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The negative selection algorithm is an anomaly detection technique inspired by the self-nonself dis-
crimination behavior observed in the Biological Immune System. The most controversial question of
these algorithms is their poor performance on real world applications. To overcome such limitation this
research work focuses on generating more efficient detectors through a more flexible boundary for self-
patterns. Rather than applying conventional affinity measures, the detectors are generated benefiting
from a Gaussian Mixture Model (GMM) fitted on normal space. From the GMM capabilities the algorithm
is able to dynamically determine efficient subsets of detectors. In order to evaluate the efficiency and
robustness of the proposed algorithm, different data sets have been examined as benchmark, including
2D synthesis data sets. Furthermore, for evaluating the capability and effectiveness of the proposed al-
gorithm on real-world problems, it has been performed and tested for detecting anomalies in archae-
ological sites located in Lorestan, Iran. The experimental results prove how the proposed approach helps
the negative selection algorithm to improve its detection capability, because the detectors can be effi-
ciently distributed into the non-self space. It is important to note how this research work presents also a
first analysis of the anomaly detection capabilities in the field of archaeology, introducing a novel ap-
plication method, which can be efficiently used by the archaeologists for interpreting their growing
amount of data and draw valuable conclusions about the historical past. Finally, in order to analyse the
convergence and the running time of the proposed algorithm, a study has been conducted using the
classical Time-To-Target plots, which present a standard graphical methodology for data analysis based
on the comparisons between the empirical and theoretical distributions.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The immune system is the best defence system existing in the
world able to protect organisms against invaders and diseases, and
comprising many biological structures, and processes, made up of
special cells, proteins, tissues, and organs. It is then able to detect
and recognize a wide variety of agents (pathogens, viruses, fungi,
parasitic worms, etc.); and distinguish between foreign agents
(nonself), and own ones (self). Its main role is managed by white
blood cells – B-cells, and T-cells – which are produced in the bone
marrow. Here, some of them born and mature (B cells), whilst
others migrate and mature in the thymus (T cells). The T-cell
maturation undergoes a selection process in the thymus that is
called Negative Selection: this process eliminates all T-cells that
ladvand).
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react strongly with self-cells. A full explanation of such a complex
system is outside the scope of this paper, and detailed review on
its functionalities may be found in Goldsby et al. (2003) and Aick-
elin and Dasgupta (2010).

What makes the immune system very challenging, and source
of inspiration it is to be the best recognition system, as well as its
high ability in learning; memory usage; self-regulation; associa-
tive retrieval; threshold mechanism, and its ability in performing
parallel, and distributed cognitive tasks (Dasgupta, 2014). In light
of this, the Artificial Immune Systems (AIS) nowadays represent an
efficient paradigm in bio-inspired computation, successfully ap-
plied in many real-world applications (Costanza et al., 2015; Cu-
tello et al., 2011a, 2011b, 2007c). The immune-inspired heuristics
are primarily focused on four main theories: (1) negative selection
(Poggiolini and Engelbrecht, 2013); (2) clonal selection (Pavone
et al., 2012; Cutello et al., 2007a, 2007b); (3) immune networks
(Smith and Timmis, 2008); and (4) danger theory (Aickelin and
Cayzer, 2002; Aickelin et al., 2003a, 2003b). Such algorithms have
gative selection algorithmwith flexible boundaries for self-space
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been successfully employed in a variety of different application
areas.

One of the most widely used and developed algorithms as re-
cognition system is the negative selection algorithm (NSA), which
was proposed by Forrest et al. (1994), and takes inspiration by the
negative selection process in order to achieve an efficient method
for anomaly detection. This algorithm consists of two phases:
(i) generating detectors and (ii) monitoring the occurrence of
anomalies. In the first phase, the algorithm generates a number of
random patterns – called detectors – that do not match any self-
sample. During the second phase, if a detector pattern matches
any new sample this situation is regarded as a possible anomaly
occurrence.

Binary NSAs, and Real-Valued NSAs (RVNSAs) (Gonzalez et al.,
2003, 2002) are the two main models of the NSAs. Unlike the
binary NSA, the RVNSAs have attracted considerable attention in
various fields. RVNSAs operate on a unitary hypercube [0,1]n such
that each self-sample and nonself sample have a center and a
constant radius. Thus, each detector represents a hypersphere: if
an element lies within a detector hypersphere then it will be
considered as an anomaly. Although different NSAs, especially
RVNSAs, have shown promising performances in several fields,
they have proved limitation, and poor performances in real world
applications, and this has extensively reduced their use.

