
Maturation of Individuals in Evolutionary Learning

T. Calenda1, A. Vitale2, A. Di Stefano2, V. Cutello1, E-G. Talbi3 and M. Pavone1

1 Department of Mathematics and Computer Science
University of Catania

V.le A. Doria 6, I-95125 Catania, Italy
cutello@dmi.unict.it; mpavone@dmi.unict.it

2 Department of Electric, Electronics and Computer Science
University of Catania

v.le A. Doria 6, I-95125, Catania

3 Laboratoire LIFL, Université Lille 1
UMR CNRS 8022, Cite scientifique

Bat. M3, 59655 Villeneuve dAscq cedex, France
el-ghazali.talbi@univ-lille1.fr

Abstract. Although it is well-known that a proper balancing between exploration and exploitation
plays a central role on the performances of any evolutionary algorithm, what instead becomes crucial
for both is the life time with which any offspring maturate and learn. Setting an appropriate lifespan
helps the algorithm in a more efficient search as well as in fruitful exploitation of the learning dis-
covered. Thus, in this research work we present an experimental study conducted on eleven different
age assignment types, and performed on a classical genetic algorithm, with the aim to (i) understand
which one provides the best performances in term of overall efficiency, and robustness; (ii) produce an
efficiency ranking; and, (iii) as the most important goal, verify and prove if the tops, or most, or the
whole ranking previously produced on an immune algorithm coincide with that produced for genetic
algorithm. From the analysis of the achievements obtained it is possible to assert how the two efficiency
rankings are roughly the same, primarily for the top 4 ranks. This also implies that the worst option
obtained for the immue algorithm continues to be a bad choice even for the genetic algorithm. The
most important outcomes that emerge from this research work are respectively (1) the age assignment
to be avoided, from which are obtained bad performances; and (2) a reliable age to be assigned to any
offspring for having, with high probability, robust and efficient performances.

1 Introduction

As it is well known in the natural computing field, one of the major successful factors in evolutionary
algorithms is the design and development of the exploration and exploitation mechanisms. A good balancing
between these two phases is crucial since it strictly affects the efficiency and robustness of evolutionary
algorithms performances. While the aim of the exploration mechanism is to search for new solutions in
new regions by using the mutation operator, the second mechanism has the purpose to exploit in the best
possible way all information gathered using the selection process. Both phases, hence, help the algorithm
in discovering, gaining and learning new information, and, subsequently, in exploiting all gained promising
regions so to generate better populations.

However, what allows to take advantage of the acquired information is truly given by how long each
individual lives and in doing so influencing the evolution and maturation of the population. Besides, this
lifetime affects, also, the exploration phase, allowing having a better and deep search process. Thus, the time
an individual remains in the population becomes crucial in the performances of any evolutionary algorithm,
and it is strictly related to the good balancing between the exploration and exploitation processes. Indeed,
letting individuals live for a long time produces a dispersive search, and, then, an unfruitful learning, with
the final outcome of increasing the probability to easily get trapped in local optima due to the low diversity
that is generated. On the other hand, allowing a short lifetime often does not help to have enough overall
learning of the knowledge discovered, and it neither allows a careful search within the solutions space,
producing instead high diversity into the population, which, in turn, negatively affects the convergence
towards a global optimum.

A first research work on this aspect was conducted in [3], where the authors presented an experimental
study whose main aim was to understand the right lifetime of any individual/solution in order to perform

6 sciencesconf.org:meta2018:193399



Calenda, Vitale, Di Stefano, Cutello, Talbi, Pavone

a proper exploration within the search space, as well as a fair exploitation of the gained information. Such
experimental analysis was conducted on an immune algorithm, whose core components are the cloning,
hypermutation and aging operators.

In the cited research work, eleven different options about the lifetime of each individual were studied
(see table 1), with the main goal to answer the three main questions: (i) “is the lifespan related to the
number of offspring generated?”; (ii) “is the lifespan related to the population size?”; and in case of
negative answer to the two previous ones, (iii) “how long must the lifespan of an offspring be to carry
out a proper exploration?”. Once these questions were answered, an efficiency ranking was produced,
from which clearly emerged that a too short lifetime is always the worst choice; whilst the best one is to
let it evolve for all iterations allowed starting from scratch, i.e. assigning age 0 to each offspring. Thus,
following the above described study, in this research work we want to check if the achievements produced
on the Immune Algorithm (IA) are still valid, and primarily work, on a genetic algorithm (GA). Of course,
what we do not expect to get the same efficiency ranking, but rather we would like to check if the top 4 for
IA still appear as the top 4 for GA, even if in different ranking order, and, moreover, if the worst for IA
continues to still be the worst for GA. In a nutshell, what we would like to assert with this research work is
the existence (if any) of a lifespan, to be assigned to the offspring, that roughly provides robust and efficient
performances, especially when high uncertainty on the problem to be solved exists; as well as which is to be
avoided for sure. It is important to emphasize that such outcomes are correct and valid on all those problems
that show similar landscape topologies, and similar complexities to the problem tackled.

