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PELCZYNSKI’S PROPERTY (V) AND WEAK∗ BASIC
SEQUENCES

Abstract. In this note we study the property (V) of Pelczynski, in a Banach
space X, in relation with the presence, in the dual Banach space X∗, of suit-
able weak∗ basic sequences. We answer negatively to a question posed by John
and we prove that, if X is a Banach space with the Property (V) of Pelczynski
and the Gelfand Phillips property, then X is reflexive if and only if every quo-
tient with a basis is reflexive. Moreover, we prove that, if X is a Banach space
with the property (V ) of Pelczynski, then either X is a Grothendieck space or,
W (X,Y ) is uncomplemented in L(X,Y ) provided that Y is a Banach space such
that W (X,Y ) 6= L(X, Y ).

In [8] the authors gave some existence theorems for weak∗ basic sequences. In
particular they proved that the following assertions hold:
1) every weak* null normalized sequence (x∗n)n in the dual of a separable Banach
space admits a weak* basic subsequence
2) if (x∗n)n is a weak* basic sequence, then the quotient space X/((x∗n)n)⊥ has a basis

and ˜span((x∗n)n) (see below for the notations) can be identified with the dual space(
X/((x∗n)n)⊥

)∗
.

In this note we prove that the property (V) of Pelczynski in a (not necessarily
separable) Banach space X, that is not a Grothendieck space, implies the existence
in X∗ of a suitable weak∗ basic sequence (x∗n)n, equivalent to the unit vector basis
in l1, such that the weak∗ closure of its linear span coincides with its norm closure
and is complemented in X∗. The same result holds if X has the weak property (V)
and, in this case, our Theorem gives more properties of the sequence (x∗n)n than
Proposition 2.1 (implication 1) ⇒ 2)) in [2].

As a Corollary, we give a characterization of the Grothendieck spaces with the
property (V ) of Pelczynski.

In [7] the author proved that a separable Banach space X is reflexive if and only
if each of its quotients with a basis is reflexive and he asked if this equivalence
holds even without the hypothesis of separability. We observe that, in general, the
answer is negative, and we prove (see Proposition 12) that the equivalence remains
true for the class of all Banach spaces with the Gelfand Phillips property and the
property (V) of Pelczynski. The equivalence in John’s Theorem is also true if X is a
Banach lattice with the Gelfand Phillips property ( even without the property (V )
of Pelczynski), as we shall prove in Proposition 14 below.

Moreover, using the main Theorem of the paper, Proposition 15 relates the pres-
ence of the property (V ) of Pelczynski in a Banach space X with the largely explored

2000 Mathematics Subject Classification. Primary: 46M05.
This work is partially supported by GNAMPA.

2



PELCZYNSKI’S PROPERTY (V) AND WEAK∗ BASIC SEQUENCES 3

problem of the uncomplementability of the space W (X, Y ) into the space L(X,Y )
provided that Y is a Banach space such that W (X, Y ) 6= L(X, Y ).

Finally, we give a sufficient condition, in relation to the presence of suitable se-
quences in the dual space X∗, in order that the space X could have the property
(V) of Pelczynski.

Throughout X,Y will denote Banach spaces. If X is a Banach space, then X∗

denotes its dual Banach space. The symbols L(X, Y ), W (X, Y ) and UC(X, Y ) will
denote respectively the space of all linear continuous operators from X into Y, the
subspace of all weakly compact operators and the subspace of all unconditionally
converging operators. If T ∈ L(X, Y ), then T ∗ ∈ L(Y ∗, X∗) will be its adjoint
operator.

A sequence (xn, x∗n) with (xn)n ⊆ X and (x∗n)n ⊆ X∗ is called biorthogonal
provided that x∗m(xn) = δnm for all ever n, m ∈ N.

A sequence (xn) in X is a basis for X provided that for each x ∈ X there is a

unique sequence (ax
n)n of scalars for which lim

n

n∑
i=1

ax
i xi = x. If, for each n ∈ N, x∗n

is the linear continuous functional defined by the law

x∗n(x) = ax
n ∀x ∈ X,

then, as one can easily see, (xn, x
∗
n) is biorthogonal and (x∗n)n forms a basis for its

norm closed linear span.
If A is a subset of the Banach space X, then A denotes the norm closure of A

in X, while, for a subset A of X∗, the symbol Ã denotes the weak∗ closure of A in
X∗. If A is a subset of a dual space X∗, then A⊥ is the annihilator of A in X, i.e.,
A⊥ = {x ∈ X : x∗(x) = 0 ∀x∗ ∈ A}.