One of the most controversial questions for NSA is its innate
limitation in detecting foreign patterns as anomalies that lead to
an increase in False Positive Rate (FPR) (Kim et al., 2007; Aickelin
et al., 2003a, 2003b). Many studies have been conducted for
overcoming such shortcomings, which have led to several exten-
sions that focus on generating more efficient detectors (Wang and
Luo, 2009; Zhang and Luo, 2014), or on designing more efficient
matching functions (Poggiolini and Engelbrecht, 2013; Luo et al.,
2006; Ayara et al., 2002; Balthrop et al., 2002). In D'haeseleer et al.
(1996) a binary detector generator was introduced using a linear-
time algorithm in order to overcome the exponential cost of the
original NSA. In this work the authors proposed a greedy algo-
rithm that places the detectors as far apart as possible from each
other in order to cover the nonself space more efficiently by using
a more impact detector set. In Singh (2002), and Wierzchon
(2000) a greedy algorithm was proposed for removing redundant
detectors; whilst in Ayara et al. (2002) were investigated various
algorithms for generating detectors, including the greedy algo-
rithm proposed in D'haeseleer et al. (1996), and were compared in
terms of time and space complexity, as well as the Detection Rate
(DR) coverage of the final detector set. Thus, a new algorithm was
proposed and called NSMutation, Negative Selection with Muta-
tion, which was designed on the basic concepts of the original
NSAs except for the elimination of the redundancy, and a better
tuning of the parameters that improved the performances.
In Ayara et al. (2002) was proved that there is no single algorithm
able to produce, always, accurate detectors for any domain, be-
cause different domains show different constraints to satisfy. In
addition to the linear-time algorithm, and greedy algorithms,
several ways of evolving detectors have been proposed by Ayara
et al. (2002), Gonzalez and Cannady (2004), and Hang and Dai
(2004). In particular, in Gonzalez and Cannady (2004) a new NSA
was presented, as well as the self-adaptive methods were devel-
oped that outperform NSMutation in term of higher detection
rates; lower false detection rates; and computational time. In Go-
mez et al. (2003) was introduced a more flexible boundary be-
tween self and nonself space making use of fuzzy rules. In the
research work by Ji (2006), instead, a RVNSA with variable-sized
detectors (v-detector) was proposed, which benefits by detectors
with variable sizes, and estimates coverage of an arbitrary number
of detectors. In Stibor et al. (2005) a comparison between the real
valued negative selection, and the v-detector algorithms was
Please cite this article as: Fouladvand, S., et al., DENSA: An effective ne
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presented via anomaly detection statistical techniques, proving
the not competitive of NSA in real world, and high-dimensional
applications. An extension of the NSA was also developed
by Chmielewski and Wierzchon (2012) with the aim to increase its
efficiency and coping with high-dimensional data. They simulta-
neously applied both binary and real valued detectors.

Unlike the v-detector that uses variable-sized detectors, Zhang
and Luo (2011) and Zeng et al. (2012) have used, instead, self-
samples with variable sizes. In particular in Zeng et al. (2012), the
authors introduced a new scheme, called VSRNSA, for representing
the self-space, where the self-samples have variable-sized radiuses
that is based on the total distance from each sample to the other
self-samples. A new affinity matching function was presented
in Poggiolini and Engelbrecht (2013), called feature-detection rule,
that defines a more operative matching function for NSA, which
benefits from the inter relationship between adjacent and non-
adjacent features of a particular problem domain.

The limitations of NSA in detecting foreign patterns as
anomalies (Kim et al., 2007; Aickelin et al., 2003a, 2003b), and its
drawbacks in real world applications, mainly on the ones with
high dimensions Stibor et al. (2005) have motivated us to apply a
more flexible boundary between self and non-self space. The NSA
primary assumption that considers a sharp distinction between
self and non-self space has, indeed, prevented from being used
efficiently in real applications (Gomez et al., 2003). In Fouladvand
et al. (2015) an improved version of the NSA was developed, called
DENSA – Distribution Estimation based Negative Selection Algo-
rithm, which uses a Gaussian Mixture Model (GMM) that attempts
to create a more flexible, and efficient boundary for self-samples.
GMMs, with strong statistical background, can cover the self-space
efficiently, and it can also flexibly choose components’ distribu-
tions, especially when full covariance matrixes are used. In this
way, generating detectors through this sophisticated model can
help in design to efficient NSA even in real-world contexts. In-
corporating GMMs into a negative selection algorithm provides
good opportunities to develop an efficient, and robust algorithm
overcoming its limitations.

In this paper, we present an extended and revised version of
the one already proposed in Fouladvand et al. (2015), which is
basically improved in order to make it more efficient in real world
applications. The probabilities of the Gaussian Mixture Model are
used to distribute detectors on the non-self space more efficiently,
which together with a suitably defined objective function – that
tries to cover the non-self space – enable DENSA to be more effi-
cient own in real world applications. Thus, for proving this last
statement, DENSA has been applied in the field of Archaeology for
interpreting the growing amount of archaeological data, and de-
tect anomalous sites.

