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Remarks on the complementability of spaces of Bochner

integrable functions in spaces of vector measures

G. Emmanuele1

Abstract. In the paper [5] L. Drewnowski and the author proved that if X is a Banach
space containing a copy of c0 then L1(µ, X) is not complemented in cabv(µ, X) and
conjectured that the same result is true if X is any Banach space without the Radon-
Nikodym property. Recently, F. Freniche and L. Rodriguez-Piazza ([7]) disproved this
conjecture, by showing that if µ is a finite measure and X is a Banach lattice not
containing copies of c0, then L1(µ, X) is complemented in cabv(µ, X). Here, we show
that the complementability of L1(µ, X) in cabv(µ, X) together with that one of X in the
bidual X∗∗ is equivalent to the complementability of L1(µ, X) in its bidual, so obtaining
that for certain families of Banach spaces not containing c0 complementability occurs
(Section 2), thanks to the existence of general results stating that a space in one of those
families is complemented in the bidual.
We shall also prove that certain quotient spaces inherit that property (Section 3).

Keywords: spaces of vector measures and vector functions, complementability, Banach
lattices, preduals of W∗-algebras, quotient spaces

Classification: 46B20, 46E27, 46E40, 46B30, 46L99

1. Introduction

In the paper [5] L. Drewnowski and the author proved that if X is a Banach
space containing a copy of c0 then L1(µ,X) is not complemented in cabv(µ,X)
and conjectured that the same result is true if X is any Banach space without
the Radon-Nikodym property. Recently, F. Freniche and L. Rodriguez-Piazza
([7]) disproved this conjecture, by showing that if µ is a finite measure and X is
a Banach lattice not containing copies of c0, then L1(µ,X) is complemented in
cabv(µ,X), because such a L1(µ,X) actually is a projection band in cabv(µ,X)
(hence, from the results in [5] and [7] it follows that if X is a Banach lattice,
then L1(µ,X) is complemented in cabv(µ,X) if and only if X does not con-
tain c0); on the other hand, such a L1(µ,X) is a projection band in its bidual,
because it is a Banach lattice not containing copies of c0. Motivated by this
“similarity” we decided to study the relationships between the questions of the
complementability of L1(µ,X) in cabv(µ,X) and in the bidual (L1(µ,X))

∗∗. It
turned out that the complementability of L1(µ,X) in cabv(µ,X) together with
that one of X in its bidual is equivalent to the complementability of L1(µ,X)
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in the bidual (L1(µ,X))
∗∗. This equivalence allows us to present some families

of Banach spaces for which complementability occurs, thanks to the existence of
general results about the complementability of a space in one of those families in
the bidual. In particular, in some case, our results furnish improvements of the
Lebesgue Decomposition Theorem.
Afterwards, we show that certain quotients of spaces for which complementabil-

ity of L1(µ,X) in cabv(µ,X) occurs still enjoy this property (Theorem 5). Such a
result has several interesting applications to quite large families of Banach spaces;
indeed we prove that for certain quotients of L1[0, 1] complementability occurs as
well as for quotients of either dual Banach spaces by w∗-closed subspaces with the
Radon-Nikodym property or arbitrary Banach spaces by reflexive subspaces. In
passing we observe that one of the consequences of Theorem 5 can be applied to
get some new information on certain well known isomorphic properties related to
vector measures and on quotients of Banach lattices not containing copies of c0.
Theorem 5 can be, in some sense, reversed; indeed, we show that an assumption
of surjectivity of a certain map considered in Theorem 5 is also necessary for the
existence of the required projection. Other simple consequences of our results are
also presented without proof; in particular we easily characterize complemented
subspaces of Banach lattices for which complementability occurs.
Before starting with the statements of our results, we observe that throughout

we shall consider just finite measure spaces (S,Σ, µ). Moreover, cabv(µ,X) will
denote the Banach space of all X-valued countably additive measures ν that are
absolutely continuous with respect to µ and have bounded variation (denoted by
|ν|), equipped with the variation norm. Sometimes, we shall also consider the
space cabv(Σ, X) of all countably additive X-valued measures with bounded vari-
ation on a σ-algebra of subsets of a set S and, when S is a Hausdorff compact space
and Σ is the σ-algebra Bo(S) of Borel sets, its closed subspace rcabv(Bo(S), X)
of all regular such measures; even these spaces are equipped with the variation
norm.

2. Equivalence of two complementability problems

The first section of the paper contains results showing how the complementabil-
ity problem studied in [5] and [7] is strictly related to another complementability
problem considered, for instance, in [17]. In particular we show that the two
considered questions are equivalent each other.
Here we explicitly observe that the main result of the paper, i.e. Theorem 4, is

valid for both real and complex Banach spaces.
In order to prove our main result we need some well known facts.

