Existence of solutions of perturbed O.D.E.'s in Banach spaces

Giovanni Emmanuele

Abstract. We consider a perturbed Cauchy problem like the following

$$
(\mathrm{PCP})\left\{\begin{array}{l}
x^{\prime}=A(t, x)+B(t, x) \\
x(0)=x_{0}
\end{array}\right.
$$

and we present two results showing that (PCP) has a solution. In some cases, our theorems are more general than the previous ones obtained by other authors (see [4], [8], [9], [11], [13], [17], [18]).

Keywords: perturbed Cauchy problem, semi-inner product, measure of noncompactness
Classification: 34G05, 34G20

1. Introduction.

Let $I=[0,1]$ and X be a closed subset of a Banach space E. If $x_{0} \in X$ and A, B are two functions defined on $I \times X$ with values into E, we are interested in solving the following perturbed Cauchy problem

$$
(\mathrm{PCP})\left\{\begin{array}{l}
x^{\prime}=A(t, x)+B(t, x) \\
x(0)=x_{0}
\end{array}\right.
$$

under several assumptions on A and B; essentially, A will satisfy dissipative conditions and B compactness type ones, as it has been done by a lot of authors (see [4], [11], [13], [17], [18]). We always assume that there is a subinterval $J=[0, a]$ of I and a sequence of equicontinuous and a.e. derivable functions $x_{n}: J \rightarrow X$ such that there is $K>0$ such that $\left\|x_{n}\left(t^{\prime}\right)-x_{n}\left(t^{\prime \prime}\right)\right\| \leq K\left|t^{\prime}-t^{\prime \prime}\right|$ on $J, n \in N$, and

$$
\lim _{n}\left\|x_{n}^{\prime}(t)-\left[A\left(t, x_{n}(t)\right)+B\left(t, x_{n}(t)\right)\right]\right\|=0 \quad \text { a.e. on } J
$$

and we look for conditions about A and B forcing a suitable subsequence of $\left(x_{n}\right)$ to converge (to a solution x of (PCP)).

In this paper, we use the following notions of semi-inner product and Kuratowski measure of noncompactness (see [3]).

[^0]Definition 1. Let $x, y \in E$. We define $F x=\left\{x^{*} \in E^{*}: x^{*}(x)=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\}$ and $(y, x)_{+}=\max \left\{x^{*}(y): x^{*} \in F x\right\},(y, x)_{-}=\min \left\{x^{*}(y): x^{*} \in F x\right\}$.

We have the following properties of semi-inner products:
(i) $(x+y, z)_{ \pm} \leq(x, z)_{ \pm}+(y, z)_{ \pm}$and $\left|(x, y)_{ \pm}\right| \leq\|x\|\|y\|$,
(ii) if $x:(a, b) \rightarrow X$ is differentiable at t and $\phi(t)=\|x(t)\|$, then $\phi(t) D^{-} \phi(t) \leq$ $\left(x^{\prime}(t), x(t)\right)_{-}$.
Definition 2. Given a bounded subset X of E, we define the Kuratowski measure of non compactness $\alpha(X)$ as follows:
$\alpha(X)=\inf \left\{\varepsilon>0:\right.$ there exist bounded subsets A_{i} of X with $X=\bigcup_{i=1}^{n} A_{i}$ and $\left.\operatorname{diam} A_{i}<\varepsilon\right\}$.

The measure α has the following properties:
(j) $\alpha(A+B) \leq \alpha(A)+\alpha(B), \alpha(k A)=|k| \alpha(A) \quad \forall k \in \mathbb{R}$,
(jj) $\alpha(A)=0 \Leftrightarrow A$ is relatively compact,
(jjj) $\alpha(A) \leq \alpha(B)$ if $A \subseteq B, \alpha(A \cup B)=\max \{\alpha(A), \alpha(B)\}$,
(jv) $\alpha(\overline{\mathrm{co}}(A))=\alpha(A)$, where $\overline{\mathrm{co}}(A)$ is the closed, convex hull of A, (v) $\alpha(A) \leq \operatorname{diam} A$.