2 The One-Max Problem

To validate and generalize the obtained results, it is crucial to develop an algorithm, which is not tailored
to a specific problem, by keeping it unaware of any knowledge about the domain. As it is well-known in
literature, to tackle and solve generic and complex combinatorial optimization problems, any evolutionary
algorithm must incorporate local search methodologies, used as refinement and improvement of the fitness
function, and this means that they have to add knowledge about the features of the problem and applica-
tion domain. This, consequently, makes the algorithm unsuitable and inapplicable to any other problem,
restricting then the validity of the outcomes only on such kind of problem. To overcome this limitation and
make the outcomes as general as possible, in this study we tackle the classic One–Max (or One–Counting)
problem [9, 2], as done in [3]. One–Max is a well-known toy problem, used to understand the dynamics and
searching ability of a generic stochastic algorithm [8]. Although it is not of immediate scientific interest, it
represents a really useful tool in order to well understand the main features of the algorithm, for example:
what is the best tuning of the parameters for a given algorithm; which search operator is more effective
in the corresponding search space; how is the convergence speed, or the convergence reliability of a given
algorithm; or what variant of the algorithm works better [1]. It is worth emphasizing that a toy problem
gives us a failure bound, because a failure occurs in toy problems at least as often as it does in more difficult
problems. Formally, given a bit string s = {s1, · · · , s`} of length `, the One-Max problem is simply defined
as the task to maximize the number of 1 inside s, i.e.:

maximize f(s) =
X̀

i=1

si, with si 2 {0, 1}. (1)

The choice of this simple problem, but enough complex to validate the outcomes, is therefore due mainly
to the faithfully reproduction of the experimental study conducted in [3], but also because of its “blind”
features that guarantee us to can generalize all outcomes produced.

3 The Age Assignments Studied

This research work, as well as the previous one proposed in [3], arise from observing how an algorithm
(specifically an IA) can obtain considerably different performances changing only the age to assign to
each offspring [7], which clearly proves how the age assignment plays a crucial and central role on the
performances of the algorithm in term of success and convergence. In order to reach the goals of this
research work, the same eleven age assignment types proposed in [3] have been investigated, and they are
reported in table 1. In the table are reported, respectively, types and symbols used for showing and describe
the results, and, in the last column, a short description of them.

7 sciencesconf.org:meta2018:193399



Maturation of Individuals in Evolutionary Learning

Table 1. Age assignments studied.

Type Symbol Description

0 [0 : 0] age zero

1 [0 : ⌧
B

] randomly chosen in the range [0 : ⌧
B

]

2 [0 : (2/3 ⌧
B

)] randomly in the range [0 : (2/3 ⌧
B

)]

3 [0 : inherited] randomly in the range [0 : inherited]

4 [0 : (2/3 inherited)] randomly in the range [0 : (2/3 inherited)]

5 inherited or [0 : 0]
inherited; but if constructive mutations occur
then type 0

6 inherited or [0 : ⌧
B

]
inherited; but if constructive mutations occur
then type 1

7
inherited or inherited; but if constructive mutations occur
[0 : (2/3 ⌧

B

)] then type 2

8
inherited or inherited; but if constructive mutations occur
[0 : inherited] then type 3

9
inherited or inherited; but if constructive mutations occur
[0 : (2/3 inherited)] then type 4

10 inherited � 1 same age of parents less one

It is possible subdivide the age assignment types in three different efficacy groups: (1) the fixed ones
(type0 and type10); (2) the random ones (from type1 to type4); and (3) the constructive change ones
(from type5 to type9). In the first group to each offspring is assigned the same age for everyone; in the
second one, instead, to each offspring is assigned a random age, ensuring however evolve at least for a fixed
number of generations, except for the type1 that in the worst case will assign age ⌧B . Besides, type3
and type4 differ from the previous two as each offspring will have the same age (in worst case) or less
than its parent (labelled as “inherited”). Finally, all age types included into the last group produce higher
diversity in the population than the others, and encourage those offspring that appears to be promising.
Indeed, to each clone is assigned the same age of the parent at first, which generates high turnover degree
in the population, but if after the genetic (crossover and/or mutation) operators, the fitness of the offspring
is improved, then its age is updated in order to have more evolutionary time.

4 The Genetic Algorithm

In this research work we have developed a classical Genetic Algorithm (GA), one of the most well known
evolutionary algorithms, which take inspiration from genetics and natural selection. The genetic algorithms
represent an efficient and robust algorithmic class in search and optimization, thanks to their ability in
fruitfully exploration of search space, and efficiently exploiting of the promising regions. This class of al-
gorithms is based on three main evolutionary operators, such as the (i) recombination, where each generated
offspring inherits some characteristics from the two parents; (ii) mutation, which introduces diversification
in the offspring with respect to the parents; and (iii) selection mechanism, through which the individuals
for mating pool are selected. The first two operators represent the exploration phase of new search points,
whilst the last one helps the algorithm to exploit information learned in order to generate improved proge-
nies (exploitation phase). Note, however, that in the GAs the mutation operator plays a secondary role than
the other two.

For achieving the set out goals in this research work, we have appropriately adapted the developed
genetic algorithm so that a given age is assigned to each generated individual at each time step. In this
way, it is determined the lifespan of each offspring inside the population, whose evolution starts from such
assigned age (see section 3), which is increased by one at each generation, until reaching the maximum age
allowed (⌧B , an user-defined parameter). Further, the aging operator as designed in [3, 7], was developed
and included into this proposed GA [5, 6].

The algorithm starts with the creation of the initial population (P (t=0)) of size pop size, by generating
random solutions, i.e. bit strings of length `, using uniform distribution, and thus the next step is the eval-
uation of the fitness of each individual, using the function Compute Fitness(P (t)). Whereupon, begins the
evolution of the algorithm whose considered termination criterion is the reaching of the maximum allowed
number of fitness function evaluations (Tmax). The algorithm terminates in advance the execution if the

8 sciencesconf.org:meta2018:193399



Calenda, Vitale, Di Stefano, Cutello, Talbi, Pavone

global optimal solution is found. Note that age zero is assigned to each newly created individual, regard-
less of the age assignment chosen (see the age types in section 3). A summary of the developed Genetic
Algorithm is presented in the pseudocode shown in Algorithm 1.

