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Abstract. This paper presents a comparative study of two important
Clonal Selection Algorithms (CSAs): CLONALG and opt-IA. To un-
derstand deeply the performance of both algorithms, have been faced
four important classes of problems: toy problems (ones-counting and
trap functions), pattern recognition, numerical optimization problems
(23 functions) and NP-Complete problem (the 2D HP model for pro-
tein structure prediction problem). Two possible versions of CLONALG
have been implemented and tested. The experimental results show a
global better performance of opt-IA respect to CLONALG. Considering
the results obtained, we can claim that the CSAs represent a new effec-
tive class of Evolutionary Algorithms to perform searching, learning and
optimization tasks.
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1 Introduction

Clonal Selection Algorithms (CSAs) are a special class of Immune algorithms
(IA) which are inspired by the Clonal Selection Principle [1–3] of the human im-
mune system to produce effective methods for search and optimization. In this
research paper two well known CSAs are analyzed: CLONal selection ALGorithm
(CLONALG) [4] and optimization Immune Algorithm (opt-IA) [5]. To analyze
experimentally the overall performance of those two algorithms, they will be
tested on a robust set of problems belonging to four different classes: toy prob-
lems, pattern recognition, numerical optimization problems and NP-complete
problems. Those algorithms use a simplified model of the Clonal Selection Prin-
ciple. Both algorithms are population based. Each individual of the population
is a candidate solution belonging to the combinatorial fitness landscape of a
given computational problem. Using the cloning operator, an immune algorithm
produces individuals with higher affinities (higher fitness function values), intro-
ducing blind perturbation (by means of a hypermutation operator) and selecting
their improved mature progenies.
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1.1 CLONALG

CLONALG is characterized by two populations: a population of antigens Ag and
a population of antibodies Ab (denoted with P (t)). The individual antibody, Ab,
and antigen, Ag, are represented by string attributes m = mL, . . . ,m1, that is,
a point in a L−dimensional shape space S, m ∈ SL.The Ab population is the set
of current candidate solutions, and the Ag is the environment to be recognized.
After a random initialization of the first population P (0), the algorithm loops for
a predefined maximum number of generations (Ngen). In the first step, it deter-
mines the fitness function values of all Abs in relation to the Ag. Next, it selects
n Abs that will be cloned independently and proportionally to their antigenic
affinities, generating the clone population P clo. Hence, the higher the fitness, the
higher the number of clones generated for each of the n Abs. The hypermutation
operator performs an affinity maturation process inversely proportional to the
fitness values generating the matured clone population Phyp. After computing
the antigenic affinity (i.e., the fitness function) of the population Phyp, CLON-
ALG creates randomly d new antibodies that will replace the d lowest fit Abs in
the current population.

In this paper we use the CLONALG version for optimization tasks (except
for pattern recognition where we will use the other version proposed in [4]),
varying the same parameters (N,n, β, d) plus ρ (not studied in [4]) that controls
the shape of the mutation rate with respect to the following two equations:

α = e(−ρ∗f), α =
(

1
ρ

)
e(−f) (1)

where α represents the mutation rate , and f is the fitness function value nor-
malized in [0.1]. The number of mutations of the clone with fitness function
value f is equal to bL ∗ αc where L is the length of the clone receptor. The first
potential mutation has been proposed in [4], the original mutation law used by
CLONALG; while the second potential mutation has been introduced in [6]. We
will show how the mutation rates and the parameter ρ are crucial to set in order
to find the better performance of the algorithm. In the optimization version of
CLONALG the affinity proportionate cloning is not useful; we use the same law
defined in [4]: Nc =

∑n
i=1 round (β ∗N); where Nc represents the total number

of clones created at each generation, in this way, each antibody (or B cell) pro-
duces the same number of clones. Moreover, we assign N = n, so all Abs from
the population will be selected for cloning in step 4 of the algorithm. For the
pseudo-code of CLONALG see [4].

The experimental study was conducted using two versions of CLONALG,
CLONALG1 and CLONALG2, with different selection scheme in step 8 of the
algorithm and using the two potential mutations above defined (equations 1):

CLONALG1: each Ab at generation t will be substituted at the next genera-
tion (t + 1) by the best individual of its set of β ∗N mutated clones.

CLONALG2: the population at the next generation (t + 1) will be formed by
the n best Ab’s of the mutated clones at time step t.
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1.2 opt-IA

The opt-IA algorithm uses only two entities: antigens (Ag) and B cells (or Ab)
like CLONALG. At each time step t, we have a population P (t) of size d. The
initial population of candidate solutions, time t = 0, is generated randomly. The
function Evaluate(P) computes the fitness function value of each B cell x ∈ P.
The implemented IA uses three immune operators, cloning, hypermutation and
aging. The cloning operator, simply, clones each B cell dup times producing an
intermediate population P clo of size d × dup, where each cloned B cell has the
same age of its parent.

The hypermutation operator acts on the B cell receptor of P clo. The number
of mutations M is determined by mutation potential. We tested our IA using
inversely proportional hypermutation operators, hypermacromutation operator,
and combination of hypermutation operators and hypermacromutation. The two
hypermutation operators and the Hypermacromutation perturb the receptors
using different mutation potentials, depending upon a parameter c. In particular,
the two implemented operators try to mutate each B cell receptor M times
without using probability mutation pm, typically used in Genetic Algorithms.