A Banach space X is called a Grothendieck space if every weak* convergent
sequence in the dual space X∗ is also weak convergent (see [3]).

Definition 1. [8] [12] A sequence (x∗n)n in X∗ is called weak∗ basic if there is
a sequence (xn)n in X so that {(xn, x∗n) : n ∈ N} is biorthogonal and, for each

x∗ ∈ ˜span(x∗n), one has

x∗ = lim
n

n∑
i=1

x∗(xi)x
∗
i

in the weak∗ topology of X∗.
Note that the sequence (xn)n is not uniquely determined by (x∗n)n, but, if (xn)n and
(x′n)n are two sequences such that (xn, x∗) and (x′n, x∗n) are biorthogonal, then

x∗(xn) = x∗(x′n) ∀n ∈ N, ∀x∗ ∈ ˜span((x∗n)n).

Definition 2. [10] A Banach space X has the property (V) of Pelczynski if every
unconditionally converging operator defined on it with values in a Banach space Y
is weakly compact.

It is well known, (see[10]), that, for every compact space K, the space C(K) has
the property (V ) of Pelczynski. All Banach spaces not containing a copy of l1 with
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property (u) (see [11] for this definition) have property (V ) of Pelczynski. Moreover,
if X is a Banach space not containing a copy of l1, with property (u), then, for every
compact Hausdorff space K, the space C(K, X) has the property (V ) of Pelczynski
too.
In [10] the author gave the following

Definition 3. A bounded subset K in X∗ is a V-set if

lim
n

sup
x∗∈K

| x∗(xn) |= 0

for every weakly unconditionally Cauchy series
∞∑

n=1

xn in X.

Proposition 4. [10] A Banach space X has the property (V ) of Pelczynski if and
only if every V-set in the dual space X∗ is weakly relatively compact.

In order to obtain our main result we need the following

Proposition 5. Let X be a Banach space. A bounded subset K in X∗ is a V-set
if and only if, for every linear and continuous operator T : c0 → X, it follows that
T ∗(K) is a relatively compact set.

Proof. Let K be a V-set in X∗ and let T ∈ L(c0, X). Then the set T ∗(K) is
also a V-set in l1. Since c0 has the property (V) [10], by Proposition 4, T ∗(K) is a
relatively weakly compact subset of l1 and then, by the Schur property of l1, it is a

relatively compact set. Conversely, let
∞∑

n=1

xn be a weakly unconditionally Cauchy

series in X and let T : c0 → X be the linear continuous operator defined by the law

T (en) = xn ∀n ∈ N.

Easily,
T ∗(x∗) = (x∗(xn))n ∀x∗ ∈ X∗.

By the hypothesis, T ∗(K) is relatively compact, so, using the characterization of the
compact sets in l1, we have

lim
n

sup
x∗∈K

| x∗(xn) |= 0

that is our claim. 2

Lemma 6. Let (x∗n) be a weak∗ null, not relatively compact sequence in l1. Then
there are a subsequence (x∗kn

)n of (x∗n)n and a sequence (xn)n in c0, equivalent to the
unit vector basis in c0, such that (xn, x

∗
kn

) is biorthogonal.

Proof. By Rosenthal’s Theorem (x∗n)n admits a subsequence (x∗kn
)n that is equiva-

lent to the unit vector basis (e∗n)n of l1. Let J be the isomorphism from span((x∗kn
)n)

onto span((e∗n)n) such that J(x∗kn
) = e∗n for every n ∈ N. If we denote with (en)n the

unit vector basis in c0, we have

δnm =< e∗n, em >=< J(x∗kn
), em >=< x∗kn

, J∗em > ∀n,m ∈ N.
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Therefore, if we put
xm = J∗em ∀m ∈ N,

it follows
δnm =< x∗kn

, xm > ∀n,m ∈ N.

It is easy to see that the sequence (xm)m is equivalent to the canonical basis in c0

and so we are done. 2

Theorem 7. Let X be a Banach space with the property (V) of Pelczynski. Then,
for every weak∗ null sequence (x∗n)n, that is not a weakly relatively compact set in
X∗, there is a weak∗ basic subsequence (x∗kn

)n such that

1) ˜span((x∗kn
)n) = span((x∗kn

)n);

2) the quotient space X/((x∗kn
)n)⊥ is isomorphic to c0.