Lemma 1 ([6, Theorem VI.7.1]). For each compact Hausdorff space S and each
Banach space X , there is an isometry ψ from C(S,X∗) onto K(X,C(S)) so that
Tf (s)(x) = f(s)(x) for all s ∈ S, x ∈ X , where ψ(f) = Tf . Conversely, given

T ∈ K(X,C(S)) we put ψ−1(T ) = fT .
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Lemma 2 ([11, Lemma 1]). For each compact Hausdorff space S and each Ba-
nach space X , (K(X,C(S)))∗ is isometric to a closed subspace of (L(X,C(S)))∗

by an isometry Λ where Λ(φ∗)(T ) = limi(KiT )(φ
∗) for each φ∗ ∈ (K(X,C(S)))∗,

(Ki) being a suitable net in the unit ball of K(C(S)) such that ‖Ki(f)−f‖ −→ 0
for each f ∈ C(S). Moreover, if R denotes the restriction map, ΛR is a projection
of (L(X,C(S)))∗ onto the copy of (K(X,C(S)))∗.

Lemma 3 ([4, Theorem VIII.2.1]). For each finite measure space (S,Σ, µ) and
each Banach space X , (L1(µ,X))

∗ = L(X,L∞(µ)).

We shall use these lemmata in our Theorem 4 without any warning.
Now, in order to prove our main result we only need one more remark that

follows the lines for the proof of the main theorem in [17]; as in [2], utilizing results
to be found in [3], instead of a finite measure space (S,Σ, µ), in our main result
we may consider an extremally disconnected compact Hausdorff space S and a
regular Borel measure α on Bo(S) such that

L1(µ,X) = L1(α,X), cabv(µ,X) = cabv(α,X)

where each equality means that the two involved spaces are isometrically isomor-
phic.

Theorem 4. Let (S,Bo(S), α) be as above and X be a Banach space. Then the
following statements are equivalent:

(1) X is complemented in X∗∗ by a projection P̃ and L1(α,X) is comple-
mented in cabv(α,X) by a projection Q;

(2) L1(α,X) is complemented in (L1(α,X))
∗∗ by a projection F .

Proof: For each h∗∗ ∈ (L1(α,X))
∗∗ = (L(X,C(S)))∗, we may consider the ele-

ment (ΛR)(h∗∗) belonging to (K(X,C(S)))∗. Hence (ψ∗ΛR)(h∗∗) ∈ (C(S,X∗))∗,
a Banach space that is equal to rcabv(Bo(S), X∗∗). We can define in an obvious
way a projection P from rcabv(Bo(S), X∗∗) onto rcabv(Bo(S), X) determined by

the projection P̃ of X∗∗ onto X . So (Pψ∗ΛR)(h∗∗) ∈ rcabv(Bo(S), X). We may
also use the Lebesgue Decomposition Theorem ([4]) to get a further norm one
projection H from rcabv(Bo(S), X) onto rcabv(α,X), equal to cabv(α,X) since
α is regular. Hence we have that (HPψ∗ΛR)(h∗∗) belongs to cabv(α,X) and
(QHPψ∗ΛR)(h∗∗) belongs to L1(α,X). To prove that F = QHPψ∗ΛR is the
required projection it is enough to show that

(ψ∗ΛR)(f) = f ∀ f ∈ L1(α,X)

since such any f clearly lives in cabv(Bo(S), X∗∗) too and (QHP )(f) = f . By the
density of simple functions and by linearity, it is enough to suppose f = χE ⊗ x,
for each E ∈ Bo(S), x ∈ X . To reach our goal we calculate as it follows; for each
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g ∈ C(S,X∗) we get

(ψ∗ΛR)(χE ⊗ x)(g) = (ΛR)(χE ⊗ x)(ψ(g)) = (ΛR)(χE ⊗ x)(Tg) =

lim
i
R(χE ⊗ x)(KiTg) = lim

i
(χE ⊗ x)(KiTg) =

lim
i

∫

E

[

Ki(Tg(x))
]

(s) dα =

∫

E
Tg(x)(s)dα =

∫

E
g(s)(x) dα = (χE ⊗ x)(g).