In the Inversely Proportional Hypermutation the number of mutations is in-
versely proportional to the fitness value, that is it decrease as the fitness function
of the current B cell increases. So at each time step t, the operator will perform
at most Mi(f(x)) = ((1 − E∗

f(x) ) × (c × `)) + (c × `)) mutations, where E∗ is
the optimum of the problem and l is the string length. In this case, Mi(f(x))
has the shape of an hyperbola branch. In the Hypermacromutation the number
of mutations is independent from the fitness function f and the parameter c.
In this case, we choose at random two sites in the string, i and j such that
(i + 1) ≤ j ≤ ` the operator mutates at most Mm(x) = j − i + 1 directions, in
the range [i, j].

The aging operator eliminates old B cells, in the populations P (t), P (hyp)

and/or P (macro), to avoid premature convergence. The parameter τB sets the
maximum number of generations allowed to B cells to remain in the popula-
tion. When a B cell is τB + 1 old it is erased by the current population, no
matter what its fitness value is. We call this strategy, static pure aging. We
can also define a stochastic aging where the elimination process is based on a
stochastic law. The probability to remove a B cell is governed by exponential
negative law with parameter τB , using the function Pdie(τB) = (1− e−ln(2)/τB )
[2]. During the cloning expansion, a cloned B cell takes the age of its parent.
After the hypermutation phase, a cloned B cell which successfully mutates, will
be considered to have age equal to 0. Such a scheme intends to give an equal
opportunity to each new B cell to effectively explore the landscape. The best
B cells which“survived” the aging operator, are selected from the populations
P (t), P (hyp) and/or P (macro), in such a way each B cell receptor is unique, i.e.
each B cell receptor is different from all other receptors. In this way, we obtain
the new population P (t+1), of d B cells, for the next generation t + 1. If only
d′ < d B cells survived, the (µ + λ)-Selection operator creates d− d′ new B cells
(Birth phase). The boolean function Termination Condition() returns true if a
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opt-IA(`, d, dup, τB , c, h, hm)
1. t := 0

2. P (t) := Initial Pop()

3. Evaluate(P (0))
4. while (¬ Termination Condition())do

5. P (clo) := Cloning (P (t), dup)
6. if (H is TRUE) then

7. P (hyp) := Hypermutation(P (clo), c, `)

8. Evaluate(P (hyp))
9. if (M is TRUE) then

10. P (macro) := Hypermacro(P clo)

11. Evaluate (P (macro))

12. Aging(P (t), P (hyp), P (macro), τB)

13. P (t+1) := (µ + λ)-Selection(P (t), P (hyp), P (macro))
14. t := t + 1
15.end while

Fig. 1. Pseudo-code of opt-IA.

solution is found, or a maximum number of fitness function evaluations (Tmax)
is reached. Figure 1 shows the pseudo-code of the proposed Immune Algorithm.
The boolean variables H, M control, respectively, the hypermutation and the
hypermacromutation operator.

2 Toy problems

Toy problems play a central role in understanding the dynamics of algorithms [7].
In fact, toy problems can be used to show the main differences between different
algorithms. In this section we test and study the dynamic of CLONALG and
opt-IA for two classical toy problems: one-counting and trap functions.

2.1 Ones-Counting problem

The ones-counting problem (or ones-max problem), is simpled defined as the
problem to maximize the number of 1 of bit-string x of length `: f(x) =

∑`
i=1 xi,

with xi ∈ {0, 1}. In this work we set ` = 100. The ones-max problem is a classical
test to assess if an evolutionary algorithm is able to reach an optimal solution
starting from a randomly initialized population.

All the experimental results reported in this sections have been averaged over
100 independent runs, and we fixed the max number of fitness function evalua-
tions (Tmax) to 104. Figure 2 shows the population average fitness versus gen-
eration for CLONALG and opt-IA on the first 100 generations. For CLONALG
we show both versions (CLONALG1 and CLONALG2) using the two possible
mutation rates defined in section 1.1. The convergence speed of CLONALG is
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Fig. 2. Population average fitness for CLONALG (left plot) and opt-IA (right plot)

(rate1: α = e(−ρ∗f), rate2: α =
�

1
ρ

�
e(−f)).

inferior respect to opt-IA but its SR is superior. In about 40 generations, opt-IA
reaches a fitness value of ' 95 but from now on the aging process is more in-
tensive refraining the convergence speed. For opt-IA we show versions with the
usage of the static or stochastic aging coupled with an elitist or no-elitist strat-
egy (i.e., the best candidate solution is always maintained from a generation to
another). The better results are obtained using static aging.

2.2 Trap Functions

The trap functions [8] [9], simply, take as input the number of 1’s of bit strings
of length ` :

f(x) = f̂(u(x)) = f̂

(∑̀

k=1

xk

)
(2)

There are two trap functions: simple trap function and complex trap function.
The definition of the simple and complex trap functions are the following:

bf(u) =

�
a
z

(z−u), if u≤z
b

`−z
(u−z), otherwise.

