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Abstract

Knowing every single component of a given biological sys-
tem is not enough to understand the complexity of the system
but rather it becomes crucial to understand how these com-
ponents interact with each others. It is not only important
the knowledge of genes and proteins, but also knowing their
structures and primarily the laws and parameters governing
their dynamics, which is often unknown and impossible to
measure directly. The Gene Regulatory Networks explain ex-
actly how a genomic sequence encodes the regulation of ex-
pression of sets of genes, which progressively generate de-
velopmental patterns, and execute the construction of multi-
ple states of differentiation. Their main aim is to represent
the regulation rules underlying the gene expression. In this
work we have designed the CMA-ES algorithm to infer the
parameters in the S-system model of a gene regulatory net-
work. This model is a well-known mathematical framework
whose structure is rich enough to capture many relevant bi-
ological details, and it can model more complicated genetic
network behaviour. CMA-ES has been compared against 7
state-of-the-art algorithms to evaluate its efficiency and its ro-
bustness. From a general point of view, it seems clear how
CMA-ES is able to estimate in a better way the target pa-
rameters with respect to the state-of-the-art methods, either
in terms of success rate or in terms of Euclidean distance. Fi-
nally, this research paper includes a study on the convergence
of CMA-ES through Time-To-Target plots, which are a way
to characterize the running time of stochastic algorithms; and
a global sensitivity analysis method, the Morris algorithm.

Introduction
In the past few years studying how a system interacts
with the environment, or how simple components effect the
global behaviour of a given system, or even how parts of a
system interact with each others has been the main and most
challenging issue in many research areas. Many problems in
science and engineering are often hard to solve mainly be-
cause of the difficulty in understanding their indirect causes
and effects, which are not related in an obvious way. Assess-
ing all the single parts of a structure, or knowing all single
components of a given system is not enough to determine
and understand the complexity of system, although we need
to know how these objects interact. It is also well known that

the information on the complex molecular features are con-
tained in the genome of the organism, but is not clear what
are the codes and mechanisms that translate the sequences
into structures and functions. For example, from systems bi-
ology point of view, it is not only important a knowledge of
genes and proteins, but it is of primary importance under-
standing their structures, dynamics, and how their param-
eters influence the global dynamics: such parameters are
unknown and often impossible to measure directly. More-
over, studying dynamic properties of a biological system is
not only very important to gain a deep understanding of bi-
ological processes, but also to develop efficient treatments
against diseases. In systems biology reverse engineering the
processes can be regarded as a central part of the discipline
itself (Lee, 2005). Reverse engineering can be considered
as a process from which is possible to infer structural and
dynamics features of a given system from external observa-
tions and relevant knowledge. Thanks to that, today reverse
engineering techniques play a central role in systems biol-
ogy (Csete and Doyle, 2002; D’haeseleer et al., 2000). The
main focus in reverse engineering field is the identification
of genetic networks (Cho et al., 2007) in order to learn how
transcription factors are connected to genes (the determina-
tion of the interactions between all genes and understanding
of the regulatory networks are crucial to identify and develop
novel drugs), and understand the gene expression profile that
is a major issue in computational biology. In other words,
reverse engineering can help us to answer questions as: (1)
what are the functions of this gene? (2) which genes regulate
this gene? (3) how several genes interact? (4) which genes
are responsible for this disease? (5) which drugs will treat
this disease? Of course, a method to interpret these answers
is needed, in order to enhance our learning of living organ-
isms. Gene Regulatory Networks (GRNs) explain exactly
in which way genomic sequences encode the regulation of
expression of sets of genes that progressively generate de-
velopmental patterns and execute the construction of mul-
tiple states of differentiation (Davidson and Levin, 2005).
The main aim of GRN is to represent the regulation rules
underlying the gene expression. Albeit the study of GRNs



nowadays is made easier thanks to the advances of new tech-
nologies however the solution to the problem is not trivial
due to the enormously large space of the unknown parame-
ters. In the last years several reverse engineering methodolo-
gies based on evolutionary algorithms have been presented
(Kabir et al., 2010; Kikuchi et al., 2003; Noman and Iba,
2007), which are more suitable to effectively and efficiently
reconstruct the networks in a given dynamic model. It is well
known as evolutionary algorithms work better than standard
methods when the problem to solve is nonlinear, and there-
fore or no solution is known a priori, or it is impossible to be
analytically solved. The great advantage of the evolution-
ary approaches on these tasks is own their applicability to
almost any models where mathematical analysis and revers-
ing is unavailable or inefficient. A good comparative study
among evolutionary algorithms in gene regulatory network
can be found in (Schlitt and Brazma, 2007). In this research
work, we present a new approach to infer parameters of a
gene regulatory network from time-series gene expression
data using S-system model (Irvine and Savageau, 1990). For
this kind of task, one of the best population-based optimiza-
tion algorithms has been used as learning paradigm: Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES)
(Hansen and Ostermeier, 2001).