Moreover there is a linear continuous operator P : X → X such that P ∗ is a

projection from X∗ into ˜span((x∗kn
)n).

Proof. By Proposition 4, since X has the property (V) of Pelczynski and the
bounded set (x∗n)n is not weakly relatively compact, it follows that (x∗n)n is not a
V-set. Therefore, by Proposition 5, there is T ∈ L(c0, X) such that (T ∗(x∗n))n is not
relatively (weakly) compact in l1. Since l1 is weakly sequentially complete, it does
not exist a weak Cauchy subsequence of (T ∗(x∗n))n and then (x∗n)n does not admit a
weak Cauchy subsequence. By Rosenthal’s Theorem, we can suppose ( by passing,
if necessary, to a subsequence) that (x∗n)n is equivalent to the unit vector basis in l1.
Since the sequence (T ∗(x∗n))n is weak∗ null, the hypotheses of Lemma 6 are verified.
So, there are a subsequence (x∗kn

)n of (x∗n)n, that is still equivalent to the unit basis
of l1 and a sequence (fn)n in c0, equivalent to the unit vector basis of c0, such that
(T ∗(x∗kn

), fn) is a biorthogonal sequence.
Since (fn)n is equivalent to the unit vector basis of c0, the series

∞∑
n=1

|x∗(T (fn))| =
∞∑

n=1

|T ∗x∗(fn)|

converges for every x∗ ∈ X∗. Since (T ∗(x∗kn
), fn) is a biorthogonal sequence, the

sequence (‖T (fn)‖)n does not converge to zero. It follows that the series
∞∑

n=1

T (fn)

is weakly unconditionally Cauchy, but it is not unconditionally convergent. By [4,
Theorem 8, pag 45], X contains a copy of c0 and, more precisely, we can find a
subsequence of (T (fn))n that is equivalent to the unit vector basis of c0. We can
suppose that (T (fn))n is itself equivalent to the unit vector basis of c0.
Now let

xn = T (fn) ∀n ∈ N.

Let Y = span((xn)n) and let Q : X → Y be defined by the law

Q(x) =
∞∑

n=1

x∗kn
(x)xn ∀x ∈ X.
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Since (x∗kn
)n is weak∗ null, Q is well defined [4, Theorem 6, pag 44]. Moreover, Q is

a linear and continuous operator and, using the fact that (xn, x
∗
kn

) is a biorthogonal
sequence, it is easy to verify that Q is a projection. For every index n, let z∗n be the
restriction of x∗kn

on Y. It follows that (z∗n)n is a basis for Y ∗. Indeed, if y∗ ∈ Y ∗, we
have

〈y∗, y〉 =

〈
y∗,

∞∑
m=1

x∗km
(y)xm

〉

=

〈 ∞∑
m=1

y∗(xm)z∗m, y

〉
∀y ∈ Y

Further, since (xn, z
∗
n) is a biorthogonal sequence, we have

Q∗(z∗n)(x) = z∗n(Q(x))

= z∗n

( ∞∑
n=1

x∗kn
(x)xn

)

= x∗kn
(x) ∀x ∈ X.

We also observe that the sequences (x∗kn
)n and (z∗n)n are equivalent to the unit

vector basis of l1 and so, for every sequence (an)n ∈ l1, the series
∞∑

n=1

anx
∗
kn

converges

if and only if the series
∑∞

n=1 anz∗n converges. It is easy to see that

Q∗(Y ∗) = span((x∗kn
)n)

and that Q∗ is an isomorphism onto the set span((x∗kn
)n). Moreover, since Q∗(Y ∗)

is weak∗ closed, it follows that

span((x∗kn
)n) = ˜span((x∗kn

)n)

and then one can see that

x∗ = lim
n

n∑
i=1

x∗(xi)x
∗
ki

∀x∗ ∈ ˜span((x∗kn
)n)

in the weak∗ topology. So (x∗kn
)n is a weak∗ basic sequence.