2. Existence results.

First of all, we consider the following groups of hypotheses used in [14] (see also [3]) and in the recent paper [9] in order to get a sequence of approximate solutions defined on J as described in the Introduction.
(H1) (see [14]). Let the function $f=A+B$ be continuous and bounded. Further, if $X_{r}=X \cap\left\{x:\left\|x-x_{0}\right\| \leq r\right\}, r>0$, assume that

$$
\begin{equation*}
\lim _{h \rightarrow 0^{+}} h^{-1} d\left(x+h f(t, x), X_{r}\right)=0 \quad \text { for all } \quad t \in I, x \in X \tag{0}
\end{equation*}
$$

(H2) (see [9]). Let X be separable and convex. Let the function $f=A+B$ be bounded, satisfying (0) and the following Carathéodory assumptions:
(C1) the functions $t \rightarrow f(t, x)$ are strongly measurable, for all $x \in X$;
(C2) the functions $x \rightarrow f(t, x)$ are continuous, for almost all $t \in I$.
(H3) (see [9]). Let X be convex. Let the function $f=A+B$ be bounded satisfying (0), (C1), (C2). Further assume that there are two functions $L: I \rightarrow E$ and $H: E \rightarrow \mathbb{R}^{+}$such that

$$
\left\{\begin{array}{l}
L \in L^{1}(I, E), H \text { is bounded on bounded sets } \tag{1}\\
\left\|f\left(t^{\prime}, x\right)-f\left(t^{\prime \prime}, x\right)\right\| \leq\left\|L\left(t^{\prime}, x\right)-L\left(t^{\prime \prime}, x\right)\right\| H(x)\left(1+\left\|f\left(t^{\prime}, x\right)\right\|\right) \\
t^{\prime}, t^{\prime \prime} \in I, x \in X
\end{array}\right.
$$

Remark 1. Note that we do not assume $\stackrel{\circ}{X} \neq \emptyset$, as some authors did (see [18]).
Remark 2. (H3) requires the existence of L and H verifying (1); this is quite a restrictive hypothesis, that, however, has been used successfully by a lot of authors studying nonlinear evolution equations (see [2], [10], [12], [15]).

Now, we present our results about the existence of solutions for (PCP); in the sequel, we shall consider the subset Z of X defined by $Z=\left\{x_{n}(t): t \in I, n \in N\right\}$; note that Z is bounded.

Theorem 1. Assume that one hypothesis among (H1), (H2) and (H3) is verified. Moreover, suppose that there exist two functions $\varphi_{A}, \varphi_{B} \in L^{1}(I, \mathbb{R})$ such that $\|A(t, x)\| \leq \varphi_{A}(t),\|B(t, x)\| \leq \varphi_{B}(t)$ for almost all $t \in I, x \in Z$ and that the following other facts are true:
(2) there is a function $\ell_{A} \in L^{1}\left(J, \mathbb{R}^{+}\right)$such that

$$
(A(t, x)-A(t, y), x-y)_{-} \leq \ell_{A}(t)\|x-y\|^{2} t \text { a.e. in } J, x, y \in Z
$$

(3) there is a function $\ell_{B} \in L^{1}\left(J, \mathbb{R}^{+}\right)$such that

$$
\alpha(B(t, Y)) \leq \ell_{B}(t) \alpha(Y) t \text { a.e. in } J, Y \subseteq Z
$$

(4) for each $\varepsilon>0$, there is a (closed) subset J_{ε} of $J, m\left(J \backslash J_{\varepsilon}\right)<\varepsilon$ such that $B_{J_{\varepsilon} \times Z}$ is uniformly continuous.

Then (PCP) has a solution on J.
Proof: For each $\varepsilon>0$, there is $J_{\varepsilon} \subset J$, closed, $m\left(J \backslash J_{\varepsilon}\right)<\varepsilon$ such that the following facts are true:
(5) $B_{J_{\varepsilon} \times Z}$ is uniformly continuous,
(6) $\ell_{A \mid J_{\varepsilon}}, \ell_{B \mid J_{\varepsilon}}$ are continuous,
(7) $\int_{J \backslash J \varepsilon} \varphi_{A}(s) d s+\int_{J \backslash J \varepsilon} \varphi_{B}(s) d s<\varepsilon$.