The S-system model for gene expression
Developing accurate computational and mathematical mod-
els is needed to study the response of the gene regulation and
the gene sets with respect to their specific dynamics (many
important cell functions are largely determined by dynamic
processes of biochemical networks). Therefore, using math-
ematical models for the analysis of metabolic and regula-
tory pathways may contribute to a better understanding of
the behaviour of metabolic processes. These models, once
built, can be used to predict the behaviour of the organism
under certain conditions (Sirbu et al., 2010), it has been also
postulated that, once inferred the basic mechanisms of life,
it should be (theoretically) possible to create synthetic or-
ganisms (Barrett et al., 2006). Of course, the choice of the
model to use depends by how much information we try to
capture: more information a model trying to learn - more
parameters need to be inferred - more complex becomes
the model. Nowadays, there exist several types of mod-
els in literature that describe a gene regulatory network, as:
Boolean networks (D’haeseleer et al., 2000; Akutsu et al.,
1999); Bayesian networks (Friedman et al., 2000), and meth-
ods based on a steady-state description (Tegner et al., 2003).
Unfortunately, the main drawback of these models is that
the gene expression is represented only in the two extreme
levels, and therefore all genes are mapped only in a binary
state: on (1) or off (0). This disadvantage makes limited
use of such models since the real gene expression levels
tend to be continuous rather than binary. An other draw-
back is also given from their not ability to capture the non-

linear gene regulations, typical feature of the gene regula-
tory networks. To overcome this limitation, models based
on ordinary differential equations (Chen et al., 1999) have
been designed, which represent a very powerful and flexi-
ble model to describe complex relations among more com-
ponents. One of the most popular and studied approaches,
based on ODE, is the S-system model, whose structure is
rich enough to capture many relevant biological dynamics,
and it can models much more complicated GRN behaviour
(Wessels et al., 2001). A comprehensive interesting compar-
ative study on the three most used continuous systems based
on ordinary differential equations has been made in (Swain
et al., 2010) (S-system, artificial neural network (Vohrad-
sky, 2001), and general rate law of transcription (Mendes
et al., 2003)), where the advantages and disadvantages of
each deterministic model used for modelling gene regulatory
networks have been reported. In the last decades, inferring
gene regulatory networks from time-series data has attracted
a lot of attentions by many researchers in systems biology. It
is then important to develop proper models that incorporate
a suitable compromise among different requirements, as e.g.
computational complexity, the ability to capture nonlinear
gene regulations and the ability to handle noisy data. More-
over, it is also able to model much more complicated GRN
behaviour (Wessels et al., 2001), and therefore it presents a
good compromise between accuracy and mathematical flexi-
bility. The S-system model is a type of power-law formalism
used to model molecular networks, whose expression rates
are described as the difference between the activation and
degradation terms of a gene product. It is formally defined
as a set of non-linear ordinary differential equations of the
form:

dXi

dt
= αi

n∏
j=1

X
gij
j − βi

n∏
j=1

X
hij

j , (1)

where n is the number of the genes; Xi is the expression
level of the i–th gene; the exponential parameters gij e hij
represent the effective interaction of Xj to Xi. In equa-
tion (1), the first term represents all influences that increase
Xi, whilst the second term the ones that decrease Xi : if
Xj has a positive exponent it means that it has a positive
correlation on the aggregation process, whilst if it is neg-
ative then the genes are negatively correlated. Of course,
if the exponent is zero then there not exist any influence
on the aggregation process. From biochemical engineering
point of view, the non-negative parameters αi, βi ∈ [Rl, Ru]
are called rate constants, whereas the real value exponents
gij , hij ∈ [Kl,Ku] are referred to as kinetic orders. The
aim on the S-system model is inferring the set of param-
eters Ω = {αi, βi, gij , hij}, such that the fitness function
is minimized. Is easy to see how extracting the parameters
Ω in a genetic network with n genes is not trivial task due
to the high dimensionality of the problem: 2n(n + 1) pa-
rameters indeed must be inferred. Obviously, the difficulty



