Graph Partitioning using Genetic Algorithms with
ODPX

A. Cincotti, V. Cutello, M. Pavone
Dept. of Mathematics and Computer Science
University of Catania
V.le A. Doria 6,

95125 Catania, Italy
{cincotti, cutello, mpavone}@dmi.unict.it

Abstract - In this paper, we will study approx-
imate solutions to the extension of the Maximally
Balanced Connected Partition Problem, whose cor-
responding decision problem is known to be NP-
complete. We will introduce a genetic algorithm with
a new crossover operator and we will compare the re-
sults of our algorithm to a well known deterministic
approximation algorithm.

Keywords— Approximation algorithms, Graph Par-
tition, Genetic Algorithm.

I. Introduction

The Maximally Balanced Connected Partition Prob-
lem is an optimization problem defined on connected
graphs. The problem, whose corresponding decisional
problem is known to be N"P-complete (see [1]), is defined
as follows:

PROBLEM 1 (MBCP) Let G = (V, E) be a connected
graph. Let w : V — R* be a positive weight function
defined on the set of vertices. Find a partition V4, V5 of
the set of vertices V such that

o The induced graphs G; = (1, £1),G2 = (V, Ey)

are connected, and

o the value min{3 .y, w(v),3 ey, w(v)} is maxi-

mized
Basically, the problem asks for a partition of the given
graph into two connected subgraphs whose total sums
of weights are (optimally) equal. The MBC Problem is
a particular instance of the graph partitioning problem
(GPP) which can be defined as follows:

PROBLEM 2 (GPP) Let G = (V, E) be a graph. Let
w; : V o R be a positive weight function defined
on the set of vertices, and ws : E — R a positive
weight function defined on the set of edges. Find sub-
sets Vi, Va,..., V; of the set of vertices V such that

e UVi=Vand V;NnV; =0 fori #j.

e« W(i) = W/k where W and W (i) are, respectively,

the total sum of weights of the vertices in V' and

0-7803-7282-4/02/$10.00 ©2002 IEEE

W (i) the total sum of weights of the vertices in V;.

o the sum of the weights of edges crossing between

subsets, called cut-size, is minimized.

The GP problem has been extensively studied and
many approximation algorithms have been produced.
One of the key heuristics was proposed by [8] and many
other local and global improvements methods are exten-
sion of such heuristics. The basic idea of the heuristic
is quite simple: given an initial bisection, the heuris-
tic tries to find a sequence of node pair exchanges that
leads to improvement. The multilevel graph partitioning
schemes described in [5)], [6], [7], are based on the above
idea as well. The final product is a very fast program
called METIS, which we will use to compare the results
obtained by our algorithm. '

Let us, now, introduce the problem we will work on,
called k-Connected Partition:

PROBLEM 8 (k-CP) Let G = (V, E) be a connected
graph. Let k& > 2 be a given integer, find a partition
Vi, Va,..., Vi of the set of vertices V' such that

o The induced graphs G; = (V;, E;), for all values i =

1,...,k are connected, and
« the following value is maximized

min{| V1 |,| Va |,...,| V& |}

II. A genetic algorithm for graph partitioning

Genetic Algorithms are a population-based optimiza-
tion strategy that have been successfully applied to many
real world problems [3]. The crossover operator plays a
very important role in genetic algorithms since it gen-
erates the exchange of information between individuals
during the search. It has been shown [2], [4], [9] that
a careful design of the crossover operator is essential in
avoiding loss of information. In this paper we use the
k-CP Problem as an example of an application of ge-
netic algorithms where the relative order preservation of

402 -

the structure of the configuration is extremely important
when the diversity of the individuals is small.

The first step of the algorithm is to create an initial
population P where every element p, that we call a chro-
mosome, is a permutation of the | V | integers repre-
senting the vertices of a given graph. At this point, the
problem 1is to associate to each chromosome a partition
of the graph. We proceeds as follows.