, bf(u) =

8><>:
a
z1

(z1−u), if u≤z1
b

`−z1
(u−z1), if z1<u≤z2

b(z2−z1)
`−z1

�
1− 1

`−z2
(u−z2)

�
otherwise.

(3)

There are many choice for parameters a, b and z, we will use the parameter
values used in [8]: z ≈ (1/4)`; b = ` − z − 1; 1.5b ≤ a ≤ 2b; a a multiple
of z. The simple trap function is characterize by a global optimum (for a bit
string of all 0’s) and a local optimum (for a bit string of all 1’s) that are the
complement bit-wise of each other. The complex trap function is more difficult
to investigate, in fact there are two directions to get trapped. We note that for
z2 = ` the complex trap function becomes the simple trap function. In this case
the values of parameter z2 are determined by the following equation z2 = `− z1.
The tables of the next section report the experimental results labelling the trap
function with the following syntax: S(type) and C(type); where S and C mean
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respectively Simple and Complex trap function, while type varying with respect
the parameter values used by simple and complex trap functions: type I (` =
10, z = 3, a = 12, b = 6), type II (` = 20, z = 5, a = 20, b = 14), type III
(` = 50, z = 10, a = 80, b = 39), type IV (` = 75, z = 20, a = 80, b = 54), type
V (` = 100, z = 25, a = 100, b = 74). For the complex trap function z1 = z and
z2 = `− z1.

Table 1. Best results obtained by CLONALG (both versions) with population size
N = 10, varying β ∈ {0.1, 0.2, ..., 1.0}, ρ ∈ {1.0, 2.0, ..., 10.0} and d ∈ {1, 2, 3, 4, 5}.

CLONALG1 CLONALG2

Trap
�

1
ρ

�
e(−f) e(−ρ∗f)

�
1
ρ

�
e(−f) e(−ρ∗f) Tmax

SR AES (β, ρ) SR AES (β, ρ) SR AES (β, ρ) SR AES (β, ρ)

S(I) 100 1100.4 (.5,3) 100 479.7 (.8,2) 100 725.3 (.9,4) 100 539.2 (.7,2) 105

S(II) 100 27939.2 (.8,8) 100 174563.4 (.1,4) 30 173679.8 (.1,6) 31 172191.2 (.1,4) 2× 105

S(III) 0 - 0 - 0 - 0 - 3× 105

S(IV) 0 - 0 - 0 - 0 - 4× 105

S(V) 0 - 0 - 0 - 0 - 5× 105

C(I) 100 272.5 (.7,3) 100 251.3 (.9,4) 100 254.0 (.3,3) 100 218.4 (.5,4) 105

C(II) 100 17526.3 (1,8) 10 191852.7 (.2,1) 29 173992.6 (.1,6) 24 172434.2 (.1,4) 2× 105

C(II) 0 - 0 - 0 - 0 - 3× 105

C(IV) 0 - 0 - 0 - 0 - 4× 105

C(V) 0 - 0 - 0 - 0 - 5× 105

Table 2. Best results obtained by opt-IA with population size d = 10,
duplication parameter dup = 1, varying c ∈ {0.1, . . . , 1.0} and tauB ∈
{1, . . . , 15, 20, 25, 50, 100, 200,∞}.

Inv Macro Inv+Macro
Trap SR AES (τB , c) SR AES (dup, τB) SR AES (τB , c) Tmax

S(I) 100 504.76 (5, 0.3) 100 1495.9 (1, 1) 100 477.04 (15, 0.2) 105

S(II) 97 58092.7 (20, 0.2) 28 64760.25 (1, 1) 100 35312.29 (100, 0.2) 2× 105

S(III) 0 - - 23 19346.09 (4, 13) 100 20045.81 (2× 105, 0.1) 3× 105

S(IV) 0 - - 28 69987 (10, 12) 100 42089 (25, 0.2) 4× 105

S(V) 0 - - 27 139824.41 (7, 1) 100 80789.94 (50, 0.2) 5× 105

C(I) 100 371.15 (10, 0.2) 100 737.78 (5, 3) 100 388.42 (10, 0.2) 105

C(II) 100 44079.57 (10, 0.2) 100 27392.18 (5, 3) 100 29271.68 (5, 0.2) 2× 105

C(III) 0 - - 54 115908.61 (4, 7) 24 149006.5 (20, 0.1) 3× 105

C(IV) 0 - - 7 179593.29 (2, 9) 2 154925 (15, 0.4) 4× 105

C(V) 0 - - 2 353579 (1, 15) 0 - - 5× 105

Experimental results. All the experimental results reported in this sections have
been averaged over 100 independent runs. Table 1 shows the best results obtained
by CLONALG (both versions) in terms of Success Rate (SR) and Average num-
ber of Evaluations to Solutions (AES), the population size has been set to the
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minimal value N = 10. The third column in table 1 reports the best parameter
values that allowed the hypermutation operators to reach the best results. The
last column of the tables reports the maximum number of evaluations allowed,
Tmax, for each kind of trap function.

The results show clearly that, in terms of problem solving ability, facing toy
problems is not an easy game. The cases III, IV and V for simple and complex
trap functions remain no solved. Moreover, the better result are obtained using
mutation rate (1/ρ) e(−f), respect to the ones-counting problem, where the better
performance is obtained using e(−ρ∗f).