of the problem increases by how much information need to
be captured. To overcome this limitation and facilitate the
regression task a decoupled variant of the model has been
proposed (Kimura et al., 2005; Noman and Iba, 2006; Vilela
et al., 2008a), which reduces the problem in n sub problems.
Through this decomposition strategy, the original optimiza-
tion problem is divided into n sub-problems where in any
gene i the parameter values (αi, βi, gij , hij) are individu-
ally estimated to attempt to capture the dynamics of the own
gene. In this way, the original problem of 2n(n+ 1) dimen-
sional is reduced in n sub problems each of 2(n+ 1) dimen-
sion. Thus, in the i–th sub-problem the expression level of
the gene i is computed by the following ordinary differential
equation:

dXi

dt
= αi

N∏
j=1

Y
gij
j − βi

N∏
j=1

Y
hij

j , (2)

where:

Yj =

{
Xj , if i = j

X̂j , otherwise,

with Xj computed solving the differential equation (2); and
X̂j estimated directly from experimentally observed time–
series data using differential equation (1). Estimating the in-
ferred set of the parameters is usually evaluated by the Mean
Squared Error (MSE) between the experimentally observed
expression levels, and the ones computed solving the system
of equation (1). Therefore, the optimization task is inferring
the parameters Ω in decoupled form in order to minimize
MSE.

The CMA-ES algorithm
To attempt to inferring the set of parameters of a genetic net-
work using the S-system model, we have adopted the CMA-
ES algorithm (Hansen and Ostermeier, 2001), one of the
best population-based optimization algorithms that is very
suitable primarily on non-linear and non-convex optimiza-
tion task. Since CMA-ES algorithm is well known inside
the evolutionary computation community, in this section we
give a short description on its main features. It is a (1 + 1)
elitist evolutionary strategy that generates candidate solu-
tions by adapting a covariance matrix C, such that steps
promising large fitness progress are sampled more often.
Conversely to other self-adaptive evolutionary algorithms,
CMA-ES adapts the covariance matrix, at generation g, by
additive updates of the form C(g) = αC(g−1) + βV (g−1),
where V (g−1) ∈ Rn×n is positive definite and α, β ∈ R+

0

are weighting factors. Let v(g−1) ∈ R a promising mu-
tation step, to increase the probability of sampling v(g−1)

in the next generation, the rank-one update is performed
in the equation: C(g) = αC(g−1) + βv(g−1)v(g−1)T . This
update strategy shifts the mutation distribution towards the
Gaussian with highest probability of generating v(g−1). The

CMA-ES algorithm is based on three main procedures: (1)
main loop, (2) step size updating procedure, and (3) covari-
ance matrix updating strategy. The CMA-ES main loop
follows the classical (1 + 1) scheme, where the offspring
xoffspring replaces the parent xparent if its fitness value
is better. Successively, the algorithm updates the step size,
which is based on the heuristic that increases it if the suc-
cess rate is high, and reducing it otherwise. The proce-
dure performs an update based on a binary variable (λsucc),
which is set to 1 if f(xoffspring) ≤ f(xparent), with
learning parameter cp ∈ (0, 1] using a target success rate
ptargetsucc . If psucc > ptargetsucc the argument is greater then
zero and the step increased; if psucc < ptargetsucc , the argu-
ment is smaller than zero and the step size is decreased oth-
erwise it remains unchanged. Finally, the update of the co-
variance matrix and the evolution path (pc) takes place if
f(xoffspring) ≤ f(xparent), and it depends on the values
of psucc; if psucc is high the update of pc is blocked in or-
der to prevent a fast increase of the C axis when the step
size is low, otherwise the update occurs by an exponential
smoothing. The new covariance matrix is a weighted mean
of the old matrix and the outer product pcpTc . Major de-
tails on CMA-ES can be found in (Auger and Hansen, 2005;
Hansen and Ostermeier, 2001; Cutello et al., 2010).