Repeating the proof of the first part of Theorem 4 in [11], we can get a partition $\left\{B_{K_{1}, \ldots, K_{m}}\right\}$ of \mathbb{N} in such a way that, for $r, s \in B_{K_{1}, \ldots, K_{m}}$ and with $\mu(t)=$ $\alpha\left(\left\{x_{n}(t)\right\}\right)$, we have

$$
\begin{equation*}
\left\|B\left(t, x_{r}(t)\right)-B\left(t, x_{s}(t)\right)\right\| \leq 5 \varepsilon+\ell_{B}(t) \mu(t) \quad \text { on } \quad J_{\varepsilon} . \tag{8}
\end{equation*}
$$

Using (i) and (ii) of Definition 1 and observing that $p_{r s}(t)=\left\|x_{r}(t)-x_{s}(t)\right\|$ is a.e. differentiable, because absolutely continuous, we get from (8) with $r, s \in B_{K_{1}, \ldots, K_{m}}$

$$
\begin{aligned}
p_{r s}(t) p_{r s}^{\prime}(t) & \leq \ell_{A}(t) p_{r s}^{2}(t)+\ell_{B}(t) p_{r s}(t) \mu(t)+5 \varepsilon p_{r s}(t)+ \\
& +\left(\left\|h_{r}(t)\right\|+\left\|h_{s}(t)\right\|\right) p_{r s}(t)
\end{aligned}
$$

for almost all $t \in J_{\mathcal{E}}$, where h_{r}, h_{s} are suitable functions with $\int_{J}\left\|h_{r}(s)\right\|+\left\|h_{s}(s)\right\| d s$ $\rightarrow 0$ as $r, s \rightarrow \infty$.

On the other hand, it is very easy to see that

$$
p_{r s}^{\prime}(t) \leq 2\left[\varphi_{A}(t)+\varphi_{B}(t)\right]+\left\|h_{r}(t)\right\|+\left\|h_{s}(t)\right\|
$$

Hence we have for a.a. $t \in J$, since $p_{r s}(0)=0$ and $p_{r s}^{\prime}\left(t_{0}\right)=0$ whenever
$p_{r s}\left(t_{0}\right)=0$ and $p_{r s}^{\prime}\left(t_{0}\right)$ exists, $r, s \in B_{K_{1}, \ldots, K_{m}}$,

$$
\begin{align*}
& p_{r s}(t)=\int_{0}^{t} p_{r s}^{\prime}(s) d s=\int_{[0, t] \cap J_{\varepsilon}} p_{r s}^{\prime}(s) d s+\int_{[0, t] \backslash J_{\varepsilon}} p_{r s}^{\prime}(s) d s \leq \\
& \leq \int_{[0, t] \cap J_{\varepsilon}}\left[\ell_{A}(s) p_{r s}(s)+\ell_{B}(s) \mu(s)+5 \varepsilon\right] d s+\int_{[0, t] \backslash J_{\varepsilon}} 2\left[\varphi_{A}(s)+\varphi_{B}(s)\right] d s+ \tag{9}\\
& +\int_{J} 2\left[\left\|h_{r}(s)\right\|+\left\|h_{s}(s)\right\|\right] d s \leq 8 \varepsilon+\int_{0}^{t} \ell_{B}(s) \mu(s) d s+ \\
& +\int_{0}^{t} \ell_{A}(s) p_{r s}(s) d s
\end{align*}
$$

for r, s sufficiently large.
It is very easy to see that (9) implies the following inequality, $r, s \in B_{K_{1}, \ldots, K_{m}}$,

$$
\begin{equation*}
p_{r s}(t) \leq\left[8 \varepsilon+\int_{0}^{t} \ell_{B}(s) \mu(s) d s\right] \exp \left(\int_{0}^{t} \ell_{A}(s) d s\right) \tag{10}
\end{equation*}
$$

for r, s sufficiently large. By using (jjj) and (v) of Definition 2, we can easily prove that (10) gives the following inequality

$$
\begin{equation*}
\mu(t) \leq\left[8 \varepsilon+\int_{0}^{t} \ell_{B}(s) \mu(s) d s\right] M^{*} \tag{11}
\end{equation*}
$$

M^{*} being a positive number greater than $\exp \left(\int_{0}^{t} \ell_{A}(s) d s\right)$ for all $t \in J$. Hence, by $(11), \mu(t) \equiv 0$ on J, taking into account that ε is arbitrary. The proof is complete.

Remark 3. The proof of Theorem 1 is very similar to that one of Theorem 4 of [11], that is, however, generalized by virtue of the hypothesis (4); indeed, in [11], B is assumed to be uniformly continuous.

We shall see in a subsequent remark that our improvement is not only a technicality.

The next result makes use of similar assumptions concerning A and B; this time we shall assume the validity of (4) with respect to A; in this way, A and B are allowed to satisfy more general assumptions than (2) and (3).
Theorem 2. Assume that one hypothesis among (H1), (H2) and (H3) is verified. Moreover, suppose there exist two functions $\varphi_{A}, \varphi_{B} \in L^{1}(I, \mathbb{R})$ such that $\|A(t, x)\| \leq \varphi_{A}(t),\|B(t, x)\| \leq \varphi_{B}(t)$ for almost all $t \in I, x \in Z$.