Algorithm 1 Pseudo code of GA
Genetic Algorithm (pop size, pc, pm, ⌧B , Elitism)
t 0
FFE  0
P (t)  Create Initial Population(pop size);
Compute Fitness(P (t))
FFE  FFE + pop size
while (FFE < Tmax) do

Increase Age(P (t));
P (parents)  Roulette Wheel Selection(P (t), pop size)
P (kids)

c  Crossover(P (parents), pc)
P (kids)

m  Mutation(P (kids)
c , pm)

Compute Fitness(P (t))
FFE  FFE + pop size
(aP (t),a P (kids)

m ) Aging(P (t), P (kids)
m , ⌧B , Elitism);

P (t+1)  (µ + �)–Selection(aP (t),a P (kids)
m );

t t + 1
end while

Inside to the iterative loop the first step is to increase the age of each individual by one, becoming older
than a generation (function Increase Age(P t)). Hence, the selection of the individuals for the mating is
applied using the classical Roulette-Wheel-Selection model [4, 10], which basically select the individuals
with a probability proportionally to their fitness: the higher the fitness, the higher the likely is that they will
be selected. At this step a new population P (parents) of size pop size is created that contains all selected
individuals, from whose mating will be produced the offspring. In particular, from a pair of individuals are
generated a pair of offspring.

Afterwards, the parents population is then undergo to the recombination phase, with a probability pc,
which generates the population of the new offspring (P (kids)

c ). In this work we have developed the clas-
sic Uniform Crossover, through which each element (gene) of the offspring is randomly selected by both
parents; i.e. the parents will contribute equally to generating their own descendants. Thanks to this kind
of recombination operator each offspring will have 50% genes from the first parent, and the other 50%

from the second one. Once P (kids)
c is produced, each chromosome is mutated with a pm probability. The

mutation used in our study is the well known bit-flip mutation, which - if applied - randomly select a gene
si (8 i = 1, ..., `) in the chromosome s, and inverts its value (from 0 to 1, or from 1 to 0). The mutated
chromosomes produce a new population, labelled P (kids)

m (see Algorithm 1), containing the final offspring
generated. When an offspring is created, to it is assigned an age that affects its lifespan inside the popu-
lation. Starting from this age each chromosome will evolve until to reach a maximum age allowed (⌧B ,
a user-defined parameter), after which it will be removed from the population by the aging operator. Age
assignment, and the aging operator have the main purpose to keep high the diversity into the population
in order to avoid premature convergences and then reduce the probability to get stuck in local optimum.
Therefore, choosing the age to be given plays a crucial role in the performances of the algorithm, since
the evolution and maturation of the solutions depend strictly on this. Note that in general, the crossover
and mutation operators do not affect the age of any new individual, except for the 5 � 9 options of the
age assignment types (see table 1, section 3), where the assigned age is updated only if its fitness value is
improved. This happens and it is computed in the function Compute Fitness(P (t)).

As described above, in our GA was included the aging operator in order to achieve the determined
objectives, and whose main task is to help the algorithm in jumping out from the local optima, producing
high diversity into the population and avoiding, consequently, premature convergences. It simply eliminates
the old chromosomes from the two populations P (t) and P (kids)

m . Every individual is allowed to mature
for a fixed number of generations: as soon as it reaches age (⌧B + 1), it is removed from the population of
belonging regardless of the fitness value, included the best solution found so far. The parameter ⌧B indicates

9 sciencesconf.org:meta2018:193399



Maturation of Individuals in Evolutionary Learning

the maximum number of generations allowed to any chromosome to stay into the population. An exception,
however, is allowed only for the best solution found so far, that is the global best solution found is always
kept into the population, even if it is older than ⌧B + 1. Such exception is called Elitism Aging operator.
This variant helps the algorithm keep track of the most promising region - which would otherwise be lost
- and whose exploitation instead might be useful in solving some specific kinds of problems. The boolean
variable Elitism (Algorithm 1) controls the activation of the variant elitism aging operator.

Unlike to classic GA, where usually the offspring replace the parents for the next generation, in this work
the new population P (t+1) is created by using the (µ+�)-Selection operator, which selects the best popsize

survivors to the aging step from the two populations aP (t) and aP (kids)
m . This operator, simply, selects the

best pop size chromosomes from the offspring set – created by the crossover and mutation operators – and
the old parent chromosomes guaranteeing monotonicity in the evolution dynamics. Nevertheless, due to the
aging operator, it could happen that the number of survivor chromosomes (pop size1) is less than the input
population size (pop size). If so, the selection operator randomly generates (pop size � pop size1) new
individuals. This step is called Birth phase.

5 Experimental Results

In this section we present all outcomes obtained in our experimental study in order to (i) understand which
between the age assignment types studied is more robust and efficient in the overall; (ii) produce an ef-
ficiency ranking between them; and, most important, (iii) to check if the best 4 of the efficiency ranking
obtained for IA [3] still appear in the top 4 for GA, although in different rank order. Besides, it becomes
also interesting to observe if the worst assignment - or the two worst - for IA continue to be so also for
GA. With the outcomes of this research work, we want to give a rough indication on the needed lifetime
to a solution to have a proper balancing between exploration and exploitation in order to maximize the
evolutionary learning, and which one instead to not consider. Further, having developed an algorithm not
tailored to a specific problem, and performed our study in an unaware way about any domain knowledge,
the outcomes obtained will be even more effective when high uncertainty exists to be managed. However,
the existence of one or more age assignments in common between IA and GA allow us also to provide a
reliable lifespan, which, with high probability, leads to efficient and robust performances on similar features
problem, and on evolutionary algorithms, in general.

In order to reach our goals, we have then used the same experimental protocol proposed in [3], except for
the string length, which was instead fixed to ` = 2000. This setting is due to the difficulty of the algorithm
in solving the problem for higher values. Therefore, all age assignment options in table 1, have been studied
varying pop size = {50, 100}, ⌧B = {5, 10, 15, 20, 50, 100, 200}, and setting Tmax = 105 as termination
criteria (i.e. the maximum number of fitness function evaluations). Each experiment was computed on
100 independent runs. Both variants of GA have been performed: elitism and no elitism. Regarding GA
parameters, after several preliminary experiments (not included in this paper), the probability to apply the
crossover (pc) and mutation (pm) operators have been set respectively to pc = 1 and pm = 0.4, for all
experiments presented.