The first k elements of the chromosome represent the
leaders of the k partitions, i.e. two leaders can not be
contained in the same partition. The remaining |V | -k
vertices that are assigned to one of the k partitions by
the following deterministic algorithm:

Algorithm Create_Partitions
Input: A connected graph G = (V, E), an integer 1 < k <|
V |= n, and a permutation p of V'
Output: Connected and pairwise disjoint k subgraphs of
G
fori=1to k do

assign p; to the partition <.
end _for
while there are free vertices do

fori=k+1tondo

if p; is free then

assign p; to the smallest adjacent partition, if any;
end_for

end_while
end Algorithm

By inspecting the above algorithm, it is clear that
once the initial k vertices are fixed the partition is de-
terministically determined by the vertex ordering given
by p. Such an algorithm is very fast and will be used
by the proposed Genetic Algorithm as a subroutine to
compute fitness functions of individuals. As an exam-
ple, consider the graph in figure 1 and the permutation
p=76310511194128 2 with k= 3.

Vertices 7,6 and 3 will belong to different partitions.
Applying the algorithm Create_Partitions we can see that
in the first run, 10 is not assigned, 5 is assigned to 6, 1
is assigned to 3, 11 is assigned to 7, 9 to 7. 4 could be
assigned to 3 and to 6 since they have both the same
cardinality. To make the algorithm deterministic, 4 gets
assigned to the group whose leader comes first in the
permutation, in this case 6. 12 gets assigned to 7 via 11.
8 gets assigned to 3 and 2 to 3 as well. After the first
round of the while loop, only 10 has not been assigned
yet. In the second run, it gets assigned to 7. In fig. 2,
the obtained partitions are shown.

Obtained partitions will be judged according to the

0-7803-7282-4/02/$10.00 ©2002 IEEE

403

Fig. 2. The obtained partition

measure introduced in METIS:

k-M
v (1)

where k is the number of partitions and M is the num-
ber of vertices of the largest partition. That is to say,
(1) will give us the fitness value of a chromosome (vertex
permutation) p. By definition !EWM!' > 1 and the goal of
the algorithm is to minimize such a value.

A. The crossover operator

After selection, a new crossover operator, called order
and distance preserving crossover (ODPX), is applied.
We define the distance between two chromosomes as the -
number of leaders that are contained in one chromosome
but not in the other. Thus, two chromosomes which have
the same k initial elements, even if they are in different
order, have distance zero. Two chromosomes instead,
that have no elements in common among the first k, have
distance k.

The aim of the ODPX is to produce an offspring which
has the same distance to each of its parents as one parent

to the other. Now, in the first chromosome we swap
all the leaders that are not in common with the second
chromosome with some of | V | —k elements chosen in a
random way. Afterwards, we repeat the same operation
with the second chromosome. Finally, we must exchange
the information about the | V' | —k elements of the two
chromosome but preserving the order. Suppose that

Ci41Cry2---Clvy
Dy11Dgtz ... Dy

are the second parts of the two chromosomes. We con-
sider the list

Ci41D41Cx42 D42 - - - Clv| Dy

and use it to create two new chromosomes as follows: we
start from the first element and, if the element does not
belong to the new first chromosome, we put in there, oth-
erwise we put it in the second chromosome. Analogously,
we can consider the list

Di41Ck41D112Ck42 - .- Dy |Cly|

and generate two other offspring.

0-7803-7282-4/02/$10.00 ©2002 IEEE

Procedure ODPX

Input: Vectors p,,p, which are permutations of the set of
vertices V.

Output: Vectors g1,4q2,¢s,gs which are permutations of
the set of vertices V.

compute the intersection I of the first k elements of p,
and py
fori=1to k do
if po[i] is not in I then
choose randomly j > k
swap(pa[i], Pa [.7])
end for
fori=1to kdo
if ps[¢] is not in I then
choose randomly h > k such that py[h] is not in J
Comment: J is the set of the first k elements
of Pa;
swap(ps[i], ps[h])
end for
copy the first k elements of p, in ¢1 and g3
copy the first k elements of p, in ¢2 and g4
Comments: we create now two vectors L, L' with 2(n—k)
elements each, as follows:
for j =1to 2(n—k) do
if (j mod 2 = 1) then
Llj]l = palk + (5 + 1)/2]
L'l =plk+ (G +1)/2)
else
L[j] = pelk +7/2]
L'[j] = pa[k +j/2]
end for
for j =1 to 2(n — k) do
if L[j] is not in g1 then copy L[j] in ¢
else copy L[j] in ¢2
if L'[§] is not in g4 then copy L'[j] in g4
else copy L'[j] in g3
end for
end Procedure