Let the following other facts be true:
(12) there exists a function $\omega_{A}: J \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$verifying Carathéodory hypotheses like (C1) and (C2) such that

$$
(A(t, x)-A(t, y), x-y)_{-} \leq \omega_{A}(t,\|x-y\|)\|x-y\| t \text { a.e. in } J, x, y \in Z
$$

(13) there exists a function $\omega_{B}: J \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$verifying Carathéodory hypotheses like (C1) and (C2) such that for each subset Y of Z and almost all $t \in J$ we have

$$
\lim _{h \rightarrow 0^{+}} \alpha(B([t-h, t], Y)) \leq \omega_{B}(t, \alpha(Y))
$$

where $h>0$ is such that $t-h>0$;
(14) $\omega_{A}+\omega_{B}$ is such that the only absolutely continuous function $u: J \rightarrow \mathbb{R}^{+}$ for which $u(0)=0, u^{\prime}(t) \leq \omega_{A}(t, u(t))+\omega_{B}(t, u(t))$ is the identically null function;
(15) for each $\varepsilon>0$ there is a closed subset J_{ε} of $J, m\left(J \backslash J_{\varepsilon}\right)<\varepsilon$, such that $A_{\mid I_{\varepsilon} \times Z}$ is uniformly continuous.

Then (PCP) has a solution on J.
Proof: It was proved in the paper [11] that (12) implies that

$$
\begin{equation*}
\alpha(Y)-\alpha(\{x+h A(t, x): x \in Y\}) \leq h \omega_{A}(t, \alpha(Y)) \tag{16}
\end{equation*}
$$

for each $h>0, t \in J$ and $Y \subset Z$. Put $\mu(t)=\alpha\left(\left\{x_{n}(t)\right\}\right), t \in J$. It is well known that μ is an absolutely continuous real function defined on J. Consider the following inequalities, with t a.e. in $J, h>0$ and $t-h>0$:

$$
\begin{aligned}
& \mu(t)-\mu(t-h)=\alpha\left(\left\{x_{n}(t)\right\}\right)-\alpha\left(\left\{x_{n}(t-h)\right\}\right)= \\
& =\alpha\left(\left\{x_{n}(t)\right\}\right)-\alpha\left(\left\{x_{n}(t)-h A\left(t, x_{n}(t)\right)\right\}\right)+ \\
& +\alpha\left(\left\{x_{n}(t)-h A\left(t, x_{n}(t)\right)\right\}\right)-\alpha\left(\left\{x_{n}(t-h)\right\}\right) \leq \\
& \leq h \omega_{A}\left(t, \alpha\left(\left\{x_{n}(t)\right\}\right)\right)+\alpha\left(\left\{\left[x_{n}(t)-x_{n}(t-h)\right]-h A\left(t, x_{n}(t)\right)\right\}\right) \leq \\
& \leq h \omega_{A}\left(t, \alpha\left(\left\{x_{n}(t)\right\}\right)\right)+h \alpha\left(\left\{h^{-1} \int_{t-h}^{t}\left[A\left(s, x_{n}(s)\right)-A\left(t, x_{n}(t)\right)\right] d s\right\}\right)+ \\
& +h \alpha\left(\left\{h^{-1} \int_{t-h}^{t} B\left(s, x_{n}(s)\right) d s\right\}\right) \leq \\
& \leq h \omega_{A}\left(t, \alpha\left(x_{n}(t)\right)\right)+h \alpha\left(\left\{h^{-1} \int_{t-h}^{t}\left[A\left(s, x_{n}(s)\right)-A\left(t, x_{n}(t)\right)\right] d s\right\}\right)+ \\
& +h \alpha\left(B\left([t-h, t],\left\{x_{n}[t-h, t]\right\}\right)\right),
\end{aligned}
$$

where we used Corollary 8 on page 48 of [5]. Dividing by $h>0$, we get

$$
\begin{align*}
& \frac{\mu(t)-\mu(t-h)}{h} \leq \tag{18}\\
& \begin{aligned}
& \leq \omega_{A}(t, \mu(t))+\alpha\left(\left\{h^{-1} \int_{t-h}^{t}\left[A\left(s, x_{n}(s)\right)-A\left(t, x_{n}(t)\right)\right] d s\right\}\right)+ \\
&+\alpha\left(B\left([t-h, t],\left\{x_{n}[t-h, t]\right\}\right)\right)
\end{aligned}
\end{align*}
$$

