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Abstract. Multiple sequence alignment (MSA) is one of the most im-
portant tasks in biological sequence analysis. This paper will primarily
focus on on protein alignments, but most of the discussion and method-
ology also applies to DNA alignments. A novel hybrid clonal selection al-
gorihm, called an aligner, is presented. It searches for a set of alignments
amongst the population of candidate alignments by optimizing the classi-
cal weighted sum of pairs objective function. Benchmarks from BaliBASE
library (v.1.0 and v.2.0) are used to validate the algorithm. Experimental
results of BaliBASE v.1.0 benchmarks show that the proposed algorithm
is superior to PRRP, ClustalX, SAGA, DIALIGN,PIMA, MULTIALIGN,
and PILEUP8. On BaliBASE v.2.0 benchmarks the algorithm shows in-
teresting results in terms of SP score with respect to established and
leading methods, i.e. ClustalW, T-Coffee, MUSCLE, PRALINE, Prob-
Cons, and Spem.

Keywords: bioinformatics, multiple sequence alignment, protein sequ-
ences, immune algorithms, clonal selection algorithms, hypermutation
operator.

1 Introduction

Proteomics Multiple Sequence Alignment (MSA) plays a central role in molecular
biology, as it can reveal the constraints imposed by structure and function on
the evolution of whole protein families [1]. MSA has been used for building
phylogenetic trees, identification of conserved motifs, and predicting secondary
and tertiary structures for RNA and proteins [2].
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In order to be able to align a set of bio-sequences a reliable objective function
able to measure an alignment in terms of its biological plausibility through an
analytical or computational function is needed. Alignment quality is often the
limiting factor in the analysis of biological sequences — defining an appropri-
ate and efficient objective function can remove this limitation. It is an active
research field [3]. A simple objective function to optimize is the weighted sums-
of-pairs (SP) with affine gap penalties [4], where each sequence receives a weight
proportional to the amount of independent information it contains [5] and the
cost of the multiple alignment is equal to the sum of the cost of all the weighted
pairwise substitutions.

This research paper proposes a Hybrid Clonal Selection Algorithm (CSA)
which incorporates specific perturbation operators for MSA of amino-acids se-
quences. The obtained results show that the proposed Immune Algorithm is
comparable to state-of-art algorithms.

2 The Multiple Sequence Alignment Problem

To determine if two biological sequences have common sub-sequences is the most
popular sequence analysis problem. As described in [2] there are four fundamen-
tal topics: (1.) what kinds of alignment should be considered; (2.) the scoring
function adopted to evaluate alignments; (3.) the alignment algorithm designed
to find optimal (or suboptimal) scoring alignments; (4.) the statistical meth-
ods used to assess the significance of an alignment score. This paper focuses on
the key issues of design and efficient implementation of alignment algorithms
of finding optimal and suboptimal alignments of protein structures — but the
technique is also applicable to DNA alignments.

Definition 1 [Sequence Alignment]. Let S = {S1, S2, . . . , Sn} be a set of n
sequences (strings) over a finite alphabet Σ, each sequence Si consisting of �i

ordered characters si,j :

Si = si,1si,2 . . . si,�i , ∀i = 1, 2, . . . , n

Let Σ̂ a new alphabet: Σ̂ = Σ ∪ {−} by adding the symbol dash ’-’ to represent
gaps.

Then a set Ŝ = {Ŝ1, Ŝ2, . . . , Ŝn} of sequences over the alphabet Σ̂ is called a
sequence alignment of the set of sequence S, if the following properties are
fulfilled:

1. All strings in Ŝ have the same length �̂ with

max
i=1...n

(�i) ≤ �̂ ≤
n∑

i=1

�i.