In figure 1 are showed the efficiency surfaces produced by varying ⌧B and age assignment types, and
evaluate with respect their success rate (SR), that is how many time the optimal solution is found in 100
runs. Both GA variants are showed for pop size = 50 (first row), and pop size = 100 (last row): the elitism
version in the left plots, and the no elitism in the right ones. Inspecting these surfaces, appear clearly in all
plots how the last age assignment option (type10) shows the worst performances at any values of ⌧B and
pop size, unable almost always in finding the optimal solution (except for the elitism variant with high ⌧B

values). Those who instead show better performances in the overall are type0 and type4, which exhibit
more robust and efficient performances, regardless of the parameters used. It is important to highlight how,
for low ⌧B values, the age assignment options from type5 to type9 (constructive change group; see table
1) produce the lower regions of SR, and this is due to their characteristic to produce high diversity into the
population, which means high turnover degree and, therefore, a greater use of the Birth operator. This
appears more prominent in the no elitism variant, and especially for low pop size values, where diversity
becomes more pronounced. In plot, it is also possible to see how any age assignment becomes irrelevant on
the performances for high ⌧B value (⌧B = {100, 200}), whose values are very close to have an infinite life.

The same results are also, and better, presented in tables 2 and 3. In each row are showed the success
rate (SR) obtained, and AES (line below), i.e. the average number of fitness function evaluations to reach
the optimal solution. Of course, AES is not null when SR 6= 0, i.e. if the optimal solution was found at

10 sciencesconf.org:meta2018:193399



Calenda, Vitale, Di Stefano, Cutello, Talbi, Pavone

Genetic Algorithm with population size 50, and Elitism

5

10

15

20

50

100

200

τB
type0type1type2type3type4type5type6type7type8type9type10 aging type

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

SR

Genetic Algorithm with population size 50, and No Elitism

5

10

15

20

50

100

200

τB
type0type1type2type3type4type5type6type7type8type9type10 aging type

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

SR

(a)

Genetic Algorithm with population size 100, and Elitism

5

10

15

20

50

100

200

τB
type0type1type2type3type4type5type6type7type8type9type10 aging type

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

SR

Genetic Algorithm with population size 100, and No Elitism

5

10

15

20

50

100

200

τB
type0type1type2type3type4type5type6type7type8type9type10 aging type

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

SR

(b)

Fig. 1. Efficiency surfaces produced for elitism (left plots) and no elitism (right plots) variants for pop size = 50 in
plots (a), and pop size = 100 in plots (b).

least once. In particular, the results presented in table 2 have been obtained with pop size = 50, whilst
the ones in table 3 with pop size = 100. Analysing both tables, we have clearly the confirmation that
type10 is unable to reach the optimal solution, except for the elitism version with setting high values of
⌧B (⌧B = {100, 200}). Further, it is interesting to note that increasing the population size (pop size) helps
GA to increase the SR (as we expect) but it doesn’t affect nor alter in any way, the overall influence of the
age assignments on the performances of GA, producing approximately the same efficiency rankings. This
statement answers, and confirms, as also claimed for IA, that the right lifespan for which each individual
must evolve is not related to the population size considered.

Inspecting table 2, considering the elitism variant, it is possible to see how the algorithm finds the
optimal solution, at least once, with all age assignments considered, except for type10 (8 ⌧B < 100);
type6 and type8 when the ⌧B value is low; unlike of the no elitism version where GA struggles to
reach the optimal solution, and this is what we expect. However, one of our goal is to understand which
age assignment type provides more robust and efficient performances. Therefore, from this point of view,
it is possible to assert that type0 and type4 seems to be more robust than the others, guaranteeing then
more reliability, whilst type10 and type6 continue to be the worst ones. The same statement can also be
made for the no elitism version. From table 3 is possible to see how the SR increases on all experiments,
allowing the achievement of the optimal solution, where GA failed in the previous table. Also on these
experiments type0 and type4 appear to be more robust and efficient than the others. Comparing these
two age assignments types, it is possible to assert that, in the overall, type0 shows more reliability than
type4, since its use allows GA to obtain, approximately, the same, and high, success rate both in the
elitism, and no elitism variants (type0: 82.14 vs. 83 for pop size = 50, and 92 vs. 92 for pop size = 100
– type4: 83.86 vs. 79.86 for pop size = 50, and 91.57 vs. 91.71 for pop size = 100).

11 sciencesconf.org:meta2018:193399



Maturation of Individuals in Evolutionary Learning

Table 2. GA on One–Max problem with ` = 2000. The results have been obtained by setting: pop size = 50, p
c

= 1, p
m

= 0.4, with and without
Elitism.