Now, we need two remarks. Consider the function

$$
\mathcal{A}(t)=t \rightarrow\left\{A\left(t, x_{n}(t)\right)\right\}
$$

from J to $\ell^{\infty}(E)$ (= the Banach space of all bounded sequences of E endowed with the sup norm). By virtue of [15] and the equicontinuity of $\left(x_{n}\right), \mathcal{A}$ verifies Lusin Theorem (see [6]); hence \mathcal{A} is strongly measurable; since $\|\mathcal{A}(t)\|_{\ell \infty}(E) \leq \varphi_{A}(t)$ almost everywhere, \mathcal{A} is also Bochner integrable. Hence we have ([17])

$$
\lim _{h \rightarrow 0^{+}} h^{-1} \int_{t-h}^{t}\|\mathcal{A}(t)-\mathcal{A}(s)\| d s=0
$$

almost everywhere on J. This implies that the diameter of the set

$$
\left.\left\{h^{-1} \int_{t-h}^{t}\left[A\left(t, x_{n}(t)\right)-A\left(s, x_{n}(s)\right)\right] d s: n \in N\right]\right\}
$$

tends to zero as $h \rightarrow 0^{+}$. Hence we can say that

$$
\lim _{h \rightarrow 0^{+}} \alpha\left(\left\{h^{-1} \int_{t-h}^{t}\left[A\left(t, x_{n}(t)\right)-A\left(s, x_{n}(s)\right)\right] d s\right\}\right)=0
$$

The other remark we shall use, is the following one: by a result due to Ambrosetti ([1]), we know that there is $t^{*} \in[t, t+h]$ such that $\alpha\left(\left\{x_{n}[t, t+h]\right\}\right)=\alpha\left(\left\{x_{n}\left(t^{*}\right)\right\}\right)$. Since $\alpha\left(\left\{x_{n}(\cdot)\right\}\right)$ is continuous (in particular at t), for each $\sigma>0$ there is $\delta_{0}>0$ such that $|\tilde{t}-t|<\delta_{0}$ implies $\left|\alpha\left(\left\{x_{n}(t)\right\}\right)\right|<\sigma$. On the other hand, $u \rightarrow \omega_{B}(t, u)$ is continuous; hence, given $\sigma>0$, it is possible to determine $h^{*}>0$ such that, for $h \in] 0, h^{*}$], we have

$$
\omega_{B}\left(t, \alpha\left(\left\{x_{n}\left(t^{*}\right)\right\}\right)\right) \leq \omega_{B}\left(t, \alpha\left(\left\{x_{n}(t)\right\}\right)\right)+\sigma
$$

Taking $h \rightarrow 0^{+}$in (18), our hypotheses and the above couple of remarks show that

$$
\mu^{\prime}(t) \leq \omega_{B}\left(t, \alpha\left(\left\{x_{n}(t)\right\}\right)\right)+\sigma+\omega_{A}\left(t, \alpha\left(\left\{x_{n}(t)\right\}\right)\right)
$$

the arbitrarity of σ gives that

$$
\begin{equation*}
\mu^{\prime}(t) \leq \omega_{B}(t, \mu(t))+\omega_{A}(t, \mu(t)) \tag{19}
\end{equation*}
$$

for t a.e. in J.
Since $\mu(0)=0,(19)$ gives $\mu(t)=0$ on J. We are done.
Remark 4. As observed by Martin ([13]), a typical situation in which (PCP) can be applied, is the following integro-differential equation

$$
\frac{\partial u(t, s)}{\partial t}=f(t, s, u(t, s))+\int_{0}^{1} g(t, s, \tau, u(t, \tau)) d \tau \quad(t, s) \in[0,1]^{2}
$$

where one can put, for instance, $E=C([0,1]), X \subset E$,

$$
\begin{array}{ll}
A(t, x)(s)=f(t, s, x(s)) & (t, s, x) \in[0,1]^{2} \times X \\
B(t, x)(s)=\int_{0}^{1} g(t, s, \tau, x(\tau)) d \tau & (t, s, x) \in[0,1]^{2} \times X
\end{array}
$$