Ŝ can be interpreted as n × �̂ matrix where the i−th row contains string Ŝi.
2. Ignoring gaps, sequence Ŝi is identical with sequence Si, ∀i = 1, 2, . . . , n.
3. Ŝ has no columns that contains gaps only.
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When n = 2 a pairwise sequence alignment is found, with n ≥ 3 multiple sequence
alignment. Solving the sequence alignment problem requires a scoring function
to evaluate alignments. A simple scoring function is a distance function (another
scoring function is the similarity approach). Having a distance function d(Ŝi, Ŝj)
for any aligned sequences Ŝi and Ŝj, the pairwise alignment problem can be
stated as follows:

Definition 2 [Pairwise alignment problem]. Let S = {S1, S2} be a set of 2
sequences over the alphabet Σ. Compute the alignment Ŝ = {Ŝ1, Ŝ2} of S over
the alphabet Σ̂ that minimises the distance d(Ŝ1, Ŝ2).

Hence, the multiple sequence alignment problem can be stated as follows:

Definition 3 [Sum-of-pairs multiple alignment problem]
Let S = {S1, S2, . . . Sn} be a set of n sequences over the alphabet Σ. Compute
the alignment Ŝ = {Ŝ1, Ŝ2, . . . , Ŝn} of S over the alphabet Σ̂ that minimises the
sum of the distance over all pairs Ŝi, and Ŝj :

min
Ŝ

=
( n−1∑

i=1

n∑

j=i+1

d(Ŝi, Ŝj)
)

The scoring functions previously defined are too simple to be used when aligning
real biological sequences. A scoring function needs to be based on the similarity
of the characters occurring in the sequences, e.g. amino-acids. For instance, for
two amino-acids, aai and aaj , we need a measure of the probability that they
have a common ancestor, or that one aa is the result of one or several mutations
of the other. This measure can be formulated as follows:

Definition 4 [Scoring matrix]. Let M be a � × � scoring matrix, where � is
the cardinality of the alphabet Σ, which for any two characters a and b of the
alphabet Σ has the following properties:

1. M(a, b) = M(b, a), ∀a, b ∈ Σ,
2. M(a, −) = GEP, where GEP is a fixed gap penalty,
3. M(−, −) = 0.

In general a gap of lenght h has a penalty score of h × GEP, where GEP < 0 is
the fixed gap (extension) penalty. This is called the linear gap penalty function.
From a biological point of view a more appropriate penalty score is the affine gap
penalty function, (AGPS): given an aligned sequence Ŝi, the first gap receives a
gap opening penalty, GOP < GEP < 0, which is stronger than penalty for gap
extending spaces. Hence, a gap of lenght h has a cost of GOP +(h−1)GEP. The
most common scoring matrices are the PAM and BLOSUM series. These scoring
matrices have been developed based on observed mutations in the nature. In
order to minimise redundant information, based on the relatedness of the given
sequences, each sequence usually receives a weight proportional to the amount
of independent information it contains. This kind of information can be derived
from a phylogenetic tree for the sequences.
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Definition 5 [Weighted symbol score]. Let W be such a weight matrix for
every pair of aligned sequences. Then the weighted symbol score for the aligned
sequences Ŝi Ŝj is defined as:

WSS(Ŝi, Ŝj) = Wij

�̂∑

k=1

M(ŝi,k, ŝj,k)

Sequence weights can be determined by constructing a guide tree from known
sequences — this is the approach used in this paper. These definitions lead to
the most common faced sum-of-pairs multiple alignment problem: optimizing a
weighted sum-of-pairs function with affine gap penalties.

Definition 6 [Sum-of-pairs multiple alignment problem]
Let S = {S1, S2, . . . , Sn} be a set of n sequences over the alphabet Σ. Compute
the alignment Ŝ = {Ŝ1, Ŝ2, . . . , Ŝn} of S over the alphabet Σ̂ that maximises the
weighted symbol score and the affine gap penalty score for all aligned sequences Ŝi :

max
Ŝ

(
n−1∑

i=1

n∑

j=i+1

WSS(Ŝi, Ŝj) +
n∑

i=1

AGPS(Ŝi)

)
(1)