Now, applying [8, Proposition 2.2 ], it follows that the set X/((x∗kn
)n)⊥ is isomorphic

to c0. Let
J : Y → X

be the natural embedding. Look at

Q∗ ◦ J∗ : X∗ → X∗

and its restriction on span((x∗kn
)n).

It follows that
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Q∗(J∗(x∗)) = Q∗J∗
( ∞∑

n=1

anx∗kn

)

=
∞∑

n=1

anQ
∗(J∗(x∗kn

))

=
∞∑

n=1

anQ
∗(z∗n)

=
∞∑

n=1

anx
∗
kn

= x∗ ∀x∗ =
∞∑

n=1

anx∗kn
∈ span((x∗kn

)n)

where we have used the fact that

J∗(x∗kn))(y) = x∗kn
(J(y)) = x∗kn

(y) = z∗n(y) ∀y ∈ Y.

It follows that Q∗ ◦ J∗ is a projection onto span((x∗kn
)n). Defining

P := J ◦Q : X → X,

our claim is proved. 2

In [13] the authors introduced the following

Definition 8. A Banach space X has the weak property (V) if and only if every
V-set in the dual space X∗ is weakly conditionally compact.

In [2, Proposition 2.1, implication 1) → 2)] the authors, proved that, if a Banach
space X has the weak property (V ), then, for each sequence in X∗, that is equivalent
to the unit basis of l1, there are ε > 0, a subsequence (x∗nk

)k and a sequence (xk)k ⊂ X
such that the series

∑
xn is unconditionally weak Cauchy and < x∗nk

, xk >≥ ε for
every k ∈ N.

Theorem 7 holds even if X has the weak property (V ) and there is a weak∗ null
sequence (x∗n) ⊂ X∗ that is not weakly conditionally compact, and, under these
hypotheses, it gives more conditions than the mentioned result in [2].

Corollary 9. Let X be a Banach space with the property (V ) of Pelczynski. The
following assertions are equivalent
1) X is not a Grothendieck space
2) there is a weak∗ basic subsequence (x∗

n
)n ⊂ X∗ such that it is equivalent to the

basis of l1, and ˜span((x∗n)n) = span((x∗n)n) is complemented in X∗. Moreover there
is a quotient of X, having a basis, that is isomorphic to c0

3) there is a quotient of X, having a basis, that is not reflexive.

Proof. 1) ⇒ 2) By the hypothesis, there is T ∈ L(X, c0) that is not weakly
compact. Therefore there is a bounded sequence (y∗n)n in l1 that is weak star null
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but none of the subsequences of (T ∗(y∗n))n is weakly convergent. Then it is enough
to apply Theorem 7.
2) ⇒ 3) obvious
3) ⇒ 1) is well known (see, for example, [1]) 2

Remark 10. It is well known that X is a Grothendieck space if and only if X∗ is
weakly sequentially complete and there is a quotient of X that is isomorphic to c0 (
see [6] and references there). Therefore the equivalence 1 ⇔ 3 in Corollary 9 is true
even if the hypothesis of the presence of the property (V ) of Pelczynski is replaced
by the weaker hypothesis of the weak sequential completeness of X∗.

In [7] the author proved that a separable Banach space X is reflexive if and only
if each of its quotients with a basis is reflexive and he asked if this equivalence holds
even without the hypothesis of separability. It seems that the answer is negative.
Indeed, l∞ has property (V) of Pelczynski, and, since it is a Grothendieck space,
by Corollary 9, every its quotient with a basis is reflexive. For the existence of a
quotient with a basis of the space l∞ we refer the reader to [9, Theorem 4.1].

More generally, every not reflexive Grothendieck space that admits quotients with
basis works to answer negatively to John’s question.

In the following Proposition we prove that the result in [7] is true even for (not
separable) Banach spaces with the Gelfand Phillips property and the property (V)
of Pelczynski. We recall the following

Definition 11. A bounded subset K in a Banach space X is limited if

lim
n

sup
x∈K

| x∗n(x) |= 0

for every weak∗ null sequence (x∗n)n in X∗.
A Banach space has the Gelfand Phillips property if every its limited set is rela-

tively compact.

Banach spaces having the Gelfand Phillips property are, among the others, sepa-
rable Banach spaces, Schur spaces, separably complemented spaces, reflexive Banach
spaces, spaces with weak∗ sequentially compact dual balls and spaces C(K), where
K is both compact and sequentially compact. It is easy to see that the Gelfand
Phillips property is inherited by closed subspaces. We refer the reader to [14] for
more about this property.

