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Rotation and magnetic field have a stabilizing effect on the Bénard problem

if they act separately. However, as is shown in the classical works of Chan-
drasekhar,2 when they are both present, these stabilizing effects are often con-

flictual. Instead, other stabilizing effects, such as rotation and concentration
field, are cumulative.8 The previous results were obtained for stress-free bound-

ary conditions, and fixed boundary temperatures and concentrations. In this
work, we investigate, analytically and numerically,3,13 how different boundary
conditions on the temperature, such as the Robin and Neumann b.c. used in,4

influence the competition and cooperation of the aforesaid stabilizing effects.
The appearance of long-wavelength perturbations for low thermal conductiv-
ity of the boundaries is also investigated. The present work concerns a linear
stability analysis of the problem and it is part of a larger project including a

nonlinear analysis.6,13
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1. Introduction

The linear stability problem of the motionless state of an infinite layer of

homogeneous fluid heated from below has been studied by Chandrasekhar2

by means of classical normal modes. Moreover, the stabilizing effect of uni-

form rotation has been predicted by the same author in the rotating Bénard

problem. A stabilizing effect is obtained even by salting the fluid layer from

below,7 or by immersing it in a normal magnetic field, if the fluid is elec-

trically conducting.2 Two or more simultaneously acting stabilizing effects

allow observation of a very rich variety of phenomena often surprising. As

is known, unexpected conflicting tendencies among the rotation and mag-

netic field have been found by Chandrasekhar, instead cooperative behaviour
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has been showed among the rotation and salt concentration field (when the

mixture is salted from below).8 Here we study how the boundary conditions

influence interaction of different stabilizing fields. We consider the following

two cases: the co-presence of rotation and salt (supplied from below), and

the interaction of magnetic field with rotation, both coupled with Robin

and Neumann boundary conditions on temperature. Numerical results in

this paper are obtained with a Chebyshev-tau method.3

2. The Bénard problem of a rotating mixture

Let Oxyz be a cartesian frame of reference with unit vectors i, j, k respec-

tively, rotating at the constant velocity Ω̄k. Let d > 0 and assume that a

newtonian fluid is confined in the layer Ωd = R
2× (−d/2, d/2), and subject

to a gravity field g = −gk. We assume also that the density of the fluid de-

pends linearly on temperature T and concentration C of a solute according

to ρf = ρ0[1−αT (T−T0)+αC(C−C0)], with αT , αC positive coefficients of

volume expansion and T0, C0 reference temperature and concentration.2,7,9

For the temperature field we assume Newton-Robin boundary conditions,

which are linear combination of the temperature at a surface and its nor-

mal gradient. This boundary conditions describe the physical cases in which

the media surrounding the fluid are not thermostatic.4,7 The limit cases of

fixed temperatures or fixed temperature gradients (and hence fixed heat

fluxes) are also considered. We use the following general form of the ther-

mal boundary conditions:

αH(Tz + βT )d+ (1− αH)(TH − T ) = 0, on z = −d/2

αL(Tz + βT )d+ (1− αL)(T − TL) = 0, on z = d/2,
(1)

where αH , αL ∈ [0, 1], βT > 0, and TH = T0 + βT d/2, TL = T0 − βT d/2

are respectively an higher (TH) and lower (TL) temperature. Note that,

from (1), we obtain fixed temperature, fixed heat flux, or a Newton-Robin

boundary condition1,11,12 at z = d/2, when αL is equal to 0, 1 or 0 < αL <

1, respectively. The same observations apply to αH and the boundary z =

−d/2. For the velocity field, we assume that the boundaries are either rigid

(v = 0) or stress free (k · v = ∂z(i · v) = ∂z(j · v) = 0).2 Concentrations at

the boundaries are C(x, y,−d/2) = C0+βCd/2, C(x, y, d/2) = C0−βCd/2,

where βC is an assigned concentration gradient. The form of (1) ensures

that for any choice of αH , αL, (and rigid or stress-free boundaries) the basic

solution m0 is the same, simplifying further analysis

v = 0, T (x, y, z) = −βT z + T0, C(x, y, z) = −βCz + C0. (2)
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The non-dimensional evolution equations of a perturbation to the basic

motionless state m0 are8
{

ut + u · ∇u = −∇p∗ + (Rϑ− Cγ)k+∆u+ T u× k,

∇ · u = 0, PT (ϑt + u · ∇ϑ) = Rw +∆ϑ, PC(γt + u · ∇γ) = Cw +∆γ
(3)

in Ω1 × (0,∞) where Ω1 = R
2 × (−1/2, 1/2). In this system u = ui +

vj + wk, ϑ, γ and p∗ are functions of (x, y, z, t) which represent the per-

turbations of the velocity, temperature, concentration and pressure fields,

respectively; ∇ is the gradient operator and ∆ is the Laplacian. The pa-

rameters R2, C2, T 2, PT , PC are the standard Rayleigh number for heat and

solute, Taylor number, Prandtl and Schmidt numbers, respectively.2,7 We

study the linear instability of the basic motion, following Chandrasekhar.2

We assume for the perturbation fields the general form, periodic in x, y,

f = F (z) exp{ i (axx + ayy) + p t}, where f denotes any of the fields

w, ζ(= k · ∇ × u), θ, γ and p = σ + iτ . Then, following standard calcu-

lations,2,8 and adopting a suitable rescaling of fields, we can derive the

equations










p (D2 − a2)W = (D2 − a2)2W − T DZ + Ca2 Γ−Ra2 Θ

pZ = T DW + (D2 − a2)Z

pPT Θ = (D2 − a2)Θ +RW, pPC Γ = (D2 − a2)Γ + CW,

(4)