For multiple protein sequence alignment, the weighted sum-of-pairs with affine
gap penalties is a popular objective function included in many MSA packages.
The problem of finding the multiple alignment was investigated in [6] and [7], and
proved to be a NP-hard problem. However, the results presented in [7] was proved
using a not metric scoring matrix (zero distance between two identical residues),
which is different from the actual scoring matrices used in multiple alignments.
Therefore, in [6], the authors improved the previous investigation using a fixed
metric score matrix through a reduction from the Minimum Vertex Cover, a
classical NP complete problem [8]. Multiple sequence alignment (MSA) decision
problems can be formulated as: given a set S = {S1, . . . , Sn} of sequences, a
sum-of-pairs objective function, and an integer C. MSA checks for alignments of
S, which have value C or less.

3 Hybrid Clonal Selection Algorithm

This work presents a Clonal Selection Algorithm (CSA) [30] with new hypermu-
tation operators for solving the multiple sequence alignment problem. CSAs are
a special class of Immune algorithms (IAs) inspired by the human Clonal Se-
lection Principle [31]. They are effective methods for search and optimization in
real-world applications. The algorithm is population based where each individ-
ual of the population is a candidate solution belonging to the fitness landscape
of a given computational problem. It uses two different methodologies to create
the initial population, as well as new hypermutation operators which insert or
remove gaps in the sequences.

Gap columns which have been matched are moved to the end of the sequence.
Next the remaining elements (amino acids in this work) and existing gaps are
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shifted into the freed space. The designed CSA considers only two immunolog-
ical entities: antigens (Ags) and B cells. The Ag is the problem to solve, i.e. a
given MSA instance, and B cells are the candidate solutions, i.e. a set of align-
ments, that have solved (or approximated) the initial problem [32,33]. Tackling
the multiple sequence alignment problem Ags and B cells are represented by a
sequences matrix.

Let Σ = {A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V } be the al-
phabet, where each symbol represents twenty amino acids and let S = {S1, S2,
. . . , Sn} be the set of n ≥ 2 sequences with length {�1, �2, . . . , �n}, such that Si ∈
Σ∗. Therefore, an Ag is represented by a matrix of n rows and max{�1, . . . , �n}
columns, whereas for the B cells a (n × �) matrix was used, with � = (3

2 ·
max{�1, . . . , �n}). These values where taken from experimental the proposed al-
gorithm was able to develop more compact alignments. In particular, for the B
cells a binary matrix was used, where s

′

i,j = 0 refers to a gap in the alignment
and s

′

i,j = 1 to a residue with 1 ≤ i ≤ n and 1 ≤ j ≤ �.

A Initialize the Population

Two different strategies were used to create the initial population (t = 0) of
candidate alignments. The first strategy, random initialization, is based on the
use of random “offsets” to shift the initial sequences in the following way: an
offset is randomly chosen in the range [0, (� − �i)] by a uniform distribution and
then the sequence Si is shifted from an offset positions towards the right side of
the row i, of the current B cell.

A second way to initialize the population was analyized, seeding the initial
population with CLUSTALW and CLUSTALW-seeding. However, a percentage
of the population was initialized using the offsets strategy described above to
avoid the algorithm getting trapped in a local optima. Hence, the second strategy
creates a percentage of initial alignments using CLUSTALW and the remaining
alignments are determined by a random offsets creation.

Preliminary experimental results show that the proposed algorithm achieves
better performance using the second strategy. Therefore, all results shown in
this paper were obtained using a combination of the two previously introduced
strategies (80% of B cell population by CLUSTALW seeding and 20% of B cell
population by random initialization using the random offsets).