The necessity of the Theorem is shown.
Let us now prove the sufficiency of our condition. It is clear that under (2) X

is complemented in X∗∗. We observe that rcabv(Bo(S), X∗∗) = (C(S,X∗))∗ can
be isometrically embedded into (L(X,C(S)))∗ = (L1(α,X))

∗∗ thanks to the map
Λ(ψ−1)∗. So even rcabv(α,X) = cabv(α,X) (since α is regular) embeds isomet-
rically into (L(X,C(S)))∗; this means that F maps cabv(α,X) into L1(α,X). To
reach our goal it is now enough to show that

Λ(ψ−1)∗(χE ⊗ x) = χE ⊗ x

for each E ∈ Bo(S), x ∈ X . To this aim, for each T ∈ L(X,C(S)) we have
[

Λ(ψ−1)∗
]

(χE ⊗ x)(T ) = lim
i
(ψ−1)∗(χE ⊗ x)(KiT ) = lim

i
(χE ⊗ x)(fKiT ) =

lim
i

∫

E
fKiT (s)(x) dα = lim

i

∫

E
(KiT )(x)(s) dα =

∫

E
T (x)(s) dα = (χE ⊗ x)(T ),

which concludes our proof. �

Remark 1. The following facts are equivalent:

(1) ‖P̃‖ = ‖Q‖ = 1;
(2) ‖F‖ = 1.

This allows us to improve the main result of [17] obtained just for a Banach space
H with the Radon-Nikodym property; it is enough to use the results in [7] and in
the present paper.

Once we have Theorem 4 we can give the following list of families of Banach
spaces for which the complementability of L1(µ,X) in cabv(µ,X) occurs, thanks
to the existence of general results stating that a space in one of the following
families is complemented in the bidual:

(1) Banach lattices not containing copies of c0 ([7]).

Indeed, sinceX is a Banach lattice, L1(µ,X) is ([23]). SinceX does not contain
copies of c0, L1(µ,X) does ([12]). Hence L1(µ,X) is complemented in its bidual
([13], [22]).

(2) Preduals of W∗-algebras.

Indeed, in [24] it is shown that L1(µ,X) is a predual of a W
∗-algebra, a space

that is complemented in its bidual ([24]) (the separable case was obtained in [21]).

(3) Nicely placed subspaces of L1-spaces (see [10]).

(4) Complemented subspaces of spaces for which complementability occurs (the
proof of this is trivial).
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Remark 2. We observe that under the assumptions (2) and (3) the projection
from cabv(µ,X) onto L1(µ,X) is an L-projection (see [10]), so that our result can
be seen as an improvement of the Lebesgue Decomposition Theorem ([4]).

Remark 3. Under the assumptions (1), (2) and (3) above we have that L1(µ,X)
is norm one complemented in its bidual (as it happens in the case of X with
the Radon-Nikodym property because in such a case cabv(µ,X) = L1(µ,X));
it is easy to see that this fact, together with our main result, implies that also
cabv(µ,X) is norm one complemented in its own bidual and so it has the FIP (for
results about FIP in L1(µ,X) compare [20]).

Remark 4. Under the assumptions (1), (2) and (3) above we actually got that
L1(µ,X) is norm one complemented in cabv(µ,X); so we have that if Y is a
Banach space isometric to some L1-space and X is a dual Banach space with the
Rn,k property (with n > k ≥ 3) satisfying (1), (2) and (3) above, then the space
Y ⊗π X has the Rn,k-property (use the same proof of Theorem 4.1 in [18]).

Remark 5. Of course, Remarks 3 and 4 are also applicable in the case (4)
if we have that X is a norm one complemented subspace of a space for which
complementability occurs (in this case we also improve the main result in [19]).
Also Remark 2 holds true in the case 4 if we have that X is an L-summand in a
space for which complementability occurs.

3. Quotient spaces

In this section we consider quotients of spaces for which complementability
occurs and we show that sometimes they enjoy the same property.
The main result of the section is the following

Theorem 5. Let (S,Σ, µ) be a finite measure space, X a Banach space such that

L1(µ,X) is complemented in cabv(µ,X) by a projection P̃ , Z a closed subspace

of X with the Radon-Nikodym property, Y = X/Z. Define Q̃ : cabv(µ,X) →

cabv(µ, Y ) by putting
[

Q̃(ν̃)
]

(E) = Q
[

ν̃(E)
]

(here Q denotes the quotient map

of X onto Y ), for all E ∈ A and ν̃ ∈ cabv(µ,X). If Q̃ is a quotient map, then
L1(µ, Y ) is complemented in cabv(µ, Y ).