where a = (a2x + a2y)
1/2 is the wave number, and Dn denotes the n-th

partial derivative respect to z. The boundary conditions for system (4) are

W = Γ = 0 on z = ±1/2, D2W = DZ = 0 on stress-free boundaries,

DW = Z = 0 on rigid boundaries, αHDΘ − (1 − αH)Θ = 0 on z = −1/2

and αLDΘ+ (1 − αL)Θ = 0 on z = 1/2. When the Principle of Exchange

of Stabilities (PES) holds (σ = 0 ⇒ τ = 0), for stress-free and thermostatic

boundaries, it is possible to find8 for the critical Rayleigh number

R2
1 =

(1 + x)3

x
+

T 2
1

x
+ C2

1 , (5)

where R1 = R/π2, x = a2/π2, C1 = C/π2, and T1 = T /π2. In (5), the

second and third term are exactly the stabilizing contributes appearing

when only one of the two fields is present,2,7 moreover the critical wave

number appears independent of C.

We consider the case of fixed heat fluxes, stress-free boundaries and

PT = PC = 1. At a difference from the case T = 0 (Ref. 5, in this pro-

ceedings collection), where R2 is constant (R2 = 120, dashed line in Fig.

1a), now the Rayleigh number is an increasing function of C and T , and

so the stabilizing effect of the solute is restored. Angular points correspond
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to a transition to a region of vanishing values of ac. Moreover, we observe

(Fig. 1b) a “competition” on the wave number between rotation and con-

centration gradient, in the sense that the wave number, for any fixed T ,

becomes zero for sufficiently large values of C; on the other hand, for fixed

C and sufficiently large T , it is ac > 0. The same figure shows that, for

large values of T , C, the region ac = 0 is very closely defined by C2 > T 2.

It is possible to check that the concentration and rotation fields remain

cooperative in their stabilizing effects, for any αH , αL ∈ [0, 1], and differ-

ent values of PT , PC . For PC > PT overstability effects appear. At least

for stationary convection, thermal boundary conditions are more destabi-

lizing as the parameters αH , αL increase, i.e. in the transition from fixed

temperatures to fixed heat fluxes.
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Fig. 1. R2
c and ac as a function of C2 for fixed heat fluxes. Taylor number is equal to

106, 105, . . . , 10 from top to bottom in both graphics. For T 2 = 10, 100, ac is identically

equal to zero for any C.

3. The rotating magnetic Bénard problem

The magnetic Bénard problem deals with the onset of convection of a hor-

izontal layer of a homogeneous, viscous, and electrically conducting fluid,

permeated by an imposed uniform magnetic field normal to the layer, and

heated from below.2,14

We suppose here that the system has the same geometry considered in

the previous section, and the corresponding fields are subject to the same

boundary conditions. Following the procedure of Chandrasekhar,2 Chapter
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V, we arrive to the linear instability analysis system:










(D2 − a2)(D2 − a2 − p)W +D(D2 − a2)K −DZ − a2 Θ = 0,

(D2 − a2 − p)Z + T 2DW +DX = 0, (D2 − a2 − Pmp)X +Q2 DZ = 0,

(D2 − a2 − Pmp)K +Q2 DW = 0, (D2 − a2 − PT p)Θ +R2 W = 0,

(6)

where X and K are the perturbations to the third component of current

density and H (the imposed magnetic field), Q2 and Pm are the Chan-

drasekhar and magnetic Prandtl numbers.2 When PES holds, it is possible

to set p = 0 and eliminate field K from (6). The same elimination is possi-

ble for Pm = 0 (this happens to a good approximation2 for liquid metals,

e.g. mercury), and our stability analysis is performed under this hypoth-

esis. On X, we impose DX = 0 or X = 0 for electrically conducting or

non-conducting boundaries, respectively.2

In the analytically solvable case of stress-free, thermostatic and non-

conducting boundaries, Chandrasekhar finds (see Ref. 2, Chap. V, eq. 59)

for stationary convection

R2
1 =

(1 + x)3

x
+

T 2
1

x
+

(1 + x)Q2
1

x
−

Q2
1T

2
1

x((1 + x)2 +Q2
1)
,

where Q1 = Q/π. The second and third terms in the previous expression

can be found when the system is subject only to rotation or a magnetic field

(see Chandrasekhar2 Chap. III eq. 130, Chap. IV eq. 165). The presence of

the last term shows that the two effects are not simply additive.

For stress free boundaries and PT = 0.025 (mercury), competition of
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Fig. 2. R2
c and ac as a function of Q2

1 for T 2
1 = 104. Thermal boundary conditions

vary in both graphics from fixed temperatures (top curves) to fixed heat fluxes (bottom
curves), with αH = αL = 0, 0.2, 0.4, 0.6, 0.8, 1. The vertical segments in the ac graphs
correspond to transitions from overstability to stationary convection. The same transition

appears as a discontinuity in the slope of the R2
c graphs.
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magnetic field and rotation is enhanced by the new thermal boundary con-

ditions, and appears clearly in Fig. 2a where the slope becomes negative.

We can observe also in Fig. 2b a dramatic reduction of the critical param-

eter ac when heat flux is prevalent. We note that ac = 0 in a finite range

of values of Q for Neumann conditions on temperature.

A more extensive study of the system, for different values of the Prandtl

numbers and other hydrodynamic and magnetic boundary conditions will

be the subject of a future work.
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