The presented hybrid IA incorporates the classical static cloning operator,
which clones each B cell dup times producing an intermediate population P

(clo)
Nc

of Nc = d × dup B cells, where d is the population size).
The basic mutation processes which are considered in pairwise alignment and

multiple sequence alignments are: substitutions which change sequences of amino
acids, as well as insertions and deletions which add or remove amino acids and/or
gaps. In a first version of the algorithm the classical hypermutation and hyper-
macromutation operators where used: first operator flips a bit, using a number of
mutations inversely proportional to the fitness function value [34], whereas the
hypermacromutation simply swaps two randomly choosen subsequences. How-
ever, the first experiments produced non optimal alignments obtained, leading
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Table 1. Pseudo-code of the proposed hybrid immune algorithm for the MSA

Hybrid Immune Algorithm(d, dup, τB, Tmax)
1. t ← 0;
2. FFE ← 0;
3. Nc ← d × dup;
4. P

(t)
d ← Initialize Population(d);

5. Strip Gaps(P (t)
d );

6. Evaluate(P (t)
d );

7. FFE ← FFE + d;
8. while (FFE < Tmax)do
9. P

(clo)
Nc

← Cloning (P (t)
d , dup);

10. P
(gap)
Nc

← Gap operators (P (clo)
d );

11. Strip Gaps(P (gap)
Nc

);
12. Evaluate(P (gap)

Nc
);

13. FFE ← FFE + Nc;
14. P

(block)
Nc

← BlockShuffling operators (P (clo)
d );

15. Compute Weights();
16. Normalize Weights();
17. Strip Gaps(P (block)

Nc
);

18. Evaluate(P (block)
Nc

);
19. FFE ← FFE + Nc;
20. (aP

(t)
d , aP

(gap)
Nc

, aP
(block)
Nc

) = Elitist-Aging(P (t)
d , P

(gap)
Nc

, P
(block)
Nc

, τB);
21. P

(t+1)
d ← (μ + λ)-Selection(aP

(t)
d ,a P

(gap)
Nc

,a P
(block)
Nc

);
22. t ← t + 1;
23. end while

to frequent premature convergence to the local optimal during the convergence
process. Therefore, we have developed new hypermutation operators, specific to
the multiple sequence alignments, which insert or remove gaps in the sequences
— called GAP operator or BlockShuffling operator.

B GAP Operator

This operator acts on the cloned B cells generating a new population P
(gap)
Nc

.
It is based on two procedures, one inserts (InsGap), and the other removes
(RemGap) adjacent sequences of gaps. Initially, the GAP operator chooses what
procedure to apply using a random uniform distribution, i.e. if a number of
adjacent gaps needs to be inserted into the sequences or removed. Then a number
k, in the range [1, θ], of (adjacent) gaps is randomly choosen, where θ represents
a percentage of the alignments length. After several experiments setting θ = 2%
was obtained.

The InsGap procedure can be summarize in the following steps: split the
n sequences in z groups. During the experimental tests, z = 2 has been the best
setting for the performances of the proposed algorithm. Hence, we can rephrase
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this step as follows: randomly choose a value m ∈ [1, n[, and split the n sequences
into two groups: 1st group from 1 to m sequences, and 2nd group from (m + 1)
to n; randomly choose two integer values x and y, in such way that k adjacent
gaps are insterted beginning from column x for the first group, and from column
y for the second group; randomly choose a subsequence shift direction D, either
left or right; finally, to insert the k adjacent gaps in the relative positions for
each sequence, and shift the subsequence to the D direction. During the shifting
phase, it is possible to miss n ≥ 0 bits with value 1; in this case, InsGap will
select n bits with value 0, different from the k gaps inserted, and they will be
flipped to 1, rebuilding the correct sequence. Figure 1, plot (a), shows an example
of how the InsGap procedure works, with k = 3, m = 2 and right shift direction.

Fig. 1. GAP operator has the purpose to insert, by InsGap procedure (a), or remove,
by RemGap procedure (b), adjacent gaps into the proposed alignment

RemGap procedure, simply, remove k adjacent gaps, and move the sub-
sequences towards a randomly chosen direction, either left or right. Plot (b) of
figure 1 shows an example of such an operator.