Observe, in particular, that if

$$
\begin{aligned}
& t \rightarrow f(t, s, u) \text { is measurable, for all }(s, u) \in[0,1] \times \mathbb{R} \\
& (s, u) \rightarrow f(t, s, u) \text { is continuous, for almost all } t \in[0,1]
\end{aligned}
$$

then A verifies (C1) and (C2). Since Z is bounded, there is $M>0$ such that $\left|x_{n}(t)(s)\right| \leq M$ for all $n \in N, t, s \in[0,1]$. Hence if one considers the restriction of f to $[0,1]^{2} \times[-M, M]$, by using again the result from [16], given $\varepsilon>0$, there is a (closed) subset I_{ε} of $I, m\left(I \backslash I_{\varepsilon}\right)<\varepsilon$, for which $f_{\mid I_{\varepsilon} \times[0,1] \times[-M, M]}$ is (uniformly) continuous. It is very easy to show that this implies that $A_{\mid I_{\varepsilon} \times Z}$ is uniformly continuous. In the same way, we can show that (4) of Theorem 1 is true, even if B is not uniformly continuous on the whole of $I \times X$. Hence Theorem 1 actually extends Theorem 4 of [11].

This example also shows that assuming (2), (3), (4) (or (12), (13), (15), in the present case), is some time useful; in the present setting A and B are just continuous with respect to $x \in X$, but however verify (4) and (15) when we restrict our interest to $I \times Z$; note that (4) and (15) imply that for almost all $t \in J$, the functions $x \rightarrow A(t, x)$ and $x \rightarrow B(t, x)$ are uniformly continuous; but, thanks to (4) and (15), we are not requiring this on whole of X, just on Z.

We observe that both Theorem 1 and Theorem 2 improve (at least partially) the previous results due to Deimling ([4]), Emmanuele ([8], [9]), Martin ([13]), Hu Shou Chuan ([11]), Schechter ([17]), Volkmann ([18]).

References

[1] Ambrosetti, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Univ. Padova 39 (1967), 349-360.
[2] Crandall M., Pazy A., Nonlinear equations in Banach spaces, Israel J. Math. 11 (1972), 87-94.
[3] Deimling K., Ordinary Differential Equations in Banach Spaces, Lecture Notes in Math. 596, Springer Verlag 1977.
[4] Deimling K., Open Problems for Ordinary Differential Equations in B-Spaces, Proceeding Equa-Diff. 1978, 127-137.
[5] Diestel J., Uhl J.J., jr., Vector Measures, Amer. Math. Soc. 1977.
[6] Dinculeanu N., Vector Measures, Pergamon Press 1967.
[7] Dunford N., Schwartz J.T., Linear Operators, part I, Interscience 1957.
[8] Emmanuele G., On a theorem of R.H. Martin on certain Cauchy problems for ordinary differential equations, Proc. Japan Acad. 61 (1985), 207-210.
[9] Emmanuele G., Existence of approximate solutions for O.D.E.'s under Carathéodory assumptions in closed, convex sets of Banach spaces, Funkcialaj Ekvacioj, to appear.
[10] Evans L.C., Nonlinear evolution equations in an arbitrary Banach space, Israel J. Math. 26 (1977), 1-42.
[11] Hu Shou Chuan, Ordinary differential equations involving perturbations in Banach spaces, J. Nonlinear Analysis, TMA 7 (1983), 933-940.
[12] Kato T., Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520.
[13] Martin R.H., Remarks on ordinary differential equations involving dissipative and compact operators, J. London Math. Soc. 10 (1975), 61-65.
[14] Martin R.H., Nonlinear operators and differential equations in Banach spaces, Wiley and Sons 1976.
[15] Pierre M., Enveloppe d'une famille de semi-groups dans un espace de Banach, C.R. Acad. Sci. Paris 284 (1977), 401-404.
[16] Ricceri B., Villani A., Separability and Scorza-Dragoni's property, Le Matematiche 37 (1982), 156-161.
[17] Schechter E., Evolution generated by continuous dissipative plus compact operators, Bull. London Math. Soc. 13 (1981), 303-308.
[18] Volkmann P., Ein Existenzsatz für gewöhnliche differentialgleichungen in Banachräumen, Proc. Amer. Math. Soc. 80 (1980), 297-300.

Department of Mathematics, University of Catania, Catania 95125, Italy
(Received March 25, 1991, revised May 27, 1991)

[^0]: Work performed under the auspices of G.N.A.F.A. of C.N.R. and partially supported by M.P.I. of Italy (60%).