Table 2 shows results obtained with opt-IA using a population size d = 10,
a minimal duplication parameter dup = 1, and varying the parameter c ∈
{0.1, . . . , 1.0} and τB ∈ {1, . . . , 15, 20, 25, 50, 100, 200,∞}. If we compare the
results of opt-IA using only the inversely proportional hypermutation operator
with the results obtained by CLONALG for population size of 10 Ab’s we note
how CLONALG outperforms opt-IA. Using the hypermacromutation operator,
opt-IA obtains SR > 0 for all cases of the simple and complex trap function.
Finally, the usage of coupled operators (Inv+Macro) is the key feature to ef-
fectively face the trap functions as shown in the third column of table 2. The
results obtained with this setting are comparable with the results in [8], where
the authors, in their theoretical and experimental research work, use only cases
C(I), C(II) and C(III) for the complex trap function.

3 Pattern recognition

In this section we consider the simple pattern recognition task to learn ten
binary characters. Each character is represented as a bitstring of length L =
120 corresponding to a resolution of 12 × 10 bits for each picture. The original
characters are depicted on figure 4, those characters are the same used in [4].
The fitness measure is the standard Hamming distance for bitstrings.

Experimental results. Figure 3 shows the opt-IA dynamic for each input pattern
to be learned. The algorithm is able to recognize all the characters in only 90
generations. This is not true for CLONALG, the overall convergence happens
after 250 generations. This is visible in figure 4, where the representations of the
antibodies after 200 generations of the algorithms contain a bit of noisy.

4 Numerical Optimization

Numerical optimization problems are fundamental for every field of engineer-
ing, science, and business. The task is that of global optimization of a generic
objective function. However, often, the objective function is difficult to opti-
mize because the function possesses numerous local optima which could trap
the algorithm. Moreover this difficulty increases with the increase of the prob-
lem dimension. In this paper we consider the following numerical minimization
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Fig. 4. CLONALG results on pattern recognition. From left to right: patterns to be
learned; initial Abs set; Abs set after 200 generations.

problem:
min(f(x)), L ≤ x ≤ U (4)

where x = (x1, x2, . . . , xn) is the variable vector in Rn, f(x) denotes the ob-
jective function to minimize and L = (l1, l2, . . . , ln), U = (u1, u2, . . . , un) rep-
resent, respectively, the lower and the upper bound of the variables, such that
xi ∈ [li, ui].

Test Functions. Twentythree functions from three categories are selected [10],
covering a broader range. Table 3 lists the 23 functions and their key properties
(for a complete description of all the functions and the parameters involved see
[10]). These function can be divided into three categories of different complexi-
ties:

– unimodal functions (f1 − f7), which are relatively easy to optimize, but the
difficulty increases as the problem dimension increases;

– multimodal functions (f8−f13), with many local minima, they represent the
most difficult class of problems for many optimization algorithms;

– multimodal functions which contain only a few local optima (f14 − f23).

Some functions possess unique features: f6 is a discontinuous step function hav-
ing a single optimum; f7 is a noisy quartic function involving a uniformly dis-
tributed random variable within [0, 1]. Optimizing unimodal functions is not a
major issue, so in this case the convergence rate is of main interest. However,
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for multimodal functions the quality of the final results is more important since
it reflects the algorithm’s ability in escaping from local optima.

We used binary string representation: each real value xi is coded using bit-
strings of length L = 22 corresponding to a precision of six decimal places.

Experimental results. In table 4 we report results obtained with CLONALG
and opt-IA respect to one of the best evolutionary algorithms for numerical
optimization in literature: Fast Evolutionary Programming (FEP) [10]. FEP
is based on Conventional Evolutionary Programming (CEP) but uses a new
mutation operator based on Cauchy random numbers that help the algorithm
to escape from local optima. In the experiments of this section, opt-IA uses
the same mutation potentials above defined for CLONALG (equation 1) for
the inversely proportional hypermutation operator. Parameters for CLONALG
and opt-IA are setted respectively as follow: N = n = 50, d = 0, β = 0.1 and
d = 20, dup = 2, τB = 20. If we compare the two versions of CLONALG, we can
see that for unimodal functions (f1−f7) CLONALG2 is in general more effective
than CLONALG1. Otherwise, for multimodal functions (f8− f23), CLONALG1

has a better performance. This is in agreement with the type of selection scheme
used by the two versions. Since CLONALG1 at each generation replaces each Ab
by the best individual of its set of β ∗N mutated clones, it is able to maintain
more diversity in the population. On the other hand, CLONALG2 focuses the
search on the global optimum, with the consequence of a higher probability to
be trapped in a local optimum.

Considering the two versions of opt-IA, the four versions of CLONALG, and
the results obtained by FEP, opt-IA outperforms CLONALG and FEP on 11
functions over 23, analogously to FEP, while CLONALG performs better only
in 3 functions (see boldface results in table 4).

Inspecting entries results on table 4 in terms of results obtained by CSAs only,
we note that, although CLONALG and opt-IA have equivalent performance for
unimodal functions (f1 − f7), opt-IA outperforms CLONALG on 11 functions
for the more difficult class of multimodal functions (f8− f23), while CLONALG
obtains the best results on 5 functions only (results reported in italic in table 4).