C BlockShuffling Operator

The second perturbation operator is the BlockShuffling operator, which
is based on the block definition. This operator moves aligned blocks left or right:
a block is selected in each alignment starting from a random point in a se-
quence.Three different approaches where developed: BlockMove moves whole
blocks either to the left or to the right; BlockSplitHor divides the blocks in
two levels, upper and lower, and shifting only one level, randomly chosen; and
BlockSplitVer, which randomly choose a column in the block which divides
it into two sides (left and right), and shifting only one side, randomly chosen as
well. Figure 2 summarizes the three operators.

Finally, the function Strip Gaps(P (∗)) moves matched gap columns to the
right end side of the matrix. This function is always applied before the fitness
function is evaluated.
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Fig. 2. BlockShuffling operator has the purpose to shifting blocks of amino acids
or gaps. Upper plot shows the BlockMove operator; middle plot drawing how Block-
SplitHor works, choosing the 4th row to divide the block in two level; lower plot shows
BlockSplitVer operator performing a right shift.

Evaluate(P ) computes the sum-of-pairs objective function of each B cell in
the population P , i.e. the proposed alignment quality, using the equation 1.

The aging operator, used by the algorithm eliminates old B cells in the pop-
ulations P

(t)
d , P

(gap)
Nc

and P
(block)
Nc

, whilst maintaining high diversity in order to
avoid premature convergence. The maximum number of generations a B cell can
remain in the population is determined by the parameter τB :. When a B cell
reaches τB + 1 it is erased from the current population, even if it is a good can-
didate solution. The only exception is made for the best B cell present in the
current population: (Elitist-Aging).

A new generation P
(t+1)
d of d B cells is obtained by selecting the ”survivors”

after the aging operator was applied to the populations — the resulting pop-
ulations are: aP

(t)
d , aP

(gap)
Nc

and aP
(block)
Nc

. The (μ + λ)-selection operator (with
μ = d and λ = 2Nc) reduces an offspring B cell population of size λ ≥ μ to a new
parent population of size μ. Such a selection operator guarantees monotonicity
in the evolution dynamics.

Finally, Tmax is the maximum number of fitness function evaluations and the
termination criterion.

Table 1 shows the pseudo-code of the described hybrid immune algorithm.
The functions Compute Weights() and Normalize Weights() compute and
normalize the weights of the sequences using a rooted tree, which is used for the
evaluation of the objective function.
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4 The State-of-Art Methods for MSA

The most popular method to solve MSA is based on Dynamic Programming (DP)
[9], which guarantees a mathematically optimal alignment. However, the method
is limited to a small number of short sequences, since the size of the problem
space increases with the number of sequences and their length. To overcome this
problem several heuristic approaches, based on different strategies, have been
developed to effectively deal with the computational complexity of the problem.

All current methodologies of multiple alignment are heuristics and can be
classify in three main categories: progressive alignments, exact algorithms and
iterative alignments.

Progressive Alignments. In progressive alignment methods multiple alignments
are performed, first aligning the closest sequences and then the more distant
ones are added. Although this approach has the advantage of being simplistic
and very fast, it does not guarantee any level of optimization.

Therefore, the main drawback of this approach is that once a sequence
has been aligned it cannot be modified, causing possible conflicts with suc-
cessively added sequences. Alignment programs based on this approach are
MULTALIGN [10], PILEUP [11], CLUSTALX [12], CLUSTALW [13], T-

COFFEE [14]. Their strategy is to align sequences in a progressive manner us-
ing a consistency-based objective function in order to minimize possible errors.
SPEM (sequence and Secondary-structure Profiles Enhanced Multiple align-
ment) [15] combines a sequence-based method with a consistency-based refine-
ment for pairwise alignment, a progressive algorithm for multiple alignment and
PROBCONS [16] a practical tool for progressive protein multiple sequence
alignment based on probabilistic consistency which is a novel scoring function
for measuring alignment quality.

