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Abstract. We show that if X is a L∞-space with the Dieudonnè property and Y

is a Banach space not containing l1, then any operator T : X⊗εY → Z, where Z

is a weakly sequentially complete Banach space, is weakly compact. Some other

results of the same kind are obtained.

Let X be a L∞-space (see [1] for this notion and some useful results on L∞-spaces)

and Y be a Banach space not containing l1.We consider the injective tensor productX⊗εY

(see [3]), and we investigate the following problem: when is any operator T : X ⊗ε Y → Z,

where Z is a Banach space, weakly compact ?

In the case of X = C(K) there are some papers devoted to the study of this question

(see [2, 6-9]), but nothing seems to be known in the present setting; we observe that the

theorems proved in the paper extend all of the above-quoted results, but their proofs make

use of the results of the results in [2, 8], so that they may be considered interesting comple-

ments to those theorems. Because the proofs of our results are similar, we give the proof

of Theorem 2 only and leave the others to the reader. We need the following definition:

a Banach space E has the Dieudonnè property if any weakly completely continuous (or

Dieudonnè) operator defined on it is weakly compact [8].
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We recall that C(K) spaces have the Dieudonnè property.

Lemma 1.X∗∗ ⊗ε Y is a closed subspace of (X ⊗ε Y )∗∗.

Proof. Let x∗∗ ⊗ y be an element of X ⊗ Y and consider φ ∈ (X ⊗ε Y )∗ = Bπ(X,Y )

(see [3] for a definition of Bπ(X,Y )). Since Bπ(X,Y ) is a closed subspace of Bπ(X∗∗, Y ) =

(X∗∗⊗εY )∗ (see [3]) and since ‖φ‖Bπ(X,Y ) = ‖φ‖Bπ(X∗∗,Y ) for any φ ∈ Bπ(X,Y ), we have

|φ(x∗∗⊗y)| ≤ ‖φ‖π ‖x∗∗⊗y‖ε and so x∗∗⊗y ∈ (X⊗εY )∗∗; hence
∑p

i=1 x
∗∗
i ⊗yi ∈ (X⊗εY )∗∗.

Now, we have to show that ‖∑p
i=1 x

∗∗
i ⊗ yi‖ε = ‖∑p

i=1 x
∗∗
i ⊗ yi‖(X⊗εY )∗∗ . The inequality

‖∑p
i=1 x

∗∗
i ⊗yi‖ε ≤ ‖∑p

i=1 x
∗∗
i ⊗yi‖(X⊗εY )∗∗ follows very easily from the very definition of

ε−norm [3], the weak∗ density of BX∗ in BX∗∗∗ , and the fact that any x∗⊗y∗ ∈ Bπ(X,Y ).

The reverse inequality follows since we have

‖
p∑

i=1

x∗∗
i ⊗ yi‖(X⊗εY )∗∗ = sup

{∣∣∣∣∣
(

p∑
i=1

x∗∗
i ⊗ yi

)
(φ)

∣∣∣∣∣ : φ ∈ Bπ(X,Y ), ‖φ‖π ≤ 1

}
,

any φ ∈ Bπ(X,Y ) actually is an element of Bπ(X∗∗, Y ), and this inclusion is an isometry

[3], whereas we also have

‖
p∑

i=1

x∗∗
i ⊗ yi‖ε = sup

{∣∣∣∣∣
(

p∑
i=1

x∗∗
i ⊗ yi

)
(φ)

∣∣∣∣∣ : φ ∈ Bπ(X∗∗, Y ), ‖φ‖π ≤ 1

}
.

Because the elements of the type
∑p

i=1 x
∗∗
i ⊗ yi are dense in X∗∗ ⊗ε Y, we are done.

We are now ready for the first theorem of the paper

Theorem 2.Let X be a L∞-space with the Dieudonnè property and Y be a Banach

space not containing l1. If Z is a weakly sequentially complete Banach space, then any

T : X ⊗ε Y → Z is weakly compact.

Proof. Let us consider T ∗∗ : (X⊗εY )∗∗ → Z∗∗ and its restriction T̃ to all of X∗∗⊗εY

(which contains X ⊗ε Y as a closed subspace [3]). T̃ is continuous, because X∗∗ ⊗ε Y is a

closed subspace of (X ⊗ε Y )∗∗, by virtue of Lemma 1.