5 Protein Structure Prediction: HP model

The Protein Structure Prediction problem (PSP) is simply defined as the prob-
lem of finding the 3D conformation of a protein starting from the amino-acids
composition. A simplified version of this problem was introduced by Dill in [11]
which is called the HP model. It models proteins as two-dimensional self-avoiding
walk chains of ` monomers on the square lattice: two residues cannot occupy
the same node of the lattice. Residues are classified into two major classes: H
(hydrophobic) and the P (polar). In this model, each H–H topological contact,
that is, each lattice nearest-neighbor H–H contact interaction, has energy value
ε ≤ 0, while all other contact interaction types (H–P, P–P) have zero energy.
In general, in the HP model the residues interactions can be defined as follows:
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Table 3. The 23 benchmark functions used in our experimental study; n is the di-
mension of the function; fmin is the minimum value of the function; S ⊆ Rn are the
variable bounds (for a complete description of all the functions and the parameters
involved see [10]).

Test function n S fmin

f1(x) =
Pn

i=1 x2
i 30 [−100, 100]n 0

f2(x) =
Pn

i=1 |xi|+
Qn

i=1 |xi| 30 [−10, 10]n 0

f3(x) =
Pn

i=1

�Pi
j=1 xj

�2
30 [−100, 100]n 0

f4(x) = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100]n 0

f5(x) =
Pn−1

i=1 [100(xi+1 − x2
i )2 + (xi − 1)2] 30 [−30, 30]n 0

f6(x) =
Pn

i=1 (bxi + 0.5c)2 30 [−100, 100]n 0
f7(x) =

Pn
i=1 ix4

i + random[0, 1) 30 [−1.28, 1.28]n 0

f8(x) =
Pn

i=1−xi sin(
p
|xi|) 30 [−500, 500]n −12569.5

f9(x) =
Pn

i=1 [x2
i − 10 cos(2πxi) + 10] 30 [−5.12, 5.12]n 0

f10(x) = −20 exp

�
−0.2

q
1
n

Pn
i=1 x2

i

�
30 [−32, 32]n 0

− exp
� 1

n

Pn
i=1 cos 2πxi

�
+ 20 + e

f11(x) = 1
4000

Pn
i=1 x2

i −
Qn

i=1 cos
�

xi√
i

�
+ 1 30 [−600, 600]n 0

f12(x) = π
n{10 sin2(πy1) 30 [−50, 50]n 0

+
Pn−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2}
+
Pn

i=1 u(xi, 10, 100, 4),
yi = 1 + 1

4 (xi + 1)

u(xi, a, k, m) =

8<: k(xi − a)m, if xi > a,
0, if −a ≤ xi ≤ a,
k(−xi − a)m, if xi < −a.

f13(x) = 0.1{sin2(3πx1) 30 [−50, 50]n 0

+
Pn−1

i=1 (xi − 1)2[1 + sin2(3πxi+1)]
+(xn − 1)[1 + sin2(2πxn)]}+

Pn
i=1 u(xi, 5, 100, 4)

f14(x) =

�
1

500 +
P25

j=1
1

j+
P2

i=1 (xi−aij)6

�−1

2 [−65.536, 65.536]n 1

f15(x) =
P11

i=1

�
ai − xi(b2i +bix2)

b2
i
+bix3+x4

�2
4 [−5, 5]n 0.0003075

f16(x) = 4x2
1 − 2.1x4

1 + 1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5]n −1.0316285

f17(x) =
�

x2 − 5.1
4π2 x2

1 + 5
π x1 − 6

�2
2 [−5, 10]× [0, 15] 0.398

+10
�
1− 1

8π

�
cos x1 + 10

f18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 2 [−2, 2]n 3

+6x1x2 + 3x2
2)]× [30 + (2x1 − 3x2)

2(18− 32x1

+12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

f19(x) = −P4
i=1 ci exp

h
−P4

j=1 aij(xj − pij)
2
i

4 [0, 1]n −3.86

f20(x) = −P4
i=1 ci exp

h
−P6

j=1 aij(xj − pij)
2
i

6 [0, 1]n −3.32

f21(x) = −P5
i=1

h
(x− ai)(x− ai)

T + ci

i−1
4 [0, 10]n −10.1422

f22(x) = −P7
i=1

h
(x− ai)(x− ai)

T + ci

i−1
4 [0, 10]n −10.3909

f23(x) = −P10
i=1

h
(x− ai)(x− ai)

T + ci

i−1
4 [0, 10]n −10.53
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Table 4. Comparison between FEP[10], CLONALG1, CLONALG2 and opt-IA on the
23 test functions. Results have been averaged over 50 independent runs, “mean best”
indicates the mean best function values found in the last generation, “std dev” stands
for standard deviation and Tmax is the maximum number of fitness function evaluation
allowed. In boldface overall better results for each function, in italics the best results
among CLONALG and opt-IA.