Exact algorithms. In contrast to the previous approach, PIMA [17] uses local
dynamic programming to align only the most conserved motifs. In the default
setting it makes use of two alignment methods, maximum linkage and sequen-
tial branching, to decide the order of alignments ML PIMA and SB PIMA

respectively. Exact algorithms were developed to align multiple sequences simul-
taneously [18]. High memory requirement, high computational effort and limi-
tation on the number of sequences limit their usage. A new divide and conquer
algorithm [19] extending their capabilities was developed.

Iterative alignments. Iterative alignment methods depend on algorithms able
to produce an alignment and to refine it through a series of iterations until
no further improvements can be made. They are based on the idea that the
solution to a given problem can be computed by modifying an already existing
sub-optimal solution. Aligners which are based on this approach are:

– DIALIGN [20,21], a consistency-based algorithm which attempts to use lo-
cal information in order to guide a global alignment, i.e. to construct multiple
alignments based on segment-to-segment comparisons — such segments are
incorporated into a multiple alignment using an iterative procedure.
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– PRRP [22] optimizes a progressive global alignment by iteratively dividing
the sequences into two groups which are realigned using a global group-to-
group alignment algorithm.

– HMMT [23] is based on Hidden Markov Model (HMM), using simulated
annealing (SA) to maximize the probability that a HMM represents the
sequences to be aligned.

– MUSCLE (multiple sequence comparison by log-expectation) [24] is based
on similar strategies used by PRRP.

– SAGA (Sequence Alignment by Genetic Algorithm) [25] is a genetic algo-
rithm based on COFFEE (Consistency Objective Function For alignmEnt
Evaluation) objective function [26]. The model described in SAGA has re-
ceived considerable interest in the evolutionary computation community.

– Another iterative alignment method is Praline [27]; it begins with a prepro-
cessing of the sequence to align.

In general, Evolutionary Algorithms tend to be suitable tools for the MSA
[28] and can be used to effectively search in large solution spaces. But they
spend a lot of time gradually improving potential solutions before reaching a
solution comparable to deterministic methodologies [29]. This is due to a random
initialization of the candidate alignments.

5 Results

The immune algorithm presented has been tested on the classical benchmark
BaliBASE version 1.0 and version 2.0. BAliBASE (Benchmark Alignment data-
BASE) [36] is a database developed to evaluate and compare all multiple align-
ments programs containing high quality (manually refined) multiple sequence
alignments.

BAliBASE is divided into two versions: the first version contains 141 reference
alignments and is divided into five hierarchical reference sets containing twelve
representative alignments. Moreover, for each alignment the core blocks are de-
fined. They are the regions which can be reliably aligned and they represent
58% of residues in the alignments. The remaining 42% are in ambiguous regions
which cannot be reliably aligned.

Reference 1 contains alignments of equi-distant sequences with similar length,
reference 2 contains alignments of a family (closely related sequences with > 25%
identity) and 3 ”orphan” sequences with < 20% identity, reference 3 consists of
up to four families with < 25% identity between any two sequences from differ-
ent families and references 4 and 5 contain sequences with large N/C-terminal
extensions or internal insertions. For an extensive explanation of all references
please refer to [3].

In the second version, BAliBASE v.2.0 [37], all alignments present in the first
version have been manually verified and it includes three new reference sets:
repeats, circular permutations and transmembrane proteins. It consists of 167
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Table 2. SP values given by several methods on the BAliBase v.1.0 benchmark
(http://bips.u-strasbg.fr/fr/Products/Databases/BAliBASE/) for multiple sequence
alignment

Aligner Ref 1(82) Ref 2(23) Ref 3(12) Ref 4(12) Ref 5(12) Overall(141)
Hybrid CSA 80.7 88.6 77.4 70.2 82.0 79.7
DIALIGN [20] 77.7 38.4 28.8 85.2 83.6 62.7
CLUSTALX [12] 85.3 58.3 40.8 36.0 70.6 58.2
PILEUP8 [11] 82.2 42.8 33.3 59.1 63.8 56.2
ML PIMA [17] 80.1 37.1 34.0 70.4 57.2 55.7
PRRP [22] 86.6 54.0 48.7 13.4 70.0 54.5
SAGA [25] 70.3 58.6 46.2 28.8 64.1 53.6
SB PIMA [17] 81.1 37.9 24.4 72.6 50.7 53.3
MULTALIGN [10] 82.3 51.6 27.6 29.2 62.7 50.6