The archaeologists are still looking for efficient techniques that
enable them to inspect and analyse archaeological sites through
Artificial Intelligence approaches, which are increasingly em-
ployed to create new knowledge from archaeological data.
Nowadays, the best known artificial intelligence approaches in
archaeology are represented by artificial neural networks (ANN)
and expert systems (Vitali, 1991; Voorrips, 1990; Richards,
1998). Deravignone and Jánica (2006) studied the basic concepts
required to bring artificial intelligence methods into archaeological
research, investigating, in particular, the application of Artificial
Neural Networks in a raster GIS environment with the aim to
create archaeological predictive models. A review on the im-
plication to use computational intelligence models in archaeology
was presented in Barceló (2010); this paper describes how artifi-
cial intelligence models are feasible in archaeological recognition
systems just like other sciences. Puyol-Gruiart (1999) has con-
sidered the possibility of using more recent subfields including
Knowledge Discovery in Databases (KDD), Visual Information
gative selection algorithmwith flexible boundaries for self-space
://dx.doi.org/10.1016/j.engappai.2016.08.014i
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Management (VIM) and Multi-agent Systems (MAS) in archae-
ological research. One of the most challenging tasks for archae-
ologists is to find anomalies in a set of archaeological sites as it
enables them to draw valuable conclusions about the events that
caused those anomalies in human settlements in the past. In this
paper, the environmental variables of archaeological sites of Sila-
khor, which is an ancient place located in west Iran, are extracted
using ArcGIS 10.1. After that, these data are plugged into the pro-
posed algorithm to evaluate the capabilities of DENSA in detecting
anomalous sites. This experiment is a first analysis of the anomaly
detection capabilities of a negative selection algorithm in the field
of archaeology. The results show that DENSA can be easily utilized
to help archaeologists to detect anomalous sites and consequently
it helps them to interpret their growing amount of data more ef-
ficiently. Finally, with respect to the DENSA's original version
(Fouladvand et al., 2015), in this work we have included also an
analysis on the convergence and running time of DENSA using the
classical Time-To-Target plots, which compares the empirical and
theoretical distributions.

The paper is structured as follows: in Section 2 GMM concepts
are presented, and we explain how they can be optimally fitted on
a self-space; in Section 3 are introduced and described the training
and testing phases, as well as the objective function used in
DENSA; in Section 4 we present the experimental results obtained
on 2D synthesis data sets, another real world data set, and on
archaeological data set; finally, in Section 5 we give the conclu-
sions, including some beneficial and new ideas for future research.
2. Gaussian Mixture Model of self space

The Gaussian Mixture Models (GMMs) are widely used in ap-
plications where data can be viewed as a combination of different
populations mixed in varying proportions. In a mixture model, a
probability density function is expressed as a linear combination
of basis functions. A general model can be shown as follows:

( ) ( )∑( ) =
( )=

p x p j p xj
1j

M

1

where M is the number of Gaussian components, and p(j) is the
mixing coefficient, which corresponds to the prior probability that
the D-dimensional feature vector x is generated by the M com-
ponents. The parameters of the component density function p(x|j)
typically vary with j (Nabney, 2004). The mean, the covariance
matrix and the mixing coefficient parameterize each component
density. Basically, there are three forms of covariance matrixes:
spherical, diagonal and full. These kinds of covariance matrices
have higher flexibility in estimating the underlying distributions
(Osareh, 2004). Thus, a full covariance matrix for each mixture
component is benefitted in this paper. The full covariance matrix
can be any positive definite (d*d) matrix, and the density function
is described as
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where Σj is the covariance matrix, and μ is the mean vector of d
dimensions for a class. The method for determining the para-
meters of a GMM from a data set is based on maximizing the data
likelihood. One of the most widely used approaches to maximize
the likelihood is the Expectation-Maximization (EM) algorithm,
which is based on data likelihood maximization. Therefore, be-
comes more convenient rewrite the problem in its equivalent form
of minimizing the negative log likelihood of the data. Thus, the
error function is defined as (Nabney, 2004)
Please cite this article as: Fouladvand, S., et al., DENSA: An effective ne
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where E is an error function, which is minimized within the
training phase. The EM algorithm modifies the GMM parameters
(E-step), and decreases E (m-step) until a minimum is reached. The
EM algorithm generates a sequence of estimations for parameters
w(m) starting from the initial parameter set w(0). The E step in-
cludes calculation of a function Q that is defined as

( )( ) ( )= ( ) ( )
( )Q ww E logp yw p z x w. 4

n n n n

For each data point xn, there is a corresponding random vari-
able zn, which is a hidden variable. This hidden variable de-
termines a Gaussian component that is related to the variable xn.
In fact, the complete data point form is considered as: = ( )y x z,n n n .
To calculate the new set of parameters in M-Step, the function

( )Q wwn should be optimized as

( )= ( )
( + ) ( )w argmax Q ww 5
m

w
m1

The EM algorithm needs to be initialized by making some in-
itial guesses for the parameters of the model. In this work, a
K-means clustering algorithm was used to initialize the EM algo-
rithm, which uses the Euclidean distance. Remains only to decide
the number of K-means clusters for representing the initial
Gaussian components for the GMM. The number of mixture
components in GMMs relies on a combination of good modelling,
a sensible number of components, and avoid a highly complex
model. In this paper, the right number of components is chosen
repeating the density model estimation, and evaluating a criterion
by varying the number of components. The evaluation measure-
ment is the Bayesian Information Criterion (BIC) principle (Osareh,
2004), and the number of components is defined as

( ) ( ) ( )θ γ γ= − + ( )K K NBIC l
1
2

log 6

where N indicates the number of data points; (θ)l is the data log
likelihood; K is the number of Gaussian components in a GMM;
and ( )γ K demonstrates the number of free parameters in a mixture
model. There are d(d þ1)/2 free parameters for each full covar-
iance matrix component, where d is the dimensionality of the
feature space. Each mean vector μ has d free parameters, and the
mixing parameters P(j) require another K�1 free parameters.
Thus, the dimension of a GMM may be written as

⎛
⎝
⎜⎜

⎞
⎠
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+

+ + −
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K K
d d

d K
1

2
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As mentioned above, the optimum number of Gaussian com-
ponents for the self-space is obtained using Eq. (6), and varying
the number of components within the range [1, M]. It is important
to make use of a reasonable number of components either for
minimizing the computational costs, and because the EM algo-
rithm could failing. In a nutshell, EM algorithm cannot proceed if
Gaussian components include only a few samples.