Fun. FEP[10] CLONALG1 CLONALG2 opt-IA
Tmax e(−ρ∗f),

�
1
ρ

�
e(−f), e(−ρ∗f),

�
1
ρ

�
e(−f), e(−ρ∗f),

�
1
ρ

�
e(−f)

ρ = 10 ρ = 150 ρ = 10 ρ = 150 ρ = 10 ρ = 150
mean best mean best mean best mean best mean best mean best mean best
(std dev) (std dev) (std dev) (std dev) (std dev) (std dev) (std dev)

f1 5.7 × 10−4 9.6 × 10−4 3.7 × 10−3 3.2 × 10−6 5.5 × 10−4 6.4 × 10−8 3.4 × 10−8

150.000 (1.3 × 10−4) (1.6 × 10−3) (2.6 × 10−3) (1.5 × 10−6) (2.4 × 10−4) (2.6 × 10−8) (1.3 × 10−8 )

f2 8.1 × 10−3 7.7 × 10−5 2.9 × 10−3 1.2 × 10−4 2.7 × 10−3 7.4 × 10−5 7.2 × 10−5

200.000 (7.7 × 10−4) (2.5 × 10−5) (6.6 × 10−4) (2.1 × 10−5) (7.1 × 10−4) (4.5 × 10−6) (3.4 × 10−6 )
f3 1.6 × 10−2 2.2 × 104 1.5 × 104 2.4 × 104 5.9 × 103 3.6 × 103 2.6 × 102

500.000 (1.4 × 10−2) (1.3 × 10−4) (1.8 × 103) (5.7 × 103) (1.8 × 103) (1.1 × 103) (6.8 × 102 )

f4 0.30 9.44 4.91 5.9 × 10−4 8.7 × 10−3 1.0 × 10−2 4.9 × 10−3

500.000 (0.50) (1.98) (1.11) (3.5 × 10−4 ) (2.1 × 10−3) (5.3 × 10−3) (3.8 × 10−3)
f5 5.06 31.07 27.6 4.67 × 102 2.35 × 102 28.6 28.4
2 × 106 (5.87) (13.48) (1.034) (6.3 × 102) (4.4 × 1002) (0.12) (0.42)
f6 0.0 0.52 2.0 × 10−2 0.0 0.0 0.2 0.0

150.000 (0.0) (0.49) (1.4 × 10−1) (0.0) (0.0) (0.44) (0.0)

f7 7.6 × 10−3 1.3 × 10−1 7.8 × 10−2 4.6 × 10−3 5.3 × 10−3 3.4 × 10−3 3.9 × 10−3

300.000 (2.6 × 10−3) (3.5 × 10−2) (1.9 × 10−2) (1.6 × 10−3) (1.4 × 10−3) (1.6 × 10−3 ) (1.3 × 10−3)
f8 −12554.5 −11099.56 −11044.69 −12228.39 −12533.86 −12508.38 −12568.27
900.000 (52.6) (112.05) (186.73) (41.08) (43.08) (155.54) (0.23)
f9 4.6 × 10−2 42.93 37.56 21.75 22.41 19.98 5.68

500.000 (1.2 × 10−2) (3.05) (4.88) (5.03) (6.70) (7.66) (1.55)

f10 1.8 × 10−2 18.96 1.57 19.30 1.2 × 10−1 0.94 4.0 × 10−4

150.000 (2.1 × 10−3) (2.2 × 10−1) (3.9 × 10−1) (1.9 × 10−1) (4.1 × 10−1) (3.56 × 10−1) (1.8 × 10−4 )
f11 1.6 × 10−2 3.6 × 10−2 1.7 × 10−2 9.4 × 10−2 4.6 × 10−2 9.1 × 10−2 3.8 × 10−2

200.000 (2.2 × 10−2) (3.5 × 10−2) (1.9 × 10−2 ) (1.4 × 10−1) (7.0 × 10−2) (1.36 × 10−1) (5.5 × 10−2)
f12 9.2 × 10−6 0.632 0.336 0.738 0.573 0.433 0.364
150.000 (3.6 × 10−6) (2.2 × 10−1) (9.4 × 10−2 ) (5.3 × 10−1) (2.6 × 10−1) (1.41 × 10−1) (5.6 × 10−2)
f13 1.6 × 10−4 1.83 1.39 1.84 1.69 1.51 1.75
150.000 (7.3 × 10−5) (2.7 × 10−1) (1.8 × 10−1 ) (2.7 × 10−1) (2.4 × 10−1) (1.01 × 10−1) (7.7 × 10−2)
f14 1.22 1.0062 1.0021 1.45 2.42 1.042 1.21
10.000 (0.56) (4.0 × 10−2) (2.8 × 10−2 ) (0.95) (2.60) (0.11) (0.54)
f15 5.0 × 10−4 1.4 × 10−3 1.5 × 10−3 8.3 × 10−3 7.2 × 10−3 7.1 × 10−4 7.7 × 10−3

400.000 (3.2 × 10−4) (5.4 × 10−4) (7.8 × 10−4) (8.5 × 10−3) (8.1 × 10−3) (1.3 × 10−4 ) (1.4 × 10−2)
f16 −1.03 −1.0315 −1.0314 −1.0202 −1.0210 −1.0314 −1.027
10.000 (4.9 × 10−7) (1.8 × 10−4 ) (5.7 × 10−4) (1.8 × 10−2) (1.9 × 10−2) (8.7 × 10−4) (1.0 × 10−2)
f17 0.398 0.40061 0.399 0.462 0.422 0.398 0.58
10.000 (1.5 × 10−7) (8.8 × 10−3) (2.0 × 10−3) (2.0 × 10−1) (2.7 × 10−2) (2.0 × 10−4 ) (0.44)
f18 3.02 3.00 3.00 3.54 3.46 3.0 3.0