A simple example follows. Let us consider a graph with
| V |= 12 vertices and suppose k = 3. Suppose we want
to apply ODPX to the following two chromosomes:

537 411821219610
763 | 105111941282

The chromosomes have distance one because they have
two leaders, namely 3 and 7, in common. We swap the
remaining leader with one randomly chosen. Suppose,
for instance, that 2 is chosen for the first chromosome

and the 4 for the second. We obtain:

2374118512196 10
743]105111961282

Now, we consider the list
410115815111291691268102
we reset the chromosomes

237000000000
7431000000000

and create the offspring

237 1410115811296
743 | 511191268102

In a symmetric way, we consider the list
104511181159126112986210
and generate the other two offspring

2374115112986 10
743 1105111891262
B. The algorithm

We present, here for completeness the pseudo-code of the
algorithm.

The GA for graph partitioning

Input: A connected graph G = (V, E) with | V |=n and
an integer 1 < k < n/4

Output: Connected k subgraphs of G whose total cardi-
nality is ”close” to the average value.

initialize randomly a population P of 2 x n elements.

for : =0 to MAX_GEN do
compute_fitness

sort the population with respect to fitness values
delete half of population with lower fitness
crossover
end_for
end Algorithm

The procedure compute_fitness formalizes how the fit-
ness value of each chromosome is computed.

0-7803-7282-4/02/$10.00 ©2002 IEEE

405

k 50 | 100 | 200 | 400 | 600 | 800 | 1000

PMETIS | 1.01 | 1.02 | 1.08 | 1.18 | 1.34 | 1.40 | 1.44

ODPX | 1.00 | 1.00 | 1.02 | 1.04 | 1.08 | 1.12 | 1.20
TABLE I

Procedure compute_fitness
for each p € P do

call Create_Partitions(p);
fitness(p) = %ﬂ'

Comment: M(p) is the partition of mazimal cardi-

nality among the k partitions created given the per-
mutation p;

end for
end Procedure

Below we have pseudo-code for the crossover function.

Procedure crossover
for i =1 ton/2 do

select two parents pa,ps» € P randomly;

add the 4 individuals producted by ODPX (p,, ps)
to P

end_for
end Procedure

II1. Results and Future work

Table I shows the results of our GA compared to an
iterative version of METIS. The shown results refer to
average results on randomly generated graphs with 5000
vertices and 100000 edges. For each value of k 5 different
experiments were conducted.

The results prove that our approach produces better
results than one of the best existing algorithms although
it is slower. We intend now to apply this idea to the MBC
Problem. In particular, we are also trying to explore
some specific heuristics to apply to planar graphs, which
represent an interesting instance of the MBC Problem,
which is somewhat harder due to the implicit sparseness
of planar graphs.

Acknowledgments: We thank the anonymous referees
for the very valuable comments.

References

[1] J. Chlebikova. Approximating the Maximally Balanced Con-
nected Partition Problem in graphs. Information Processing
Letters, 60:225-230, 1996.

[2] B. Freisleben and P. Merz A Genetic Local Search Algorithm
for Solving Symmetric and Asymmetric Traveling Salesman

4]

&

(6]

7]

19]

0-7803-7282-4/02/$10.00 ©2002 IEEE

Problems In Proceedings of the 1996 IEEE International Con-
ference on Evolutionary Computation, (Nagoya, Japan), pp.
616-621, 1996.

D.E. Goldberg Genetic algorithms in search, optimization and
machine learning Addison- Wesley, MA, 1989

M. Gorges-Schleuter ASPARAGOS96 and the Traveling Sales-
man Problem In Proceedings of the IEEE International Con-
ference on Evolutionary Computation, IEEE Press (1997)

G. Karypis and V. Kumar. Multilevel Algorithms for Multi-
Constraint Graph Partitioning. In Proceedings of Supercom-
puting, 1998.

G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on
Scientific Computing, pages 269-278, 1996.

G. Karypis and V. Kumar. Multilevel k-way partitioning
scheme for irregular graphs. Journal of Parallel and Dis-
tributed Computing, 48(1), 1998.

B.W. Kernighan and S. Lin. An efficient heuristic procedure
for partitioning graphs. The Bell Systermn Technical Journal,
49:291-307, 1970.

P. Moscato On genetic crossover operators for relative order
preservation Caltech concurrent computation program, C3P
Report 778 (1989)

406

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