An efficient heuristic is to observe the different BIC values and
to select the number of components corresponding to the first
decisive local minimum of the BIC values (Fraley and Raftery,
1998). In light of this, the number of Gaussian components is
varied within the range [1,20] in order to select the first local
minimum value. As a result, the BIC function, which corresponds
to the Pentagram-big, Cross-thick, Triangle-big, Stripe-thick and
Ring-thick distributions, reaches the minimum values respectively
to K¼8, K¼6, K¼6, K¼7 and K¼5. It should be noted that this
results are the average of the outputs obtained performing 100
independent runs on each data set, and therefore, the mean value
gative selection algorithmwith flexible boundaries for self-space
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of K obtained for each data set is rounded.
3. Distribution Estimation based Negative Selection Algorithm
(DENSA)

Similar to the NSA, the goal of DENSA is to generate a set of
detectors that covers the non-self space efficiently. The training
phase of the proposed algorithm can be summarized as in Fig. 1.
DENSA first maps the data in the interval between ⎡⎣ ⎤⎦0, 1 ;

n then, it
compares the randomly generated samples with a GMM, which is
suitably fitted on normal space to generate a predefined number of
detectors. In a nutshell, instead of comparing a randomly gener-
ated pattern to all self-samples, DENSA compares the randomly
generated sample with a couple of flexible Gaussian components,
which are representative for the self-space. As DENSA generates
the detectors, it calculates an objective function for the future
decision on the optimum number of detectors. This objective
function selects the optimum number of detectors based on esti-
mating efficacy of the detector set. It is fully described in Section
3.1.

The test stage of DENSA, instead, is accomplished via the two
following stages:

� calculating the Euclidean distance of an input sample from the
nearest detector;

� classifying the input sample as normal or abnormal, based on
the calculated distance in previous step and a threshold termed
Threshold_2.

Threshold_1 and Threshold_2 are important parameters, which
have major impacts on the accuracy of DENSA. Threshold_1 is a
parameter used in the training phase for evaluating if a randomly
generated sample is far enough from the Gaussian components in
the normal space in order to be considered as a detector. Whilst
the Threshold_2 is another control parameter used in the testing
phase, which evaluates if a test sample is close enough to a de-
tector to be considered as an anomaly, or not. As the Threshold_2
increases, more test samples are considered anomalies, and
therefore, the rates of false positive, and true positive increase too.

3.1. An objective function for selecting optimum number of
Fig. 1. DENSA tra
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generated detectors

In order to have an efficient objective function, the distribution
of the detectors must be able to well cover the non-self space
using a number of detectors as small as possible. In this work is
considered an objective function based on three main items: a first
term for evaluating the detection rate; a second one for estimating
the false positive rate; and a last one for keeping the size of the
detector set as small as possible. Thus, the objective function used
in order to satisfy these constraints is defined as follows:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

( )

( )

= ×

+ ×
+

+ ×
( )

i
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W
G D

W
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DetectionRate . .

1
1 FalsePositiveRate S. .

1

8

1

2 3

where S is the self-space, G is the Gaussian Mixture Model of the
normal space, and D is the detector set. The parameters W1, W2

and W3 represent instead the weighted values of the single sub-
objectives, whose aim is to increase the flexibility of the objective
function, and cope to different applications and/or data sets. In this
research work W1, W2 and W3 have been set to 1. Besides, De-
tectionRate(S, G, D) and FalsePositiveRate(S, G, D) respectively
denote the estimated detection rate and false positive rate of the
anomaly detection system using a validation set and the current
set of detectors D.

It is easy to check how the optimum number of detectors is
obtained by maximizing the objective function in Eq. (8). This
means maximize the estimated detection rate, and minimize the
estimated false positive rate, as well as the size of the detector set.
In fact, as the number of efficient detectors increases, increase also
of the first two terms of (8), and consequently will increase the
whole value of the objective function. On the other hand, by in-
creasing the number of detectors, the last term of (8) decreases,
and consequently the whole objective function value will decrease.
Fig. 2 indicates the objective function values versus the number of
generated detectors for all 2-D synthesis data sets. In these plots,
the horizontal and vertical axes represent respectively the number
of generated detectors, and the corresponding objective function
values; each plotted value is averaged over 50 independent runs. It
ining phase.

gative selection algorithmwith flexible boundaries for self-space
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is worth noting that Threshold_2 has been set to 0.05, as a default
value, for all experiments shown in Fig. 2. Inspecting each plots of
this figure, the optimum number of detectors for Pentagram-big,
Cross-thick, Triangle-big, Stripe-thick and Ring-thick data sets, is
reached respectively to 989, 163, 540, 603 and 181.

3.2. Time-To-Target analysis

The Time-To-Target plots (Aiex et al., 2002; Feo et al., 1994) are
a standard graphical methodology for data analysis (Chambers
et al., 1983) to compare the empirical and theoretical distributions,
and, nowadays, they represent an easy way to characterize the
running time of a generic stochastic algorithm in order to solve a
given combinatorial optimization problem. They display the
probability that an algorithm will find a solution as good as a
target within a given running time.