Proof: If Q̃0 is the quotient map of L1(µ,X) onto L1(µ, Y ) induced from Q

([4, Chapter VIII]) we clearly have that Q̃|L1(µ,X) = Q̃0; furthermore, kerQ̃ =

cabv(µ,Z) = L1(µ,Z) = kerQ̃0. Thanks to the above chain of equalities, we

have that if ν̃ ∈ kerQ̃, a closed subspace of L1(µ,X), then P̃ (ν̃) = ν̃ and hence

Q̃0
[

P̃ (ν̃)
]

= Q̃0(ν̃) = Θ. This allows us to define an operator P on cabv(µ, Y )
as it follows: for each ν ∈ cabv(µ, Y ) choose an arbitrary ν̃ ∈ cabv(µ,X) such

that Q̃(ν̃) = ν and put P (ν) = Q̃0
[

P̃ (ν̃)
]

. It is not difficult to see that P is

linear, thanks to the arbitrariness of the ν̃ for which Q̃(ν̃) = ν, and that it is

bounded, still thanks to the arbitrariness of the ν̃ for which Q̃(ν̃) = ν and the

surjectivity of Q̃. Furthermore, if ν ∈ L1(µ, Y ), we can choose ν̃ ∈ L1(µ,X) so
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that Q̃(ν̃) = Q̃0(ν̃) = ν. Hence P (ν) = ν and P is the required projection. We
are done. �

Remark 6. We observe that if P̃ is a norm one projection, then the proof of
Theorem 5 guarantees that even P in Theorem 5 is a norm one projection. Hence,
Remarks 3, 4 and 5 are still applicable.

Remark 7. We observe that, maintaining the assumptions and the notations
of Theorem 5, we have the equality Q̃(kerP̃ ) = kerP . To this end, let us first

consider ν̃ ∈ kerP̃ ; hence P̃ (ν̃) = Θ and so Q̃0
[

P̃ (ν̃)
]

= Θ. It follows that

P
[

Q̃(ν̃)
]

= Q̃0
[

P̃ (ν̃)
]

= Θ. This means that Q̃(kerP̃ ) ⊂ kerP . Now, let us

choose ν ∈ kerP . For some ν̃ ∈ cabv(µ,X) we have Q̃(ν̃) = ν; hence, by the very

definition of P it follows that P (ν) = Q̃0
[

P̃ (ν̃)
]

= Θ, i.e. P̃ (ν̃) ∈ kerQ̃0 = kerQ̃

since Z has the Radon-Nikodym property. But we also have ν̃ = P̃ (ν̃)+
[

ν̃−P̃ (ν̃)
]

;
so we get

Q̃(ν̃) = Q̃
[

P̃ (ν̃)
]

+ Q̃
[

ν̃ − P̃ (ν̃)
]

=

Q̃0

[

P̃ (ν̃)
]

+ Q̃
[

ν̃ − P̃ (ν̃)
]

= Q̃
[

ν̃ − P̃ (ν̃)
]

.

Since Q̃(ν̃) = ν and ν̃ − P̃ (ν̃) ∈ kerP̃ we are done: Q̃(kerP̃ ) = kerP .
This remark implies that the following facts are equivalent

(1) Q̃ is a quotient map;

(2) L1(µ, Y ) is complemented in cabv(µ, Y ) and Q̃(kerP̃ ) = kerP .

Now, we present three concrete applications of Theorem 5 showing that quite
large families of Banach spaces are good enough to satisfy the assumptions of
Theorem 5.

Corollary 6. Let, in Theorem 5, (S,Σ, µ) = ([0, 1], Bo[0, 1],m) be the usual
Lebesgue measure space,X = L1([0, 1]), Z a closed subspace ofX with the Radon-
Nikodym property and verifying the following condition: for each operator T :
X → Y = X/Z there is an operator R : X → X for which T = Q ◦R, Q : X → Y
the quotient map (such subspaces exist thanks to results in [8]). Then L1(µ, Y )
is complemented in cabv(µ, Y ).

Proof: Since X = L1([0, 1]), the result from [7] gives that L1(µ,X) is com-
plemented in cabv(µ,X). Hence, among the assumptions of Theorem 5 just the

surjectivity of Q̃ has to be verified. Let ν ∈ cabv(µ, Y ). Define T : L1(|ν|) → Y
by

T (f) =

∫

[0,1]
f(s) dν ∀ f ∈ L1(|ν|).

Since ν ≪ m it follows that ([0, 1], Bo[0, 1], |ν|) is separable and hence Boolean
isomorphic with ([0, 1], Bo[0, 1],m) ([9]); so there is an isometry Ψ from L1([0, 1])
onto L1(|ν|). The operator T ◦ Ψ : X → Y factorizes as in our hypotheses, i.e.
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there is R : X → X such that T ◦ Ψ = Q ◦ R : X → Y . Hence T = Q ◦ R ◦Ψ−1

with R ◦ Ψ−1 : L1(|ν|) → X . Let ν̃ be the vector measure defined by ν̃(E) =
(R ◦Ψ−1)(χE), E ∈ Bo[0, 1]. We have

ν(E) = T (χE) = Q
[

(R ◦Ψ−1)(χE)
]

= Q [ν̃(E)] ∀E ∈ Bo[0, 1].