Results
For our experiments we have used the classical artificial
genetic networks that include an overall of 5 different in-
stances: 2 instances with 2 genes (Vilela et al., 2008a),
where 12 parameters need to be inferred for each; 1 instance
with 4 genes (Vilela et al., 2008a) and 40 parameters to be in-
ferred; and finally 2 artificial networks with 5 genes (Vilela
et al., 2008a; Kikuchi et al., 2003; Noman and Iba, 2006),
where 60 parameters must to be inferred. Of course, thanks
to these experiments we are also able to evaluate the per-
formances and efficiency of CMA-ES on this new kind of
complex optimization task. Due to a limit pages we show
in this section the results on the networks with 5 genes. In
all experiments, we have considered the ranges where com-
pute parameters (α, β ∈ [Rl, Ru], and gij , hij ∈ [Kl,Ku]),
as well as initial conditions, the same ones used in the rel-
ative papers from where each instance has been taken into
account. About CMA-ES algorithm, instead, we have fixed
µ = λ = 100, and 100 sample points; as termination cri-
terion has been used a maximum number of fitness func-
tion evaluation fixed to 108. Moreover, each experiment has
been performed over 10 independent runs as proposed in
(Vilela et al., 2008a). In the first experiments presented in
this section we compare CMA-ES with the algorithm pro-
posed in (Vilela et al., 2008a) (in the follows called Voit’s
algorithm), which is based on eigenvector optimization of a
matrix formed from multiple regression equations of the lin-
earized decoupled S-system. In these experiments we have
tested CMA-ES on artificial gene networks with 2 (two in-



Table 2: CMA-ES versus state-of-the-art optimization algorithms. The comparisons have been done on a genetic network with
5 genes considering the Euclidean distance (deuc) as evaluation measure. In all algorithms, for each gene has been included
the best computed parameters (the rate constants αi, βi and the kinetic orders gi,j , hi,j).

gene αi gi1 gi2 gi3 gi4 gi5 βi hi1 hi2 hi3 hi4 hi5 deuc

CMA-ES
X1 5.0 0.0 0.0 1.0 0.0 −1.0 10.0 2.0 0.0 0.0 0.0 0.0

0.0
X2 10.0 2.0 0.0 0.0 0.0 0.0 10.0 0.0 2.0 0.0 0.0 0.0
X3 10.0 0.0 −1.0 0.0 0.0 0.0 10.0 0.0 −1.0 2.0 0.0 0.0
X4 8.0 0.0 0.0 2.0 0.0 −1.0 10.0 0.0 0.0 0.0 2.0 0.0
X5 10.0 0.0 0.0 0.0 2.0 0.0 10.0 0.0 0.0 0.0 0.0 2.0

MO-HDE (Liu and Wang, 2008)
X1 4.95 0.0 0.0 1.007 0.0 −1.011 9.9 1.997 0.0 0.0 0.0 0.0

0.05
X2 9.95 1.992 0.0 0.0 0.0 0.0 9.96 0.0 1.999 0.0 0.0 0.0
X3 10.22 0.0 −0.968 0.0 −0.002 0.0 10.24 0.0 −0.966 1.998 0.0 0.0
X4 7.93 0.0 0.0 2.009 0.0 −1.008 9.89 0.0 −0.004 0.0 1.993 0.0
X5 9.97 0.0 0.0 0.0 1.993 0.0 9.97 0.0 0.0 0.0 0.0 1.996

coop-CE (Kimura et al., 2005)
X1 4.917 −0.009 −0.003 1.019 −0.017 −1.014 9.922 2.021 −0.009 0.002 −0.009 −0.009

0.6178
X2 10.03 1.995 0.002 −0.002 0.006 −0.001 10.026 0.002 1.995 −0.002 0.002 0.0
X3 9.851 −0.005 −0.991 −0.004 −0.003 0.002 9.835 −0.004 −0.993 2.036 −0.01 0.002
X4 8.02 −0.007 0.006 2.0 −0.002 −0.998 10.054 0.001 0.003 0.008 1.988 0.007
X5 9.875 −0.002 0.003 0.018 2.015 −0.02 9.892 0.004 0.002 0.008 −0.01 2.017

HDE (Tsai and Wang, 2005)
X1 5.0145 0.0 0.0 1.0128 0.0 −1.0031 10.01 1.9936 0.0 0.0 0.0 0.0