10.000 (0.11) (1.3 × 10−7) (1.3 × 10−5) (3.78) (3.28) (3.3 × 10−8) (0.0)
f19 −3.86 −3.71 −3.71 −3.67 −3.68 −3.72 −3.72

10.000 (1.4 × 10−5) (1.1 × 10−2) (1.5 × 10−2) (6.6 × 10−2) (6.9 × 10−2) (1.5 × 10−4) (1.4 × 10−6 )
f20 −3.27 −3.30 −3.23 −3.21 −3.18 −3.31 −3.31

20.000 (5.9 × 10−2) (1.0 × 10−2) (5.9 × 10−2) (8.6 × 10−2) (1.2 × 10−1) (7.5 × 10−3) (5.9 × 10−3 )
f21 −5.52 −7.59 −5.92 −5.21 −3.98 −8.29 −3.73
10.000 (1.59) (1.89) (1.77) (1.78) (2.73) (2.25) (0.26)
f22 −5.52 −8.41 −5.90 −7.31 −4.66 −9.59 −3.79
10.000 (2.12) (1.40) (2.09) (2.67) (2.55) (1.72) (0.25)
f23 −6.57 −8.48 −5.98 −7.12 −4.38 −9.96 −3.86
10.000 (3.14) (1.51) (1.98) (2.48) (2.66) (1.46) (0.19)
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eHH = − | ε | and eHP = ePH = ePP = δ. When ε = 1 and δ = 0 we have the
typical interaction energy matrix for the standard HP model [11]. The native
conformation is the one that maximizes the number of contacts H–H, i.e. the one
that minimizes the free energy function. Finding the global minimum of the free
energy function for the protein folding problem in the 2D HP model is NP-hard
[12]. The input for the algorithms is a protein sequence of s ∈ {H, P}` where
` represents the number of amino-acids. The candidate solution is a sequence
of relative directions [13] r ∈ {F,R, L}`−1, where each ri is a relative direction
with respect to the previous direction (ri−1), with i = 2, . . . , `−1 (i.e., there are
`− 2 relative directions) and r1 the non relative direction. We obtain an overall
sequence r of length `− 1.
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Fig. 5. CLONALG1: SR as a function of the values β and ρ for mutation rate α =

e(−ρ∗f) (left plot) and mutation rate α =
�

1
ρ

�
e(−f) (right plot) on seq2 instance.
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Fig. 6. CLONALG2: SR as a function of the values β and ρ for mutation rate α =

e(−ρ∗f) (left plot) and mutation rate α =
�

1
ρ

�
e(−f) (right plot) on seq2 instance.

Experimental results. In this section we report the results obtained for both
versions of CLONALG and opt-IA on 12 instances from the Tortilla 2D HP
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benchmarks1. Since opt-IA was well studied for the HP model [5, 14, 15], first
of all we made a parameter tuning process for CLONALG in order to choose
between CLONALG1 and CLONALG2 the version with the best performance for
PSP, and also in order to set the best values for parameters β and ρ. In particular,
parameter surfaces were determined in order to predict the best delimited region
that maximizes SR values and minimize AES value. The maximum number of
fitness function evaluation (Tmax) allowed for this first set of experiments is 105.
The results are averaged on 100 independent runs.

Table 5. opt-IA algorithm (d = 10, dup = 2). Results have been averaged on 30
independent runs, where b. f indicates the best values found, symbol µ stands for mean
and symbol σ stands for standard deviation.

Protein τB = 1 τB = 5
No. ` E∗ SR AES b. f. µ σ SR AES b. f. µ σ
1 20 -9 100 23710 -9 -9 0 100 20352.4 -9 -9 0
2 24 -9 100 69816.7 -9 -9 0 100 39959.9 -9 -9 0
3 25 -8 100 269513.9 -8 -8 0 100 282855.7 -8 -8 0
4 36 -14 100 2032504 -14 -13.93 0.25 73.33 4569496.3 -14 -13.73 0.44
5 48 -23 56.67 6403985.3 -23 -22.47 0.67 6.67 4343279 -23 -21.47 0.62
6 50 -21 100 778906.4 -21 -21 0 100 1135818.9 -21 -21 0
7 60 -36 0 // -35 -33.73 0.68 0 // -35 -34.5 0.5
8 64 -42 0 // -39 -36.13 1.28 0 // -38 -35.1 1.25
9 20 -10 100 18085.8 -10 -10 0 100 18473.6 -10 -10 0
10 18 -9 100 69210 -9 -9 0 100 130342 -9 -9 0
11 18 -8 100 41724.2 -8 -8 0 100 50151.2 -8 -8 0
12 18 -4 100 87494.5 -4 -4 0 100 74426.5 -4 -4 0

Table 6. CLONALG1 and CLOANLG2 using mutation rate α = e(−ρ∗f) (N = n =
10, d = 0). Results have been averaged on 30 independent runs, where b. f indicates
the best values found, symbol µ stands for mean and symbol σ stands for standard
deviation.