type ⌧
B

= 5 ⌧
B

= 10 ⌧
B

= 15 ⌧
B

= 20 ⌧
B

= 50 ⌧
B

= 100 ⌧
B

= 200
Elitism

0
69% 82% 80% 83% 87% 87% 87%

90741.44 86409.38 87103.44 86652.88) 84676.01 82797.44 83204.83

1
21% 58% 69% 80% 91% 90% 90%

98724.99 94472.81 92170.46 88594.79 85552.17 82780.77 83890.19

2
60% 80% 80% 90% 86% 89% 86%

94039.49 87698.82 86159.5 84839.10 84058.78 84007.95 84330.07

3
36% 77% 81% 84% 82% 88% 90%

97341.97 89434.23 86796.83 86317.53 85648.48 84421.64 83416.20

4
70% 81% 91% 90% 85% 85% 85%

91853.51 87440.62 85747.82 83773.17 84213.71 83853.50 84004.85

5
38% 36% 57% 69% 82% 86% 89%

96661.74 96847.64 93269.04 90052.98 87376.17 84609.75 84330.95

6 0%
7% 16% 34% 70% 81% 82%

99763.66 98820.08 97435.21 89703.56 86601.79 85642.79

7
7% 31% 36% 46% 69% 81% 81%

99723.64 97398.44 96937.86 94309.49 89642.67 86399.53 85410.66

8 0%
27% 51% 56% 74% 86% 85%

98454.84 94153.06 92745.16 87680.47 87118.12 83791.32

9
14% 52% 53% 65% 77% 81% 90%

99273.65 93683.66 94559.11 91631.61 87691.02 85953.13 83402.34

10 0% 0% 0% 0% 0%
15% 36%

98903.89 96232.28
No Elitism

0
66% 76% 83% 90% 86% 93% 87%

90771.76 87042.24 86277.61 85208.42 85111.56 82111.92 83868.15

1
10% 48% 73% 74% 86% 81% 85%

99486.34 95815.82 92056.89 90457.19 85435.83 86840.81 83652.09

2
56% 68% 84% 87% 84% 84% 87%

94334.12 88144.89 87116.65 84443.68 86296.26 85577.26 84776.40

3
30% 71% 81% 78% 79% 84% 93%

97689.88 89510.53 86619.09 86543.17 85487.73 85086.12 83041.88

4
62% 84% 77% 82% 80% 89% 85%

92538.22 86222.68 87402.21 86827.35 85629.22 84230.84 83664.17

5 0% 0%
2% 2% 22% 47% 74%

99666.75 99557.23 95892.60 90973.89 84776.14

6 0% 0% 0%
1% 9% 34% 64%

99921.99 98130.29 92421.01 87918.47

7 0% 0%
2% 1% 20% 44% 79%

99601.45 99673.91 95497.91 89819.80 83756.32

8 0% 0% 0%
1% 11% 48% 72%

99911.66 97763.70 91077.56 86381.38

9 0% 0%
2% 3% 15% 53% 80%

99607.87 99240.23 96522.20 88524.80 85093.18

10 0% 0% 0% 0% 0% 0% 0%

In figure 2 is showed the histograms produced by the average of the success rates for each age assign-
ment type. The left plot shows the average SR produced using the elitism variant, whilst the right plot those
produced by the no elitism version. Such results have been produced averaging on all ⌧B values. Thanks
to these plots becomes easy to produce the efficiency ranking for each variant, which seem to be the same
in the overall, except for the first position: for the elitism variant appears type4 on the first rank; whilst
for the no elitism version the top one becomes type0. From the third position onwards, the two efficiency
ranking seems to be the same, respectively: 3) type2, 4) type3, 5) type1, 6) type5, 7) type9, 8)
type7, 9) type8, 10) type6, and 11) type10.

Since it is important to produce an efficiency ranking regardless of variants used, in figure 3 we show
the average success rate ( cSR) produced by both the variants on all experiments performed. From this plot,
emerge type0 as the best ( cSR = 87.27%), followed by type4 ( cSR = 86.75%), type2 ( cSR = 84.89%),
type3 ( cSR = 80.61), and type1 ( cSR = 73.93%). From these overall results appear clear as the last
type, the type10, is always the worst with an overall average success rate considerably low with respect
the others ( cSR = 4.39%), and never reaching the optimal solutions in no elitist variant (Fig. 2, plot b). Just
to note that the penultimate in the efficiency ranking between the age assignment types (type6) produces an
overall average success rate of cSR = 38.75%.

Once generated the efficiency ranking for GA, it is possible to compare the outcomes obtained with the
ones produced by IA in [3], in order to reach the third and most important goal of this work. Analysing the
comparisons, then, it is possible to clearly assert that the top 4 types produced by IA are still in the top 4 of

12 sciencesconf.org:meta2018:193399



Calenda, Vitale, Di Stefano, Cutello, Talbi, Pavone

Table 3. GA on One–Max problem with ` = 2000. The results have been obtained by setting: pop size = 100, p
c

= 1, p
m

= 0.4, with and
without Elitism.