Proposition 12. Let X be a Banach space with the Gelfand Phillips property and
the property (V) of Pelczynski. Then the following assertions are equivalent
1) X is reflexive
2) every quotient of X having a basis is reflexive.

Proof. Obviously we have to prove only that 2) ⇒ 1). By Corollary 9, X is a
Grothendieck space. So it does not contain a complemented copy of c0. On the other
hand, if a Banach space with the Gelfand Phillips property contains a copy of c0, it
must contain a complemented copy of c0 (see [14]), so X cannot contain c0. Since
X has property (V ) of Pelczynski, it must be reflexive. 2
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Remark 13. The proof of Proposition 12 allows us to characterize the class of all
reflexive spaces as the class of all Banach spaces with Grothendieck property, Gelfand
Phillips property and (V ) property.

Now we reformulate Proposition 12 for Banach lattices.

Proposition 14. Let X be a Banach lattice with the Gelfand Phillips property.
Then the following assertions are equivalent
1) X is reflexive
2) every quotient of X having a basis is reflexive.

Proof. Again we have to prove that 2) ⇒ 1). As before, by Corollary 9, the
hypothesis implies that X is a Grothendieck space. Therefore, every operator T
from X into a Gelfand Phillips space is weakly compact. In particular Id : X → X
is weakly compact so we are done. 2

Observe that all Grothendieck Banach space X such that BX∗ is weakly∗ sequen-
tially compact are reflexive. We do not know if there is a Grothendieck Banach space
(not Banach lattice ) not reflexive with the Gelfand Phillips property. If there is such
a space, then it cannot contain c0, so it does not have property (V ) of Pelczynski.

Proposition 15. Let X be a Banach space with the property (V ) of Pelczynski.
Then either X is a Grothendieck space or, for every Banach space Y such that
W (X,Y ) 6= L(X, Y ), it follows that W (X,Y ) is uncomplemented in L(X,Y ).

Proof. Suppose that X is not a Grothendieck space and that W (X,Y ) 6=
L(X,Y ). Then c0 embeds into Y. Indeed if not, UC(X,Y ) = L(X, Y ), on the other
hand, by property (V ), W (X, Y ) = UC(X,Y ), so we have a contradiction. Now,
since X is not a Grothendieck space, following the proof of Theorem 7, X contains
a complemented coy of c0 and then W (X, Y ) is uncomplemented in L(X, Y ) by [5,
Corollary 3.4]. 2

We end this note presenting a converse, in a certain sense, of Theorem 7, that is
a sufficient condition in order that a Banach space could have the property (V ) or
the weak property (V ). A similar condition has been given in [2].

Theorem 16. Let X be a Banach space with the following property: for every se-
quence (x∗n)n that is not a weakly conditionally ( respectively relatively) compact set,
there is a subsequence (x∗kn

)n such that

1) X/((x∗kn
)n)⊥ is isomorphic to c0 and

2) ˜span((x∗n)n) is complemented in X∗ by a projection that is an adjoint operator.
Then X has the weak property (V ) (respectively the property (V )) of Pelczynski.

Proof. Suppose that there exists a bounded V -set K ⊂ X∗ that is not weakly
conditionally compact. Then there is a bounded sequence (x∗n)n in K without a
weak Cauchy subsequence. By the hypothesis, there exist a subsequence (x∗kn

)n

such that X/((x∗kn
)n)⊥ is isomorphic to c0 and an operator P : X/((x∗kn

)n)⊥ → X

such that P ∗ : X∗ → ˜span((x∗kn
)n) ∼=

(
X/((x∗kn

)n)⊥
)∗

is a projection. Let J : c0 →
X/((x∗kn

)n)⊥ be such an isomorphism. Now look at P ◦ J : c0 → X. By lemma 5,
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the set (P ◦ J)∗(K) is relatively compact in l1. Since P ∗ is a projection, it follows
that

(P ◦ J)∗(x∗kn
) = J∗(P ∗(x∗kn

)) = J∗(x∗kn
) ∀n ∈ N.

So (J∗(x∗kn
))n is relatively compact in l1. Since J is an isomorphism, (x∗kn

)n is a
relatively compact in X∗, and it is in contrast with the choice of (x∗kn

)n. 2
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