Through the Time-To-Target analysis two kinds of plots are
produced: QQ-plot with superimposed variability information;
Please cite this article as: Fouladvand, S., et al., DENSA: An effective ne
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and superimposed empirical and theoretical distributions. For our
study we have used the Perl program proposed in (Aiex et al.,
2007), which represents a useful tool for the comparisons of dif-
ferent stochastic algorithms or, in general, strategies for solving a
given problem. Such program can be downloaded from http://
mauricio.resende.info/tttplots/.

For this study we performed DENSA on two different instances
of the Pentagram-big dates, with different features and complexity
(of course with not simple targets), where the detector set always
correctly detects the targets. For these experiments the termina-
tion criterion was properly set until finding the target. Besides,
taking into account that larger is the number of runs closer is the
empirical distribution to the theoretical distribution, we per-
formed our experiments on 200 independent runs: for each run
the random number generator has been initialized with a distinct
seed.

The plots produced on the two different data sets are shown in
Figs. 3 and 4. The left plots show the comparisons between the
gative selection algorithmwith flexible boundaries for self-space
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Fig. 3. Time-To-Target plots on the first data set: empirical versus theoretical distributions (left plot), and QQ-plots with variability information (right plot).

Fig. 4. Time-To-Target plots on the second data set: empirical versus theoretical distributions (left plot), and QQ-plots with variability information (right plot).
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empirical and theoretical distributions, whilst in right ones the
QQ-plots with variability information. Analysing the left plot of
Fig. 3, it is possible to see how the curve of the empirical dis-
tribution matches almost always with the theoretical one, except
for very few cases. Same behavior is shown in the left plot of Fig. 4.
Instead, inspecting the Quantile-Quantile plots (right plots of both
figures) is possible to see how often the curve produced by DENSA
is the equal, or however very closer, to the estimated one, except
for the last points in the second data set.

From these figures we can assert how DENSA shows to be ro-
bust, since the empirical points are very close to theoretical and
estimated points.
4. Experimental results and discussion

In order to visualize how GMM can properly fit on the normal
space, and investigate the performance of the proposed algorithm,
the Fig. 5 represents, respectively, the self-space (red plots), the
Gaussian components fitted on self-space (black ovals), and the
generated detectors by DENSA (blue stars) in five different
Please cite this article as: Fouladvand, S., et al., DENSA: An effective ne
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2-dimensional synthetic data sets: (a) Pentagram-big; (b) Cross-
thick; (c) Triangle-big; (d) Stripe-thick; and (e) Ring-thick self-
regions over the whole space. Each data set has a geometric shape
and includes 2000 real valued samples: 1000 samples for training
purpose, and another 1000 samples for testing. In this research
work, all 1000 normal samples in the training set were considered
as train set, and the test set, which includes 1000 normal and
abnormal samples, was used to conduct a K fold-cross validation
(with K¼3 as a default value). The 3-fold cross validation includes
one main loop. In this loop the test data that are a mixture of 1000
normal and abnormal samples, are partitioned into 3 parts of
equal sizes for guaranteeing that the ratio between self and non-
self samples is kept yet; hence, one of them is used to validate the
GMM of normal space (i.e. optimise the Threshold_1), and tested
on the remaining two parts. This procedure is repeated for all
three possible choices for the held-out part, and the performance
scores from the 100 runs are averaged. As a result, the values for
Threshold_1 have been set to 1.54, 0.51, 1.21, 0.74 and 0.49, re-
spectively, for (a) Pentagram-big, (b) Cross-thick, (c) Triangle-big,
(d) Stripe-thick, and (e) Ring-thick data sets. It is worth noting that

( )p xi is the probability of the density function that is no negative,
gative selection algorithmwith flexible boundaries for self-space
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Fig. 5. Normal space (red dots), Gaussian components (black ovals) and detectors (blue stars). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

S. Fouladvand et al. / Engineering Applications of Artificial Intelligence ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7
and its full integral is 1; therefore, its integral over any region is
less than 1. However, there is no upper bound to the value of the
probability density function, and they can exceed 1.

It should also be noted that the optimum number of Gaussian
components (black ovals in Fig. 5) was computed using BIC (Eq.
(8)). Moreover, using the objective function described in Eq. (8),
the optimal numbers of detectors for Pentagram-big, Cross-thick,
Triangle-big, Stripe-thick and Ring-thick data sets are respectively:
499, 384, 599, 524 and 540.

Fig. 6 shows the complete trend of the effect of Threshold_2 for
the values from 0.001 up to 0.1, performed on the data sets:
(a) Pentagram-big; (b) Cross-thick; (c) Triangle-big; (d) Stripe-
thick; and (e) Ring-thick. All the results shown in this figure have
been obtained using the 3-fold cross validation described above,
and have been averaged over 100 independent runs. The accuracy;
true positive rate (detection rate); and false alarm rate are defined
as follows:

= ( + )
( + + + ) ( )

Accuracy
TPs TNs

TPs TNs FPs FNs 9

( ) =
+ ( )True Positive Rate Detection Rate

TPs
TPs FNs 10

( ) =
+ ( )False Positive Rate False Alarm Rate

FPs
FPs TNs 11

where TPs (true positives) indicates the number of abnormal
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samples, which are correctly classified as anomalous; TNs (True
Negatives) means the number of normal samples, which are cor-
rectly classified as normal; FPs (False Positives) and FNs (False
Negatives) are respectively the number of normal samples that are
incorrectly classified as anomalous, and the number of anomalous
samples that are incorrectly classified as normal.