0.737
X2 9.9 1.99 0.0 0.0 0.0 0.0 9.871 0.0 1.99 0.0 0.0 0.0
X3 10.321 0.0 −0.963 0.0 0.0 0.0 10.344 0.0 −0.9594 1.9987 0.0 0.0
X4 7.99 0.0 0.0 2.0157 0.0 −1.0026 9.981 0.0 0.0 0.0 2.0018 0.0
X5 9.966 0.0 0.0 0.0 1.985 0.0 9.967 0.0 0.0 0.0 0.0 1.997

TDE1 (Noman and Iba, 2005)
X1 4.762 −0.021 −0.021 0.993 0.0 −1.013 9.607 1.916 0.0 0.0 0.0 0.0

2.0597
X2 10.08 1.99 −0.001 0.035 0.0 0.0 9.817 0.0 1.938 0.0 0.012 0.0
X3 9.823 0.0 −1.00 −0.008 0.0 −0.001 9.835 0.0 −1.00 2.031 0.0 0.0
X4 7.182 0.0 −0.036 2.039 −0.052 −1.044 9.415 0.0 0.0 0.0 2.034 0.0
X5 10.103 0.0 0.005 0.05 1.997 −0.003 10.049 0.0 0.0 0.0 0.0 2.005

TDE2 (Noman and Iba, 2006)
X1 4.99 0.0 −0.008 0.98 −0.004 −0.997 10.003 1.978 0.0 0.0 0.0 0.0

2.2774
X2 10.051 1.995 0.004 0.009 0.002 −0.002 10.06 0.0 1.998 0.012 0.0 0.01
X3 9.936 0.004 −1.001 −0.001 0.0 0.0 9.937 −0.004 −1.001 2.007 0.0 0.001
X4 8.032 0.0 −0.011 1.949 0.0 −0.996 10.153 0.0 0.007 0.0 1.972 0.0
X5 10.011 0.0 0.003 0.023 2.002 −0.009 9.992 0.006 0.0 0.002 0.0 1.99

PEACE1 (Kikuchi et al., 2003)
X1 5.9 0.0 0.0 0.9 0.0 −0.9 10.6 1.7 0.0 0.0 0.0 0.0

74.0434
X2 10.0 2.1 0.0 0.0 0.0 0.0 10.2 0.0 2.1 0.0 0.0 0.0
X3 9.6 0.0 −0.9 0.0 0.0 0.0 9.7 0.0 −0.9 2.3 0.0 0.0
X4 9.4 0.0 0.0 1.9 0.0 −0.9 11.5 0.0 0.0 0.0 1.8 0.0
X5 10.2 0.0 0.0 0.0 2.1 0.0 10.2 0.0 0.0 0.7 0.0 1.9

Table 1: Success rate (SR) obtained by CMA-ES and Voit’s
algorithm (Vilela et al., 2008a) on 10 independent runs.
Both algorithms have been tested on an artificial network
with 5 genes.

gene CMA-ES Voit’s alg. (Vilela et al., 2008a)
X1 100% 100%
X2 100% 100%
X3 100% 0%
X4 100% 100%
X5 100% 100%

stances – normal and rescaled), 4 (rescaled) and 5 compo-
nents. For each instance three different data sets have been
used. All details about the instances can be found in the
relative additional material (Vilela et al., 2008b). On the

artificial genetic network with 2 genes both algorithms are
comparable in term of success rate (SR), that is how many
times the algorithm infers the parameters target. However,
if we compare the results where both algorithms fail, it is
possible to see as CMA-ES outperforms the compared al-
gorithm in terms of Euclidean distance between the com-
puted parameters and estimated parameters. This means that
CMA-ES is able inferring the set of parameters closer to the
estimated ones. The rescaled 2 genes network is, instead,
equal to the normal one where however α and β are multi-
plied by a constant. In this experiment, using all three data
sets, CMA-ES has been found the Ω target for each gene in
all 10 runs with SR = 100%, except for the gene X2 of the
3rd data set where SR = 70%. The compared algorithm,
instead, presents SR = 100%, excepts for the gene X2 in
the 2nd and 3rd data set, with respectively SR = 80% and
SR = 70%. In the overall, we can say that CMA-ES out-
performs the Voit’s algorithm (Vilela et al., 2008a) in both
artificial genetic networks with 2 components (in terms of



