TS) and
novel crossover operator borrowed from the TS. The introduc-
tion of the TS approach improves the overall performances of
the GA and shows that in all the instances, the hybrid algorithm
GTS works better than a GA alone.

Another Monte Carlo method is the EMC [63] that works
with populations of candidate solutions which are optimizated
by Monte Carlo simulation. This hybrid algorithm found the
best-known structure for protein sequence 8, with energy

.
The contact interactions algorithm, CI, may be regarded as

an extension of the standard MC method which is improved by
the strategy of cooperativity. The major innovation of the CI
approach [45] is that criteria for acceptance of new conforma-
tions are not based on the energy of the entire protein, but on
the fact that cooling factors associated with each residue de-
fine regions of the model protein with higher or lower mobility.
Hence, the CI is not a blind general purpose algorithm, it uses a
heuristic based on effects of an H-H contact on the mobility of
the residues in different portions of a protein. The CI algorithms,
with a fixed starting temperature of (CI, ), or
with different starting temperature (CI), proved to be very effi-
cient to localize energy minima.

Among the best folding algorithms there is the tabu search
strategy [65]. This incorporates problem domain knowledge into
the algorithm, for instance the conformational motifs, during the
search process for finding low energy conformations.

The core-directed chain growth (CG) [64] is a very efficient
algorithm that has found optimal and best-known conformations
for protein instances 1–6 and 8. It is an ad hoc heuristic that
approximates the hydrophobic core of discrete proteins.

The EDA [58] is a suitable class of nondeterministic search
procedures for the HP model. EDA constructs an explicit prob-
ability model of the candidate solutions selected and captures
relevant interactions among the variables of the given protein
instance. The experimental results have proven the effectiveness
of the EDA approach to face lattice models for the standard HP
benchmarks and the functional model proteins.

The state-of-art algorithm for 2-D HP problem is an improved
ant colony optimization (ACO) algorithm, IMPROVED (IACO)
[59]. The improvements over the previous ACO algorithm [67],
are the following: long range moves for chain reconfigurations
when the protein conformation is very compact (described in
Section VI); improving ants that take the global best solution
found so far and apply a randomized greedy local search to it;
and selective local search that performs the critical operation
of the local search phase only on promising low energy con-
formations. Moreover, in [59], the authors report poor perfor-
mance of a local search procedure (ONLY L), modest perfor-
mances of an (IMPROVED GA), and good performance of Pruned
Enriched Rosenbluth Method (PERM) [66]. The Grassberg and
co-workers’ algorithm is a Monte Carlo method which is among
the best-known algorithms for the 2-D HP model, and is a bias
chain growth algorithm. PERM found the best solution for the
protein sequence No. 7, .

In Table VII, we report the comparisons with the state-of-art
algorithms for the 2-D HP model. The reported energy values
are the lowest obtained by each method. Gaps in the table in-
dicate that a particular algorithm has not been tested on the re-
spective protein sequence. The shown results suggest that the
proposed IA using the aging operator and memory B cells, and
the IA with LRM are comparable to and, in many protein in-
stances, outperform the best algorithms.
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TABLE VII
IA VERSUS THE STATE-OF-ART ALGORITHMS FOR THE 2-D HP MODEL

VII. RESULTS FOR THE 3-D HP MODEL

The protein structure prediction problem with , and
making use of a square lattice, captures the protein folding
problem in the 2-D HP model [39]. Analogously for and
using a cubic lattice, we have the 3-D HP model [39].

In the 3-D cubic lattice, each point has six different neigh-
bors and five available locations. We use two different schemes
of moves, (absolute and relative directions), to represent and
embed a protein in the lattice. The relative and absolute en-
coding were described in Section III-B: the residues directions
are relative to the direction of the previous move, whilst in the
absolute directions, encoding the residues direction is relative
to the axes defined by the lattice.

Both for the absolute and relative coding, not all moves pro-
vide a feasible conformation. In our work, we force the self-

TABLE VIII
RESULTS OF THE IA FOR THE 3-D HP MODEL

avoidance constraint such that each set of moves will correspond
to a feasible sequence (feasible conformation).

By inspecting the experimental results for all the considered
instances, it is worthy to note that the IA (working with feasible
solutions) locates the known minimum value. For all instances,
the located mean value is lower than the results obtained in [68],
where EAs working on feasible-space were employed. For sev-
eral sequences presented in [69], (as shown in Table VIII), we
have found new, best—lowest energy values for 3-D protein se-
quences 5, 7, and 8 (results reported in bold face in Table VIII).

For our experiments, the IA was set with standard parameter
values: , , as described in [51], B cells have the
aging parameter and memory B cells . For
the experimental protocol, we adopted the same values used in
[69]: 50 independent runs and a maximum number of evalua-
tions equal to 10 . In [68], the author does not use the SR and
AES values as quality metrics, but the following parameters:
Best found solution (Best), mean and standard deviation .

In addition, we designed an IA which made use of a penalty
strategy and a repair-based approach as reported in [68], which
obtained similar experimental results to [68] (not shown). Such
an IA proved to be very efficient for both absolute and relative
encoding, and allowed us to find energy minima not found by
other EAs working in feasible space and described in literature
[68].