Protein CLOANLG1(β = 0.4, ρ = 1.0) CLOANLG2(β = 0.3, ρ = 5.0)
No. ` E∗ SR AES b. f. µ σ SR AES b. f. µ σ
1 20 -9 100 322563.50 -9 -9 0 100 22379.60 -9 -9 0
2 24 -9 90 2225404.75 -9 -8.9 0.3 100 69283.34 -9 -9 0
3 25 -8 96.67 1686092.38 -8 -7.96 0.17 100 907112.56 -8 -8 0
4 36 -14 0 // -13 -12.23 0.46 23.33 5189238.50 -14 -13.2 0.47
5 48 -23 0 // -21 -18.93 0.92 3.33 8101204.50 -23 -20.76 1.02
6 50 -21 0 // -20 -17.43 0.95 46.67 6019418.50 -21 -20.2 0.87
7 60 -36 0 // -34 -30.43 1.33 0 // -35 -32.43 0.98
8 64 -42 0 // -35 -29.26 1.74 0 // -39 -33.43 2.21
9 20 -10 100 649403.00 -10 -10 0 100 27391.67 -10 -10 0
10 18 -9 96.67 2143456.50 -9 -8.96 0.18 90 1486671.25 -9 -8.9 0.3
11 18 -8 96.67 742352.56 -8 -7.96 0.18 100 52349.10 -8 -8 0
12 18 -4 100 740468.31 -4 -4 0 100 70247.73 -4 -4 0

1 http://www.cs.sandia.gov/tech report/compbio/tortilla-hpbenchmarks.html
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From figures 5 and 6 it is obvious that CLONALG2 has a better behavior
respect to CLONALG1, the best SR found by CLONALG2 is 85 using mu-
tation rate α = e(−ρ∗f), while the best SR found by CLONALG1 is 18. The
worse performance of CLOANLG1 is consequence of the structure of the selec-
tion scheme for the creation of the new population of antibody, as explained
in section 1.1. In fact, this version is more useful for multimodal optimization
problems where is necessary to find the greatest number of peaks of a specific
function (maximization), as shown in [4] and as demonstrated from results on
numerical optimization in section 4. Again, we want to put in evidence the cru-
cial importance of selecting the better mutation rate for each problem, and the
tuning of the parameter to which is correlated (ρ).

Tables 5 and 6 show the best results for CLONALG (both versions) and
opt-IA on the 12 PSP instances setting Tmax = 107. All the results have been
averaged over 30 independent runs. For CLONALG the values of β and ρ have
been chosen according to figures 5 and 6 when the best SR is found. The mu-
tation rate α = e(−ρ∗f) was used, according to its better performance as shown
previously. Best results for opt-IA are obtained using coupled operators, inversely
proportional hypermutation and Hypermacromutation. As for the traps, this is
again the key feature to effectively face the problem. Both algorithms use the
same minimal population dimension (N = d = 10). For the simple sequences
1,2,3,9,11 and 12 the algorithms have a similar behavior, but when we consider
more difficult instances, like sequences 4,5 and 6, the overall performance of opt-
IA is evident. Both algorithms are unable to solve the hard sequences 7 and 8,
but although they reach the same minimum values, opt-IA has lower mean and
standard deviation, showing a more robust behavior.

6 Conclusions

In this experimental work we made a comparative study of two famous Clonal
Selection Algorithms, CLONALG and opt-IA, on significant test bed: ones-
counting and trap functions (toy problems), pattern recognition, numerical opti-
mization (23 functions) and 2D HP Protein Structure Prediction problem (NP-
Complete problem). A robust test bed is important in order to analyze theoret-
ically and experimentally the overall robustness of evolutionary algorithms, as
reported in [16]. Two possible versions of CLONALG have been implemented
and tested, coupled with two possible mutation potential for the hypermuta-
tion operator. The experimental results show a deep influence of the mutation
potential for each problem and the setting of the respective parameter. Param-
eter tuning was made for both algorithms, and an overall better performance of
opt-IA was found on all problems tackled. In particular, simulation results on
numerical optimization problems show how CSAs (in particular opt-IA) are ef-
fective methods also for numerical optimization problems, obtaining comparable
results respect to one of the most effective method in literature, Fast Evolution-
ary Programming. Obviously, the presented clonal selection algorithms can be



CSAs: A Comparative Case Study 15

applied to any other combinatorial and numerical optimization problem using
suitable representations and variable operators [17, 18, 2].

In last years there have been many applications of CSAs to search, learning
and optimization problems [19–21]. In particular, this new class of evolutionary
algorithms seem to be effective to face protein structure prediction problem [14,
15, 22]. This article and all the abovecited research works demonstrate as the
clonal selection algorithms are mature and effective computational tools [21, 23].

The evolutionary computation scientific community has a new class, immune
algorithms [4, 17], that along with genetic algorithms [24, 25], evolution strategies
[26], evolutionary programming [27] and the genetic programming [28] constitutes
the overall set of evolutionary algorithms.
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