success rate and Euclidean distance). For the network in-
stance with 4 genes, both algorithms are equivalent, since
they have been able to find always the network target in all
10 runs (SR = 100%). About the experiments on the artifi-
cial network with 5 genes, CMA-ES and the Voit’s algorithm
have been compared on three different data sets. However,
due to the limit pages we report in Table 1 only the results
obtained on the 2nd data set. Inspecting the Table, is possi-
ble to see that albeit both algorithms reach a SR = 100%
for the genes X1, X2, X4, and X5 CMA-ES is able also
to inferring the estimated parameters for the gene X3 on all
10 runs (SR = 100%), where instead Voit’s algorithm fails
with a zero success rate. Fig. 1 shows the gene expression
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Figure 1: Gene expression levels computed by CMA-ES on
the artificial network with 5 genes using 100 sample points.

levels computed by CMA-ES on the second data set. Look-
ing the Table 1 is easy to understand how these curves repre-
sent exactly the gene expression levels of the target network.
These plots have been obtained with a time-series based on
100 sample points. Instead, about the experiments in order
to the other two data sets, we can say that from the obtained
results is clear as both algorithms are able to estimate for
all genes the target parameters, with SR = 100%, about
the first data set, unlike the third data set, where CMA-ES
shows best performances (in the overall) than the Voit’s al-
gorithm. In this last data set, CMA-ES outperforms Voit’s
Algorithm on the genes X1, X4 and X5 with a success rate
of 100%, with respect to a success rate of 30% (X1), and
0% (X4 and X5). Only on the gene X3 CMA-ES fails
over all 10 runs unlike the Voit’s algorithm that produces a
SR = 70%.However, although CMA-ES seems not compa-
rable to the Voit’s algorithm for the gene X3, if we take into
account only the remaining 30% of the computed parame-
ters by Voit’s algorithm, where SR = 0%, and we compare
them with all ones produced by CMA-ES is possible to note
how the inferred parameters by our algorithm seem better
in term of Euclidean distance from the expected target pa-
rameters. To better evaluate the robustness of our proposed

algorithm on these kinds of complex optimization tasks we
have compared CMA-ES with state-of-the-art algorithms on
S-system models. For these new experiments the Euclidean
distance from the estimated parameters has been chosen as
evaluation measure. A new instance with 5 genes has been
considered that is different from the previous one because
different ranges have been used where compute Ω parame-
ters. For this instance, moreover, it is important to point out
that CMA-ES has been tested on 100 independent runs, pro-
ducing an high success rate very closer to 100%. In Table
2 we report the comparisons of CMA-ES with the state-of-
the-art, where only the best results for all algorithms have
been included. The algorithms compared with CMA-ES are:
(1) MO-HDE (Liu and Wang, 2008), a multi-objective op-
timization approach based on an hybrid differential evolu-
tion; (2) coop-CE (Kimura et al., 2005), a cooperative Co-
evolutionary algorithm; (3) HDE (Tsai and Wang, 2005), a
hybrid differential evolution; (4) and (5) two different ver-
sions of trigonometric differential evolution (TDE1 (Noman
and Iba, 2005) and TDE2 (Noman and Iba, 2006)); and fi-
nally (6) PEACE1 (Kikuchi et al., 2003) based on a Ge-
netic algorithm. From the Table is clear as CMA-ES pro-
duces the best performances with zero Euclidean distance,
whilst the best among the compared algorithms was able to
reach 0.05 as Euclidean distance from the estimated param-
eters. The genetic algorithm is instead the one with worst
performances. It is possible to claim that CMA-ES outper-
forms the current state-of-the-art optimization algorithms on
S-system models.

Time-To-Target Analysis
Time-To-Target plots (Aiex et al., 2002) are a method to
characterize the running time of stochastic algorithms to
solve a given computational optimization problem. They
display the probability that a given algorithm will find a
solution as good as a target within a given running time.
Nowadays they are standard graphical methodologies for
data analysis to compare the empirical and theoretical distri-
butions (Aiex et al., 2002, 2007). By Time-To-Target analy-
sis two kinds of plots are produced: QQ-plot with superim-
posed variability information, and superimposed empirical
and theoretical distributions.