Analysing Figs. 5 and 6 is possible to see that DENSA is able to
efficiently generate detectors on the nonself space, and conse-
quently, performs an efficient, and robust anomaly detector on
these synthetic data sets. Further, according to the plots in Fig. 6,
as soon as Threshold_2 increases, more test samples are considered
as anomalies, and then both rates of false positive, and true po-
sitive increase too.

4.1. A real world application: anomaly detection in computer
networks

In an attempt to evaluate the efficiency of DENSA's perfor-
mance in a more practical context, and examine its feasibility,
DENSA has been also performed on the NSL-KDD data set, which is
a modified data set for KDDCup 1999 data set (Tavallaee et al.,
2009). This data set is commonly used to train and evaluate net-
work intrusion detection systems (IDSs), and presents 125,973
records in the train set (67,343 normal samples and 58,630 ab-
normal samples), and 22,544 records in the test set (9711 normal
samples and 12,833 abnormal samples). Moreover, to study the
property, and the possible advantages of DENSA, several experi-
ments have been also carried out to compare the results of DENSA
with the ones obtained by the V-detector algorithm. For both
gative selection algorithmwith flexible boundaries for self-space
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Fig. 6. The effect of different values of the Threshold_2 on the results.
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algorithms, the self set includes all 67,343 normal samples of NSL-
KDD training set, whilst the test set comprises 22,544 NSL-KDD
test samples. In Fig. 7 it is shown the comparison of the DENSA's
efficacy versus V-detector, over the whole range of thresholds. The
experiments shown in Fig. 7 have been performed using 20 dif-
ferent threshold values: for V-detector are the various values of
self-radius, whilst for DENSA represents the Threshold_2 values.
Besides, for the V-detector algorithm have been fixed the para-
meters as follow: Tmax¼60,000 (almost equal to the number of
self-samples), C0¼0.99, and Cmax¼0.99; for DENSA instead the
optimum value for Threshold_1 has been set through a 3-fold cross
validation, and using the NSL-KDD train set.

As it is illustrated in Fig. 7, it is easy to see how generate de-
tectors using an optimally fitted GMM that covers the self-space
properly, and may flexibly choose component distributions on
self-space, leads to an efficient NSA properly able to detect intru-
sions. Indeed, DENSA generates detectors based on smooth, and
optimally fitted boundary on the self space, unlike V-detector that
Please cite this article as: Fouladvand, S., et al., DENSA: An effective ne
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generates them based on a distinct sharp between self, and non-
self spaces. As a result, DENSA yields a higher accuracy than the
V-detector method, as shown in Fig. 7(a). It can be also noticed
from the Fig. 7(c) as DENSA is more inclined to a significant in-
crease in the false positive rate than V-detector. However, the
main control parameter Threshold_2 can be used for balancing
between high rates of true positives, and low rates of the false
positives. Is possible indeed to observe from the Fig. 7 how the
Threshold_2 values affect on the DENSA results. In fact, high
Threshold_2 values would result to high true positive rates, but
also high false positive rates would be achieved. On the other
hand, smaller Threshold_2 values would result to low false positive
rates, but also to low true positive rates. Thus, the Threshold_2
parameter can be suitably, and easily tuned for having an efficient
anomaly detection system, which has shown better accuracy with
respect V-detector (Fig. 7(a)).

4.2. A real world application: anomalous archaeological site
gative selection algorithmwith flexible boundaries for self-space
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Fig. 7. Classification performance of DENSA and V-Detector on NSL-KDD data set.

Fig. 8. Location of Silakhor plain in Iran.
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detection

Once evaluated the good performances of DENSA on the used
test-beds (see sections above), and having shown good detection
accuracy, we have evaluated also its efficacy on a real-world pro-
blem in archaeology by analysing its anomaly detection cap-
abilities. Detect anomalies in archaeological human settlements is
an essential task for archaeologists. The anomalous archaeological
sites are all those that do not follow the normal settlement pat-
terns as the other sites while having same circumstances, such as
same history period, or same locations. Thus, being able to detect
these anomalies enables the archaeologists to lead more studies
onsite; scrutinize the possible reasons and causes that have made
those sites anomalous, and consequently, helping them in reveal
more information about the past events, such as the occurrence of
ancient battles, which not allowed to the site to follow the usual
pattern of other sites in its neighbourhood.

This research paper is therefore a first analysis of the anomaly
detection capabilities of the Artificial Intelligence methods for
Fig. 9. Environmental-based raste
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detecting anomalous archaeological sites. Thus, DENSA has been
tested, and performed in detecting anomalies on the archae-
ological sites of the Silakhor plain, which is located in Lorestan
province, in the west Iran: it lies within E 48 35” to E 35 48” and N
33 47” to N 33 59”, as shown in Fig. 8. It is one of the oldest re-
sidential plains, occupied after the prevalence of agriculture dur-
ing the first, and fourth millennium BC. There have been many
mounds in this plain that not only enabled the human to be pro-
tected against wild animals, and other humans, but also to have
easy access to their agricultural lands. Besides, water resources,
fertile soil, and a flat topography indicate the existence of nu-
merous cultures and archaeological sites own on this area (Hole,
1970); this, together with its compactness, has led the plain to
become an important focus for the archaeological investigations.
There are over 201 archaeological sites in this ancient location that
are used as a data set in this paper. These 201 archaeological sites
were detected in 2000 by the Cultural Heritage of Lorestan
province.