VIII. RESULTS FOR THE FUNCTIONAL MODEL PROTEINS

Table IX shows the benchmarks for the functional model pro-
teins into 2-D square lattice [41], [43], the instance number,
protein sequence, optimal conformation, and the minimal en-
ergy values. Each instance of the benchmarks2 has a unique na-
tive fold conformation minimal energy value, , and an energy
gap between and the first excited state (best suboptimal). In
Fig. 8, we report the native fold of all the protein sequences,
each native fold has at least one binding site, or binding pocket

2http://www.cs.nott.ac.uk/ñxk/HP-PDB/2dfmp.html



CUTELLO et al.: AN IMMUNE ALGORITHM FOR PROTEIN STRUCTURE PREDICTION ON LATTICE MODELS 113

TABLE IX
2-D SQUARE LATTICE FUNCTIONAL MODEL INSTANCES [43],

WHERE EACH PROTEIN SEQUENCE HAS 23 MONOMERS

Fig. 8. Native fold for 2-D square lattice functional model instances.

(which are illustrated in figure by arrows pointing to the binding
site(s) of each functional model instance).

In the first experiment, we compared the performance of the
IA with and without elitist aging (see Table X) using the stan-
dard parameter values: , , , . In

TABLE X
ELITIST AGING VERSUS PURE AGING IN THE FUNCTIONAL MODEL

PROTEINS IN TERMS OF (SUCCESS RATE, AVERAGE NUMBER OF

EVALUATIONS TO SOLUTION)

this section, all experimental results reported, were obtained by
the IA with inversely proportional hypermutation and hyperma-
cromutation operators. All the values are averaged on 30 inde-
pendent runs.

Analogously to the HP model instances, in the functional
model proteins, the pure aging procedure outperforms the elitist
aging in term of SR and AES on all functional model instances.
The IA with pure aging obtains a for all the instances
excluding the functional protein sequence 3, where the algo-
rithm reaches . This confirms the optimal searching
ability and diversity generation of the pure aging strategy.

In Table XI, we report the experimental results obtained when
using memory B cells. As described previously, we partition the
funnel landscape energy levels. For example, sequences 1 and 4
have , it follows that there are 21 energy levels, thus
all the B cells with energy value in the range
or with energy will have life span equal to , while
the B cells with energy will be considered as
memory B cells with a life span of . Table XI presents
the best experimental results obtained using the aging values

, , and
; the best values of SR and AES are shown

in bold face. From these results, it is clear that , and
appear to be the optimal choice for partitioning

the funnel landscapes of the protein instances.
When comparing the results obtained by the IA, when

adopting a pure aging strategy and with the IA using
memory B cells with , and , the algorithm
performs slightly better without the memory B cells. We be-
lieve this is due to the length of the protein sequences of the
functional model proteins, which have 23 residues only. Hence,
for short protein sequences , the IA without memory
B cells performs better than the IA with memory B cells,
both for the HP model and for the functional model proteins.
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TABLE XI
IA PERFORMANCES USING MEMORY B CELLS IN TERMS OF (SUCCESS RATE,

AVERAGE NUMBER OF EVALUATIONS TO SOLUTION) FOR VARIOUS PAIRS

OF (� , � )

TABLE XII
COMPARISON OF BEST RUNS FOR MMA [41], EDAS [58], AND IA, WITH AND

WITHOUT MEMORY B CELLS FOR THE FUNCTIONAL MODEL PROTEINS

However, for long protein sequences , partitioning the
funnel landscape with the memory B cells appears to be a good
strategy for effectively searching the rugged landscape in the
middle of the funnel.

Finally, in Table XII, we present the number of energy eval-
uations required by the best run to locate the optimum or a sub-
optimum energy value. We compare the performances of the
IA with and without memory B cells, with the state-of-art al-
gorithms for the functional model proteins: the MMA [41] and
the EDAs [58]. Both versions of the IA, outperform the MMA
and EDA on all the test bed except for the protein instance 3
where EDA reaches a lower number of energy evaluations. In
particular, the IA without memory B cells obtains the best re-
sults on 9 instances over 11.

We propose that more effective metrics to assess the overall
performances are the success rate values and the average
number of evaluations to solution. The number of fitness func-
tion evaluations required by the best run for a given instance
are less significant for showing the overall performance of the
randomized algorithms.

IX. IA VERSUS EAs

It is worth a little time to highlight the contribution of our
algorithms to the artificial immune systems discipline. The pro-
posed IA makes use of a new hypermutation operator, the hyper-
macromutation operator, that extends the region of the param-
eter surface with high SR values, and in particular improves the
region where the inversely proportional hypermutation operator
alone, performed poorly. This simple random process, which
does not use functions dependent upon constant parameters, im-
proves the overall performance of the IA.

The second innovation of the IA is the aging operator, which
is used to generate and maintain diversity in the population.
As shown in the plots and in the tables, the aging operator and
memory B cells with a longer life span, are the key features of
the proposed approach that we feel can be inserted in any EA.
In fact, as a selection operator, the aging operator is a general,
problem- and algorithm-independent operator.