We ran CMA-ES on the genetic network with 5 genes,
and where the success rate in inferring the set of parameters
of all genes is 100%. For this kind of experiments a different
termination criterion has been properly tuned: until finding
the parameters target for each gene (SR = 100%). Because
larger is the number of runs closer is the empirical distribu-
tion to the theoretical distribution, the plots presented in this
section have been produced after 100 independent runs. The
Fig. 2 shows the convergence process produced by CMA-
ES using tttplots.pl on n = 5 network instance. In
the top plot is showed the comparisons among empirical and
theoretical distributions, whilst in bottom one is showed the
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Figure 2: Time-To-Target plots for the network with 5 genes.

QQ-plot with variability information. Looking the top plot
is possible to see as the curves of the empirical and theoreti-
cal distribution are equivalent. A different behaviour instead
is showed on the bottom plot; this is likely due, since CMA-
ES finds in quick way the parameters target.

Sensitivity Analysis – The Morris Method
The Morris method is one of the most popular models to
evaluate the importance of any single parameter of a given
system, showing own the main interactions between the pa-
rameters. In this method, any parameter assumes a discrete
number of values chosen inside a range of variation; these
values are called levels. Morris (Morris, 1991) has used a
sensitivity analysis based on the elementary effect of the j–
th parameter, defined as:

EEj(p
∗) =

[
f(p∗1 ,...,p

∗
j−1,p

∗
j +∆,p∗j+1,...,p

∗
Np

)−f(p∗)
]

∆ ,

where ∆ is a predetermined multiple of 1/(k − 1) (k is the
number of levels) . To understand what are the parameters,
which influence on the output we have performed the Morris
method for the S-Systems models, with n = (2, 4, 5) genes.
The obtained results are showed in Fig. 3. Two sensitivity
measures, µj and σj , have been evaluated for any parameter
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Figure 3: Sensitivity analysis by Morris method. A high
value of µ indicates a parameter with an important overall
influence on the output. A high value of σ indicates a param-
eter involved in interaction with other parameters or whose
effect is nonlinear. The results show high µ and σ values for
h21 and β2 for the GRN with N=2 genes (top plot), for α2

and β3 for the GRN with N=4 (middle plot), for g24, g44,
g51, h15, h24, h32, h45 for the GRN with N=5 (bottom plot).

j: the first represents an estimate of the mean of the distri-
bution of the elementary effects, whilst the last indicates its
standard deviation. High value of mean represents an impor-
tant overall influence on the output by the given parameter;
whereas high values of the standard deviation for the j–th
parameter means that it is involved in interaction with other



parameters, or whose effect is nonlinear.

Conclusion
In this research paper we have presented a new approach
for inferring the parameters in S-system models of gene reg-
ulatory networks. The CMA-ES algorithm has been used
for this complex optimization task, and 5 different instances
have been taken into account to evaluate its performances
and its robustness: 2 instances with 2 genes - 12 parame-
ters need to be inferred for each network; 1 instance with
4 genes - 40 parameters to be inferred; and 2 artificial net-
works with 5 genes - 60 parameters must to be inferred for
each instance. The proposed algorithm has been compared
with 7 state-of-the-art algorithms: (1) Voit’s algorithm, (2)
MO-HDE; (3) coop-CE; (4) HDE; (5) and (6) two differ-
ent versions of trigonometric differential evolution; and (7)
PEACE1. The first experiments have been done on the in-
stances with n = (2, 4, 5) components taken from (Vilela
et al., 2008a), comparing also CMA-ES with Voit’s algo-
rithm. Due to the limit pages only the Table with the results
obtained on a genetic network with n = 5 genes has been
included in the paper. Analyzing the results obtained on all
instances appear to be clear how CMA-ES is more able to
estimating in a better way the parameters target, either in or-
der to the success rate and in term of Euclidean distance. To
have a better knowledge about the robustness of CMA-ES,
we have compared it also with the current state-of-the-art
algorithms, where the Euclidean distance has been used as
evaluation metric. From these comparisons, CMA-ES is the
only algorithm able to inferring the parameters effectively.
Reviewing all experiments from an overall point of view is
possible to claim that CMA-ES is an effective optimization
algorithm for complex tasks, ranking as among one of the
best reverse engineering methodologies on S-system mod-
els. Finally, in this research paper has been also included
a study on the convergence process of CMA-ES through
Time-To-Target plots, which are a way to characterize the
running time of stochastic algorithms; and a global sensitiv-
ity analysis method, the Morris’ algorithm.
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