type ⌧
B

= 5 ⌧
B

= 10 ⌧
B

= 15 ⌧
B

= 20 ⌧
B

= 50 ⌧
B

= 100 ⌧
B

= 200
Elitism

0
91% 88% 89% 92% 96% 92% 96%

82312.79 79513.60 80284.09 78748.99 76946.22 77181.40 76713.31

1
46% 78% 89% 86% 87% 91% 96%

96226.19 89019.29 84632.08 84135.64 81507.88 78715.07 78471.94

2
79% 85% 91% 92% 93% 88% 93%

86728.32 80317.57 80431.61 78505.86 78550.34 78540.41 77438.99

3
63% 84% 84% 92% 90% 89 92%

91211.17 84436.42 82546.80 80466.22 78691.13 78144.62 78627.42

4
81% 92% 92% 90% 96% 94% 96%

86788.92 81076.87 79704.66 80032.76 77980.19 77136.83 75580.17

5
59% 54% 77% 76% 88% 92% 91%

93334.05 92368.72 88048.81 86315.99 81170.38 76130.42 77768.30

6
1% 32% 45% 62% 87% 90% 93%

99989.08 97195.04 95906.89 91813.69 83105.46 80479.18 78291.70

7
33% 59% 74% 71% 80% 90% 95%

97217.75 90119.24 89718.72 87589.66 83268.17 78213.40 78284.81

8
6% 50% 69% 70% 85% 94% 95%

99720.49 94409.41 88542.49 89541.02 82873.96 78983.65 78189.25

9
44% 61% 68% 74% 91% 89% 95%

95440.97 91484.43 87646.74 87221.28 78151.71 79294.21 77613.35

10 0% 0% 0% 0% 0%
16% 56%

98535.69 93547.39
No Elitism

0
85% 88% 92% 95% 95% 95% 94

83264.41 79521.29 78683.06 78733.66 77829.72 77960.86 79148.00

1
30% 74% 86% 82% 89% 88% 92%

98132.36 90100.46 84718.40 84605.64 80768.79 80283.13 79894.21

2
74% 92% 92% 94% 93% 95% 95%

88613.47 80472.08 79932.29 78718.43 77271.95 78857.49 76172.57

3
62% 86% 88% 89% 92% 97% 95%

94039.55 84023.41 81425.63 79838.93 77831.94 78117.67 78376.93

4
83% 92% 93% 98% 90% 93% 93%

84655.22 80158.74 79879.89 77569.49 78153.02 77655.90 77784.34

5
29% 42% 43% 53% 66% 84% 93%

95268.10 92692.33 91418.28 88893.36 84100.89 79270.36 78672.59

6 0%
9% 12% 26% 59% 82% 89%

99385.86 98633.38 96286.96 87265.87 80200.76 79989.41

7
25% 40% 48% 48% 67% 81% 88%

96783.49 92715.84 91968.87 90444.85 83522.93 79741.93 79447.61

8
5% 32% 41% 43% 71% 88% 96%

99780.98 95006.62 92756.55 91618.77 82310.38 78390.08 77734.65

9
33% 48% 47% 50% 69% 79% 92%

95163.12 91905.64 91211.35 88393.57 84288.04 80440.52 77513.32

10 0% 0% 0% 0% 0% 0% 0%

the efficiency ranking produced by GA, respecting exactly the order of the first two positions. Further, the
worst age types on IA continue to be the worst even on GA, and in particular in the last two positions appear
type 6 and type 10 respectively. Their bad performances are due to the high diversity they produce,
not allowing a relevant lifetime to perform a good exploration. Finally, this research work, having found a
common efficiency ranking between IA and GA, provides a reliable individuals maturation time in order to
optimize the evolutionary learning and yield robust and efficient performances on those problems that show
similar landscape topologies, and similar complexities to the problem considered.

6 Conclusion

In this paper we show how the age assignment, i.e. how many generations an offspring must remain into
the population, plays a crucial role on the performances of any evolutionary algorithm, since it is strictly
related to a correct balancing between the exploration and exploitation mechanisms. In this research work
we present an experimental study focused on understanding the right maturation time of each solution in
order to optimize the evolutionary learning, which means to perform a careful search process, and take
advantage of the information discovered as best as possible. Since this experimental study is based on a
previous one, conducted on an immune inspired algorithm, the main goal of this paper is to check and prove
that the achievements previously obtained continue to be valid, and work, on a genetic algorithm. In this
way, we can assert the existence of a reliable lifespan able to provide, with high probability, robust and
efficient performances for any population-based algorithm, especially in uncertainty environments.

13 sciencesconf.org:meta2018:193399



Maturation of Individuals in Evolutionary Learning

 0

 10

 20

 30

 40

 50

 60

 70

 80

type0 type1 type2 type3 type4 type5 type6 type7 type8 type9 type10

a
vg

 S
R

Age Assignment Types

Average Success Rate using Elitism

 0

 10

 20

 30

 40

 50

 60

 70

 80

type0 type1 type2 type3 type4 type5 type6 type7 type8 type9 type10

a
vg

 S
R

Age Assignment Types

Average Success Rate using No Elitism

Fig. 2. Average Success Rate over all performed trials for the elitism (left plot) and no elitism (right plot) variants.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

type0 type1 type2 type3 type4 type5 type6 type7 type8 type9 type10

a
vg

 S
R

Age Assignment Types

Average Success Rate  over all performed trials 

Fig. 3. Average Success Rate over all performed trials.

A classical genetic algorithm has been developed, based on the genetic operators: roulette-wheel-selection;
uniform crossover and flip mutation. The GA was properly adapted in order to reach the set out achievement,
adding an age assignment for each chromosome and introducing the aging operator, the use of which helps
the algorithm to escape from local optima. Eleven different age assignment types have been considered in
our study, each of which affects on the algorithm performances in different way: static ones; random ones;
and constructive change ones. Analysing the achievements obtained in this work, and comparing them with
the ones previously obtained by IA, it is possible to assert as the previous top 4 continue to be in the best
4 positions of the new efficiency ranking, keeping exactly the same order in the first two positions. In the
overall, it is possible also to say that the two efficiency rankings are approximately the same, except 2-3 po-
sitions that alternate each other. This then imply that the worst, or the two worst between the age assignment
types in IA continue to be the worst also in GA.

Having found a common efficiency ranking between IA and GA, points out the existence of a reliable
lifetime to be assigned to each individual - for any population-based algorithm - that with high probability
guarantees efficient and robust performance, especially when many information on the problem are not
known a priori. Of course these statements are valid on all those problems that show similar complexities
and similar landscape topologies to the problem tackled. In light of this, as future work, we want to test
and perform the same experimental study on a mathematical model, that is the NK-Model, which is able
to produce “tunable rugged” fitness landscapes. In this way we can test the achievements produced on
different roughness level of the landscape.

References

1. V. Cutello, A. G. De Michele, M. Pavone: “Escaping Local Optima via Parallelization and Migration”, VI Interna-
tional Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO), Studies in Computational
Intelligence, vol. 512, pp. 141–152, 2013.

14 sciencesconf.org:meta2018:193399



Calenda, Vitale, Di Stefano, Cutello, Talbi, Pavone

2. V. Cutello, G. Narzisi, G. Nicosia, M. Pavone: “Clonal Selection Algorithms: A Comparative Case Study using
Effective Mutation Potentials”, 4th International Conference on Artificial Immune Systems (ICARIS), LNCS 3627,
pp. 13–28, 2005.

3. A. Di Stefano, A. Vitale, V. Cutello, M. Pavone: “Document How long should offspring lifespan be in order to
obtain a proper exploration?”, 2016 IEEE Symposium Series on Computational Intelligence (SSCI), INSPEC
number 16670548 2016, pp. 1–8, 2016.