The archaeological sites of Silakhor originate from a period of
r layers used in the models.

gative selection algorithmwith flexible boundaries for self-space
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Fig. 10. The graph of the function shown in Eq. (12).
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one millennium (Achaemenian, Parthian and Sassanid), thus they
did not experienced significant environmental changes, and they
should follow a normal behavior of settlement pattern. However,
according to archaeological field studies (Maghsoudi et al., 2014)
there are some anomalies in the settlement patterns of these sites,
which may have been caused by unnatural events, such as security
matters, battles or political issues.

The methodology used in this work can be divided into two
main stages: the environmental factors (Maghsoudi et al., 2014) of
all 201 archaeological sites have been collected using ARC GIS 10.1;
and later such results have been considered as the input for the
proposed anomaly detector algorithm (DENSA). The environ-
mental factors of the 201 archaeological sites have been prepared,
which include Geomorphic Unit (1:250,000); slope (1:25,000);
distance to water resources (1:50,000); elevation; and altitude
(1:25000), and after the raster layers of these factors have been
generated via ArcGIS 10.1. Fig. 9 shows these raster layers in which
the sizes of each cell is 20�20 m2. These digital values once ex-
tracted for each factor, they were exported into Microsoft Excel
2010; thus, the Min-Max normalization (Han et al., 2006) was
performed on the data set in order to reduce the effect of the
measurement unit on the learning process of the algorithms. As
outcome, a digital database of the environmental characteristics is
extracted for 201 historical sites. Hence, each sample is labelled as
normal or abnormal based on the values of their variables
(Maghsoudi et al., 2014). In this way, a data set with 201 samples
(48 abnormal and 153 normal) is achieved, and used then for
evaluating the performance of DENSA as anomalous sites detector.

As mentioned before, one of the open questions for the nega-
tive selection algorithms is their efficiency in dealing with real-
world applications (Stibor et al., 2005), whose issue is the core of
this research work. Moreover, the advantage of the Gaussian
Mixture Models is define more flexible boundaries for the self
space, and consequently, more efficient detectors. However, in
dealing the anomalous archaeological sites detection, becomes
important also the location of the detectors inside the feature
space. Therefore, becomes crucial carefully select the detectors in
such way to cover efficiently the non-self space. Thus a novel
method based on GMM probabilities is employed to select detec-
tors, which are efficiently scattered over the non-self space; in this
way, the detectors are distributed more efficiently in the whole
non-self space.

In order to achieve this goal, a function, dis(dj), is defined,
which calculates the distance of a generated detector to the GMM
of normal space:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ) ( )

= −
( )

d
P d

dis 1
Threshold1 12

j
j

where P(dj) denotes the probability of jth detector generated by
the GMM of normal data. Fig. 10 shows the graph of the function in
Eq. (12). According to this diagram, as the probability of a detector
increases, the value of dis(dj) decreases. Indeed, this function re-
turns lower values for those detectors that are nearer to the nor-
mal space (their probabilities is closer to the Threshold_1). Follows
then that this function can be used to distribute more efficiently
detectors on the non-self space.

In real world applications, the traditional real valued negative
selection algorithm cannot be efficiently applied due to the high
dimensionality of the data sets; in fact, generating random de-
tectors in a high dimensional feature space will lead to poor re-
sults or even a disproportionate number of detectors. In this re-
search work, the function in Eq. (12) has been used to generate
detectors distributed over all the non-self space. Fig. 11 shows the
DENSA pseudo code, properly modified to make it more efficient
in detecting archaeological sites; with respect the ones shown in
Please cite this article as: Fouladvand, S., et al., DENSA: An effective ne
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Fig. 1, the lines 5.1 and 5.2 have been replaced with the algorithm
shown in Fig. 11 in order to distribute the detectors more effi-
ciently on the archaeological site feature space. The algorithm tries
to divide the non-self space into four different regions by con-
trolling the GMM probabilities of the detectors (the number 4 is
selected as a default value, and it can be changed in different
applications).

This is due because, when a random pattern is generated (line
9.1 in Fig. 11), this can be anywhere in the feature space: (i) inside
the self-space (high values of P(x)); (ii) somewhere outside of the
normal space, but not so far from the self space (low values of P
(x)); (iii) outside of the self-space, and away from the normal space
(very low values of P(x)). If, however, P(x) is laid into the range [0,
Threshold_1], this means that the pattern is located in the non-self
space, and in particular with P(x) near to 0 it is away from
boundary, whilst with P(x) near to Threshold_1 it is located near
the boundary of the self space. Thus, inspecting P(x) is possible to
guess how far is a random pattern from the normal space. In light
of this, because we need to cover the whole non-self space, in-
cluding spaces near the self boundaries, we have divided the range
[0, Threshold_1] into four sub intervals, and we have generated
patterns in all sub-intervals to be sure that the detectors are fairly
scattered on the non-self space.