Obviously, the implemented algorithm can be applied to any
other combinatorial and numerical optimization problem apart
from the protein structure prediction problem using suitable rep-
resentations and variation operators [4], [9], [18], [69].

A. IA Versus Other Clonal Selection Algorithms

A well-known clonal selection algorithm in the AIS literature,
is CLONALG [8], [69]. This algorithm employs fitness values
for proportional cloning, inversely proportional hypermutation,
and a birth operator to introduce diversity in the current popula-
tion along with a mutation rate to flip a bit of a B cell. Extended
versions of this algorithm use a threshold value to clone the best
cells in the present population.

CLONALG maintains two populations: a population of
antigens and a population of antibodies (indicated with

). The individual antibody, , and antigen, , are repre-
sented by string attributes , that is, a point
in an L-dimensional real-valued shape space S, .
The Ab population is the set of current candidate solutions,
and the Ag is the environment to be recognized. The algorithm
loops for a predefined maximum number of generations .
In the first step, affinity values (fitness function values) are
determined for all in relation to the . Then, it selects

that are to be cloned independently and proportionally to
their antigenic affinities, thus generating the clone population

. The higher the affinity, the higher the number of clones
generated for each of the with respect to the following
function:

(6)
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where is a multiplying factor. Each term of the sum corre-
sponds to the clone size of each Ab. The hypermutation operator
performs an affinity maturation process inversely proportional
to the fitness values, generating the matured clone population

. After having computed the antigenic affinity of the pop-
ulation , CLONALG randomly creates new antibodies
that will replace the lowest fit in the current population.

Clearly, both CLONALG and the IA are inspired by the
clonal selection principle. Hence, they have many similarities,
but there are some significant differences (for a comparative
study see [69]). We begin with the common features. Both
algorithms employ a population of Ag’s to represent the input,
whilst the population of immune entities (Ab’s or B cells) are
the candidate solutions to the given computational problem.
Both algorithms use hypermutation operators inversely propor-
tional to the fitness values.

Considering their differences, while in the IA the cloning op-
erator selects all the immune entities for cloning. In CLONALG,
it is possible to use a threshold value to clone only the best
cells in the current population. In CLONALG, the cloning op-
erator is proportional to the fitness values depending on a mul-
tiplying factor (see (6)). However, in the IA, the cloning oper-
ator makes use of static cloning: each immune entity will pro-
duce clones. Hence, CLONALG uses proportional cloning,
and the IA uses static cloning. The underlying notion of em-
ploying static cloning, is to give each point of the given search
space equal opportunity to explore its neighborhood; propor-
tional cloning provides a bias to each point of the search space
based on its fitness function value. This bias could be useful or
not, depending of course on the computational problem being
addressed.

To produce diversity in the population, at each generation
CLONALG uses a birth operator which introduces new
immune entities. The IA, however, uses an aging operator
modeled by an expected life time parameter . Additionally,
CLONALG uses memory B cells as an implicit “memory
mechanism,” an archive of the best candidate solutions, while
the IA version for the partition of the landscape uses memory
B cells with a longer mean life parameter with
greater than the mean life of standard B cells to allow a
search of the rugged regions of the landscape.

The selection scheme used by CLONALG to decide which
immune entities will go to the next generation uses elitism,
while the IA uses a standard —selection operator without
an elitist strategy.

Finally, as termination condition, CLONALG typically uses
a fixed number of generations, while the IA can use three
termination conditions: a fixed number of generations, a max-
imum number of fitness function evaluations, or the maximum
information-gain principle [19]. Though the last
condition does not avoid the possibility of being trapped in
local minima solutions, this termination condition measures the
quantity of information the IA discovers during the convergence
process.

X. CONCLUSION

This paper has proposed a novel IA for the protein struc-
ture prediction problem. Within this paper, we have assessed

the overall performance of the IA in terms of solution quality
and average number of evaluations to solution (metric, we feel
is more robust than run-time values). We have made use of var-
ious discrete protein structure models, and have compared the
results with the present state-of-art algorithms when applied to
each model.

As future work, we intend to tackle the prediction of 3-D
structures for actual proteins [70] using the designed IA. As
in [70], we plan to consider the parallelization of the folding
algorithm in order to reduce execution time and resource
expenditure.

The IA uses a new hypermutation operator, the hyperma-
cromutation operator, which does not use functions depending
upon constant parameters, and extends the region of the param-
eter surface with high success rate values. This operator con-
tributes to the overall improvement in terms of performance of
the IA.

A second innovation of the IA is the aging operator, which
is used to generate and maintain diversity in the population. As
demonstrated by our results, the aging operator and memory B
cells with a longer life span are the key features of the proposed
approach, that we propose could be inserted in any EA.

With regards to the actual computational results on the PSP
problem, we found that for short protein sequences ,
the IA without memory B cells performs better than the IA with
memory B cells both for the HP model and for the functional
model proteins. For long protein sequences , parti-
tioning the funnel landscape with the memory B cells is a good
strategy to search more effectively the rugged landscape in the
middle of the funnel.
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