4. D. Goldberg: ”Genetic Algorithms in Search, Optimization, and Machine Learning”, Addison-Wesley publishing
company, 1989.

5. N. Kubota, T. Fukuda: ”Genetic Algorithms with Age Structure”, Soft Computing, vol. 1, pp. 155–161, 1997.
6. A. Ghosh, S. Tsutsui, H. Tanaka: ”Individual Aging in Genetic Algorithms”, Australian and New Zealand Confer-

ence on Intelligent Information Systems (ANZIIS), INSPEC number 5534628, pp. 276–279, 1996.
7. M. Pavone, G. Narzisi, G. Nicosia: ”Clonal Selection - An Immunological Algorithm for Global Optimization over

Continuous Spaces”, Journal of Global Optimization, vol. 53, no. 4, pp. 769–808, 2012.
8. A. Prugel-Bennett, A. Rogers: “Modelling Genetic Algorithm Dynamics”, Theoretical Aspects of Evolutionary

Computing, pp. 59-85, 2001.
9. J. D. Schaffer, L. J. Eshelman: “On crossover as an evolutionary viable strategy”, 4th International Conference on

Genetic Algorithms, pp. 61–68, 1991.
10. E. G. Talbi: “Metaheuristics: from Design to Implementation”, John Wiley & Sons, 2009.