We want to prove that T̃ takes its values in Z. Consider x∗∗ ⊗ε y ∈ BX∗∗⊗εY and

suppose (as we may) that ‖x∗∗‖ ≤ 1. Then there is a net (xα) ⊂ BX such that xα −→w∗

x∗∗. Of course, we have

w∗ − lim
α

T̃ (xα ⊗ y) = T̃ (x∗∗ ⊗ y).



Now define T̃y : X → Z by putting T̃y(x) = T (x ⊗ y). T̃y is a Dieudonnè operator since

Z is weakly sequentially complete; and so T̃y is weakly compact, since X has Dieudonnè

property. Hence (T̃y(xα)) is a relatively weakly compact subset of Z; because T̃y(xα) =

T (xα ⊗ y) = T̃ (xα ⊗ y) for all α, the weak closure of the net T̃ (xα ⊗ y is in Z and so even

any weak∗ cluster point of T̃ (xα⊗y) must lie in Z; hence T̃ (x∗∗⊗y) ∈ Z. This means that

T̃ (
∑p

i=1 x∗∗
i ⊗ yi) ∈ Z for any

∑p
i=1 x∗∗

i ⊗ yi ∈ X∗∗ ⊗ Y. The density of the elements of

the type
∑p

i=1 x∗∗
i ⊗ yi in X∗∗ ⊗ Y and the continuity of T̃ on X∗∗ ⊗ Y give our claim: T̃

takes its values in Z.

Now recall that X∗∗ has the metric approximation property (see [3]) and so X∗∗⊗Y =

Kw∗(Y ∗, X∗∗) (= the Banach space of all w∗ − w continuous compact operators from Y ∗

intoX∗∗); furthermore, X∗∗ is complemented in some C(K) space [1] and soKw∗(Y ∗, X∗∗)

is complemented in C(K,Y ) by a projection P. The operator T̃ ◦ P : C(K,Y ) → Z is a

Dieudonnè operator that must be weakly compact because of the result of [8]. Since T̃ ◦P
restricted to X ⊗ εY is nothing else than T, we are done.

A similar proof (making use of the main result of the paper [2]) gives the following

theorem (for the definitions of Pelczynski’s properties (V) and (u) we refer to [2]).

Theorem 3.Let X be a L∞−space with Pelczynski’s property (V) and Y be a Ba-

nach space with Pelczynski’s property (u), not containing l1. If Z is a Banach space not

containing c0, then any T : X ⊗ε Y → Z is weakly compact.

Theorem 2 has the following corollary about a new isomorphic property recently con-

sidered by Saab and Saab in [10]: a Banach space E is said to possess property (w) if any

operator T : E → E∗ is weakly compact.

Corollary 4.Let X be a L∞−space with Dieudonnè property and Y be a Banach

space not containing l1 such that Y ∗ is weakly sequentially complete. Then X ⊗ε Y has

property (w).

Proof. It will be enough to show that (X ⊗ε Y )∗ is weakly sequentially complete,

because in such a case we can apply Theorem 2. Bπ(X,Y ) = (X ⊗ε Y )∗ is a closed

subspace of Bπ(X∗∗, Y ) = (X∗∗ ⊗ε Y )∗ (see [3]); since X∗∗ ⊗ε Y is complemented in some

C(K,Y ) space (see the proof of Theorem 2), Bπ(X∗∗, Y ) is complemented in (C(K,Y ))∗.

But now it is well known that this last space is weakly sequentially complete (see, e.g., [10,



Proposition 5]). We are done.

Corollary 4 is an improvement of Proposition 5 in [10].

At the end, we recall that a Banach space E has the Dunford-Pettis property if any

weakly compact operator on E is a Dunford-Pettis (or completely continuous) operator.

We observe that any L∞−space enjoys the Dunford-Pettis property [1]. Using the same

technique employed in Theorem 2, we have that X ⊗ε Y has the Dunford-Pettis property

wheneverX is aL∞−space and Y is a Banach space with the Dunford-Pettis property such

that C(K,Y ) has the same property, for any Hausdorff compact space K. In particular,

the result in [5] and results by Bourgain quoted in [4] imply that we can choose Y with

the Schur property or Y = L1(µ); in this last case X ⊗ε Y is isomorphic to the completion

of the space of Pettis integrable functions (see [3]). More generally we can show that the

injective tensor product of a L∞−space and a L1−space has the Dunford-Pettis property.
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