To see the basic property and the visual effect of the proposed
approach, DENSA has been employed to generate detectors for the
Pentagram-big data set (see Fig. 12). Fig. 12(a) shows only the
detectors with the values of dist(dj) greater than 0.99, whilst the
plot (b) those whose values of dist(dj) are less than 0.25. As it can
be seen from Fig. 12, by changing the sub-intervals, and controlling
the values of GMM probabilities of the detectors it is easy to dis-
tribute them in the non-self space, and keep their balance, so that
they cover the non-self space more efficiently.

For the archaeological data set, the optimum value of Thresh-
old_1 was set to 13.99, which was computed using a k-fold cross
validation method, with k¼3 as a default value; whilst, in our
experiments, the variables MAX1, MAX2, MAX3 and MAX4 have
been considered to be 200. Moreover, the non-self space has been
divided into four equal sub-regions by setting the variables
first_sub_regions, second_sub_regions, third_sub_regions and
fourth_sub_regions to 0.25, 0.5, 0.75 and 1, respectively. In addi-
tion to the above adjustments, the optimum number of Gaussian
components for the archaeological site data set is 9, which is ob-
tained using Eq. (6). Fig. 13 shows the performance of DENSA in
detecting anomalous sites of Silakhor. These results have been
obtained on the test sets, and have been averaged on 100 in-
dependent runs. It can be noticed in Fig. 13 that the main control
parameter, Threshold_2, can be used to balance the rates between
higher true positive, and lower false positive. High Threshold_2
gative selection algorithmwith flexible boundaries for self-space
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Fig. 11. The DENSA pseudocode properly modified to make it more efficient in detecting archaeological sites: a real-world problem.

Fig. 12. Effect of the method described in Fig. 11 on the DENSA (stars are detectors and dots are self-samples).
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value would result in high true positive rates, but in the same way,
high false positive rates are attained. On the other hand, small
Threshold_2 value would result low false positive rates, but low
true positive rates too. Thus, it is easy to check that Threshold_2
can be easily tuned using a validation set for creating an efficient
anomalous archaeological site detection system, which is a desir-
able system for archaeologists.

The promising results that are represented in Fig. 13 can be
culturally interpreted, based on the history of the study area. Most
Please cite this article as: Fouladvand, S., et al., DENSA: An effective ne
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of the archaeological sites in the Silakhor Plain have a cultural
sequence, and they have been used as settlements for human. This
cultural sequence shows that the environmental potentials in the
Silakhor Plain have led to an almost common settlement pattern
among people in different periods that makes it possible to effi-
ciently model the archaeological sites in this area by artificial in-
telligence algorithms. Artificial Intelligence is attracting wide-
spread interest in many sciences because of its emerging robust
detective capabilities. AI enables archaeologist to more fully
gative selection algorithmwith flexible boundaries for self-space
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Fig. 13. Efficacy of the proposed method in detecting anomalous archaeological
sites.
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exploit knowledge from extensive amount of archaeological data
and assists archaeologists in reasoning and making decisions that
range from appropriate conservation and protection strategies to
where best to excavate in a complex cultural landscape. The ex-
perimental results of this paper provide clear evidence that the
application of negative selection algorithms, and specifically
DENSA, represent an efficient potential for robust AI applications
as detector of anomalous archaeological sites. It can ensure that
archaeologist avoids time consuming, and expensive efforts to
survey and excavate more archaeologically limited landscape areas
for detecting anomalies. Although in this study the proposed al-
gorithm represents a reasonable performance, we also highlight
that there is no single method that for any data set represents the
most accurate method (the No Free Lunch Theorem; Alpaydin,
2009). However, while DENSA may be successfully applied as an
anomaly detector model in other semi-arid area, a deep in-
vestigation, as well as testing of a range of anomaly detection al-
gorithms (with selection based on best performance against a test
data set) should be conducted.
5. Conclusion and future works

This paper has introduced a new NSA termed DENSA that fitted
a GMM on the normal space and modelled the self-space with a
couple of flexible Gaussian components and generated dynamic
number of detectors based on this GMM. DENSA compared ran-
domly generated patterns to the GMM of self-space and then kept
random patterns with low probabilities as detectors. The proposed
algorithm was evaluated using different data sets. The experi-
mental results, showed the efficiency of DENSA even in a real
world application. Using GMM probabilities the detectors can be
efficiently distributed in the non-self space, which led to efficient
anomaly detection system in real world applications. Finally, in
order to analyse the convergence and the running time of the
proposed algorithm, a study has been conducted using the clas-
sical Time-To-Target plots, which present a standard graphical
methodology for data analysis based on the comparisons between
the empirical and theoretical distributions. Furthermore, this pa-
per introduced a novel application of NSA in archaeology. Em-
ploying NSA in detecting anomalous archaeological sites can help
archaeologist to detect anomalous sites, which do not follow
normal behavior of other sites in their vicinities.

Trying to use other distribution estimation techniques such as
One-Class SVM with a suitable objective function can be an in-
teresting idea for future works. Another idea could be investigat-
ing the application of DENSA in generating artificial outliers for
Please cite this article as: Fouladvand, S., et al., DENSA: An effective ne
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one-class classification tasks where the outlier samples are rare, or
using DENSA for systems that need to generate detectors for some
certain reason (e.g., to distribute them or to initialize a learning
classifier system).
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