15 sciencesconf.org:meta2018:193399


	Unsupervised aerial image classification using fly algorithm and the Parisian approach, Maiza Mohammed [et al.]
	Maturation of Individuals in Evolutionary Learning, Pavone Mario F. [et al.]
	Multi Objective Optimization and Bionic Optimization Strategies in Engineering Design, Steinbuch Rolf
	A Cuckoo Search Algorithm for the Flexible Ligand-Protein Docking problem, Khensous Ghania [et al.]
	A Parallel Primal Heuristic to solve a Integrated Production Planning and Scheduling Problem, Menezes Gustavo [et al.]
	WPBO: A New Metaheuristic Technique Inspired from Wolf Pack Behaviour, Toumi Abida [et al.]
	A hybrid meta-heuristic-based multi-agent for Industry 4.0, Tetouani Samir
	A constructive heuristic for two machine job shop scheduling problem under availability constraints on one machine, Benttaleb Mourad [et al.]
	A heuristic rule for ranking scientific journals based on citation impact, Lando Tommaso [et al.]
	Assessing Film Coefficients of Microchannel Heat Sinks, Cruz-Duarte Jorge Mario [et al.]
	Advanced portfolio optimization problems, Tichy Tomas
	A Matheuristic for the Rainbow Cycle Cover problem, Moreno Jorge [et al.]
	Solving Multiple Sequence Alignment Problem Using a Discrete Hybrid Particle Swarm Optimization Algorithm., Deschênes Hugo [et al.]
	Nature-inspired Deployment for Context-aware Services, Satoh Ichiro
	New hybrid differential evolution algorithm for multiple objective optimization, Gagné Caroline [et al.]
	On the Sensitivity of Grid-Based Parameter Adaptation Method, Tatsis Vasileios [et al.]
	Application of fuzzy smoothing filter in empirical copula function, Kresta Ales
	Machine-learning algorithms for portfolio optimization problems, Kouaissah Noureddine [et al.]
	An Innovative Heuristic Mixed-Integer Optimization Approach for Multi-Criteria Optimization based Production Planning in the context of Production Smoothing, Kamhuber Felix [et al.]
	New Approach for Continuous and Discrete Optimization: Optimization by Morphological Filters, Khelifa Chahinez [et al.]
	A Combined Data Mining and Tabu Search approach for Single Customer Dial-a-Ride Problem, Morais Ana Catarina [et al.]
	Fitting epidemiological models' parameters via multi-objective optimization, Ruiz Ferrández Miriam [et al.]
	Iterated-Greedy-Based Metaheuristic with Tabu Search and Simulated Annealing for Solving Permutation Flow Shop Problem, Mesmar Khadija [et al.]
	On VNS-GRASP and Iterated Greedy Metaheuristics for Solving Hybrid Flow Shop Scheduling Problem with Uniform Parallel Machines and Sequence Independent Setup Time, Aqil Said [et al.]
	Dual tree wavelet transform based denoising of images using subband adaptive thresholding via genetic algorithm, Boukhobza Abdelkader [et al.]
	A Bi-Objective Maintenance-Routing Problem; an efficient solving approach, Rahimi Mohammad [et al.]
	Heat exchanger network synthesis with an enhanced superstructure and hybrid metaheuristics, Pavão Leandro [et al.]
	Transformer's Health Index using Computational Intelligence, Alves Dos Santos Ramon [et al.]
	Application of the surrogate models for protein structure prediction, Rakhshani Hojjat [et al.]
	A Hybrid Genetic Algorithm for the job shop problem with transportation and blocking no wait constraints, Louaqad Saad [et al.]
	A randomized search procedure combined with simulated annealing for the capacitated location routing problem, Ali Lemouari
	Design and Parallel Implementation of the H264 application on Heterogeneous Architectures, Adda Chahrazed [et al.]
	A Parallel Adaptive Differential Evolution Algorithm for Electric Motor Design, Essaid Mokhtar [et al.]
	Virtual screening in electrostatic potential using an evolutionary algorithm, Puertas-Martín S. [et al.]
	Improved NSGAII Based on a Multiple-Criteria Decision Analysis Method for Business Process Optimization, Mahammed Nadir [et al.]
	Efficient Generic Support for Global Routing Constraints in Constraint-Based Local Search Frameworks, Meurisse Quentin [et al.]
	A New Hidden Markov Model Approach for Pheromone Level Exponent Adaptation in Ant Colony System, Bouzbita Safae
	An algorithm based on dimensionality reduction through parameterized curves to solve a class of non-convex global optimization, Mohamed Rahal
	Metaheuristics for Agent based Intelligent Evacuation System, Hajjem Manel [et al.]
	Vector-Quantization Codebook Generation using LBG and Meta-Heuristic Algorithms, Boubechal Ikram [et al.]
	Multi-gene genetic programming for feature selection in DNA Microarrays, Sfaksi Sara [et al.]
	A modified cuckoo search algorithm for unsupervised satellite image classification, Kaouter Labed
	Embedded System for Template Matching using Swarm Intelligence, De V. Cardoso Alexandre [et al.]
	A parallel BSO metaheuristic for molecular docking problem, Saadi Hocine [et al.]
	One-Class Subject Authentication using Feature Extraction by Grammatical Evolution on Accelerometer Data, Mauceri Stefano [et al.]
	A heuristic approach for standalone clinical laboratory layout design, Faramarzi Oghani Sohrab [et al.]
	Optimizing injection blow molding by neuroevolution, Silva Hugo [et al.]
	Reducing environmental impacts in heat exchanger networks using Life Cycle Assessment and metaheuristic optimization techniques, Pavão Leandro [et al.]
	Energy efficient scheduling of a multi-states and multi-speeds single machine system, Aghelinejad Mohsen [et al.]
	Meta-heuristics for global reliability optimization of solder joints in electronic devices, Hamdani Hamid [et al.]
	Dynamic Programming heuristic for k-means Clustering among a 2-dimensional Pareto Frontier, Dupin Nicolas [et al.]
	The Evaluation-times Constrained Optimization (ECO) Problem and Its General Solver Model, Tamura Kenichi
	A pickup and delivery problem with multi-trips, multi- ux, multi-vehicles and break placement, Noumbissi Tchoupo Moïse Aimé [et al.]
	Iterated Local Search for the Integrated Single Item Lot Sizing Problem for a Flow Shop Configuration With Energy Constraints, Rodoplu Melek
	Estimation-based algorithm for a stochastic one-commodity pick-up & delivery travelling salesman problem, Hadjadj Mohamed Seddik [et al.]
	APM-MOEA : An asynchronous parallel model for multi-objective evolutionary algorithms, Mazière Florian [et al.]
	Quaternion simulated annealing for large-scale unconstraint continuous optimization problems, El Afia Abdellatif [et al.]
	A new cut-based genetic algorithm for graph partitioning applied to cell formation, Boulif Menouar
	Optimization of an Underground Water Pipeline Building using Swarm Intelligence Algorithm PSO, Bellala Djamel [et al.]
	A Genetic Algorithm for selecting feature extraction strategy and data mining algorithm to optimize GPCR classification, Bekhouche Safia [et al.]
	A new domain decomposition method for a reaction advection diffusion equation, Mohamed Ridouan Amattouch
	Planet Wars: an Approach Using Ant Colony Optimization, Baldominos Alejandro [et al.]
	A Steganographic embedding scheme using Improved-PSO approach, Yamina Mohamed Ben Ali
	Backpropagation and PSO-GA based Optimizations for a Neural Network Classification of Engine Fault Signals, Mjahed Soukaina [et al.]
	Customer Order Scheduling by Scattered Wolf Packs, Riahi Vahid [et al.]
	For solving the multi-depot fleet size and mix open vehicle routing problem, Ismail Sabrine [et al.]
	Evolutionary operators in memetic algorithm for matrix tri-factorization problem, Hribar Rok [et al.]
	IP Assignment Optimization for an Efficient NoC-based System using Multi-objective Differential Evolution, Bougherara Maamar [et al.]
	A modified fixed point method for biochemical transport, Mohamed Ridouan Amattouch
	Multi-objective optimization of the integrated problem of location assignment and straddle carrier scheduling in maritime container terminal at import, Dkhil Hamdi [et al.]
	A hybrid algorithm based on Particle Swarm Optimization and Simulated Annealing for electrical power transmission, Zemzami Maria [et al.]
	Modelling the shortest Hamiltonian circuit problem in superimposed graphs with Distributed Constraint Optimization Problems, Bouazzi Khaoula [et al.]
	Optimization of Vehicle Routing Problem in the Context of Reverse Logistics of Handling Containers in Closed Loop, Bouanane Khaoula
	Pricing & Lot Sizing problem in a hybrid manufacturing/ remanufacturing system with one-way substitution option, Zouadi Tarik [et al.]
	Dynamic Simulated Annealing with Adaptive Neighborhood using Hidden Markov Model, Lalaoui Mohamed [et al.]
	Fast Generation of Combinatorial Objects, Parque Victor [et al.]
	Genetic Algorithms for Optimizing Nanostores' Routing in Emerging Markets, Sabiri Asmaa [et al.]
	A cooperative multi-swarm particle swarm optimizer based hidden Markov model, Aoun Oussama [et al.]
	Exact and multi-objective evolutionary-based approaches for process plan generation in a reconfigurable manufacturing environment, Touzout Fayçal A. [et al.]
	A new heuristic method for a dynamic pricing and production problem, Couzon Paulin [et al.]
	Haralick Texture Features Selection For Ultrasound Image Segmentation By Multigene Genetic Programming, Fatma Zohra Benabdallah [et al.]
	An Energy-Efficient Permutation Flowshop Scheduling, örnek Mustafa Arslan
	A Binary Genetic Algorithm for Solving Bi-Objective Multidimensional Knapsack Problem, Kabadurmuş özgür
	An Agent-Based Label Propagation Algorithm for Community Detection, Fiscarelli Antonio Maria
	Forecasting patients flow at an emergency department, Sadeghi Rezvan [et al.]
	Single-objective Real-parameter Optimization:Enhanced LSHADE-SPACMA Algorithm, Hadi Anas [et al.]
	Wifi emitters deployment for fingerprinting localization using genetic algorithm, Mourad-Chehade Farah [et al.]
	Author Index
	first_page_proceedings.pdf