Table 3. Alignment accuracies given by several methods on the the BAliBASE v.2.0
benchmark (http://bips.u-strasbg.fr/fr/Products/Databases/BAliBASE2/) for multi-
ple sequence alignment [15]

Aligner Ref 1(82) Ref 2(23) Ref 3(12) Ref 4(12) Ref 5(12) Overall(141)
SP CS SP CS SP CS SP CS SP CS SP CS

SPEM [15] 90.8 83.9 93.4 57.3 81.4 56.9 97.4 90.8 97.4 92.3 91.5 78.6
MUSCLE [24] 90.3 84.7 64.4 60.9 82.2 61.9 91.8 74.8 98.1 92.1 91.0 78.7
ProbCons [16] 90.0 83.9 94.0 62.6 82.3 63.1 90.9 73.6 98.1 91.7 90.8 78.4
T-Coffee [14] 86.8 80.0 93.9 58.5 76.7 54.8 92.1 76.8 94.6 86.1 88.2 74.6
PRALINE [27] 90.4 83.9 94.0 61.0 76.4 55.8 79.9 53.9 81.8 68.6 88.2 73.9
ClustalW [13] 85.8 78.3 93.3 59.3 72.3 48.1 83.4 62.3 85.8 63.4 85.7 70.0
Hybrid CSA 82.7 65.3 91.9 41.3 78.6 36.2 70.5 31.9 83.6 56.9 81.4 46.3

reference alignments with more than 2100 sequences. The three new references
contain 26 protein families with 12 distinct repeat types, 8 transmembrane fam-
ilies and 5 families with inverted domains.

Table 2 shows the average SP score obtained by the described alignment tools
on every instance set of BAliBASE v.1.0. The values refer to the Sum of Pairs
score, calculated by the ”baliscore.c” program. As it can be seen in the table,
Hybrid CSA performs well on the Ref 2 and Ref 3 sets. The values obtained aid
to raise the overall score, which is higher compared to the results published by
the Bioinformatic platform of Strasbourg1.

Table 3 shows the average SP and Column Score (CS) values obtained by
the compared tools on every group of instances belonging to the BAliBASE
v.2.0 database. The Column Score is defined as the number of correctly aligned
columns present in the generated alignments, divided by the total number of
aligned columns in the core blocks of the reference alignment.

1 http://bips.u-strasbg.fr/fr/Products/Databases/BAliBASE/
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The values used in table3 are drawn from data reported in [15]. Hybrid CSA
obtains comparable values of SP score on Ref 1, Ref2 and Ref 5 — despite the
fact that the value obtained on Reference 3 is the fourth best value. This table
also shows that future effort should focus on improving the CS metric.

6 Conclusions and Future Works

Experimental results of benchmark BaliBASE v.1.0 show that the proposed algo-
rithm is superior to PRRP, ClustalX, SAGA, DIALIGN, PIMA, MULTIALIGN
and PILEUP8. Whilst on BaliBASE v.2.0 the algorithm shows interesting re-
sults in terms of SP score with respect to established and leading methods, e.g.
ClustalW, T-Coffee, MUSCLE, PRALINE, ProbCons and Spem.

A strong point of the IA is the ability of generating more than a single align-
ment for every MSA instance. This behaviour is due to the stochastic nature
of the algorithm and the populations evolved during the convergence process.
Another advantage of the aligner is that the alignment process is not affected by
the presence of distant sequences in the starting protein set. As shown by the
experimental results, the scoring function used by the IA produces high SP val-
ues and low CS scores, therefore future work will first focus on the improvement
of the CS score values using the T-Coffee scoring function. The second step will
be the more accurate tuning of the parameters and the operators in order to
improve the convergence speed.
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