Since it is well known that ν̃ ∈ cabv(µ,X) ([4]), we are done. �

Corollary 6 can be, for instance, applied with Z = H10 .
In the next corollary we shall also use the space C(S,H), H a Banach space,

of all H-valued continuous functions on a Hausdorff compact space S as well as
the well known equality (C(S,H))∗ = rcabv(Bo(S), H∗) (see [4, p. 182]).

Corollary 7. Let, in Theorem 5, (S,Σ, µ)=(S,Bo(S), α) be a regular Borel mea-
sure space over a Hausdorff compact space S, X = F ∗ a dual Banach space,

Z a w∗-closed subspace of X with the Radon-Nikodym property, Y = X/Z.
If L1(α,X) is complemented in cabv(α,X), then L1(α, Y ) is complemented in
cabv(α, Y ).

Proof: Even in this case, we have just to prove that Q̃ is surjective, because then
we can leave Theorem 5 works. We observe that, since α is regular, all elements are
both in cabv(α,X) and cabv(α, Y ) and, since Z is w∗-closed, Y is the dual of the

closed subspace Z⊥ = {z⊥ ∈ F : z⊥(z) = 0, for all z ∈ Z} of F . Hence cabv(α,X)
(resp. cabv(α, Y )) is a closed subspace of (C(S, F ))∗ = rcabv(Bo(S), X) (resp.

(C(S), Z⊥)∗ = rcabv(Bo(S), Y )). Let i : Z⊥ → F be the inclusion map; i∗ is just

the quotient map of X onto Y . Define I : C(S,Z⊥)→ C(S, F ) by putting

[I(f)] (s) = i [f(s)] ∀ s ∈ S, f ∈ C(S,Z⊥).

I∗ : (C(S, F ))∗
onto
−−−→ (C(S,Z⊥))∗ is a quotient map and it is not difficult to show

that it verifies the following equality

(1) [I∗(ν̃)] (E) = Q [ν̃(E)] ∀E ∈ Bo(S), ν̃ ∈ (C(S, F ))∗.

It is also clear that I∗(cabv(α,X)) ⊆ cabv(α, Y ). If we show that I∗(cabv(α,X)) =

cabv(α, Y ) we get from (1) that I∗|cabv(α,X) = Q̃ that is so surjective. To this aim,

let us consider ν ∈ cabv(α, Y ). There is ν̃1 ∈ (C(S, F ))∗ such that I∗(ν̃1) = ν.
The Lebesgue Decomposition Theorem ([4]) implies that there are two elements
ν̃, ν̃s of cabv(Bo(S), X) for which

(i) ν̃1 = ν̃ + ν̃s;
(ii) ν̃ ≪ α;
(iii) zν̃s ⊥ α for all z ∈ F .
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From (i) it follows that

(2) I∗(ν̃s) = I
∗(ν̃1)− I∗(ν̃) = ν − I∗(ν̃)

and so, thanks to (ii), we get I∗(ν̃s) ≪ α, from which z⊥I∗(ν̃s) ≪ α for all

z⊥ ∈ Z⊥. On the other hand, (iii) gives that z⊥I∗(ν̃s) ⊥ α for all z⊥ ∈ Z⊥.

Hence, z⊥I∗(ν̃s) = Θ for all z
⊥ ∈ Z⊥, i.e. I∗(ν̃s) = Θ. This and (2) give

I∗(ν̃) = ν. The proof is complete. �

As a consequence of Corollary 7 (and the results in [7]) we have that L1(µ,A
∗)

(A the disk algebra) is complemented in cabv(µ,A∗) since A∗ is isomorphic to
(C(∂D))∗/H10 (see, for instance, [16]).

Remark 8. In Corollary 6 we could have considered any separable finite measure
space, instead of ([0, 1], Bo[0, 1],m), because such a space is Boolean isomorphic
to ([0, 1], Bo[0, 1],m). In Corollary 7 we could have considered any finite measure
space, instead of a regular Borel measure space, because the Stone-Kakutani
Theorem ([3]) could be used to reduce this general case to the one treated.
Using Corollary 7 we can prove the following result.

Corollary 8. Let X be a Banach space such that L1(µ,X) is complemented
in cabv(µ,X), Z be a reflexive subspace of X,Y = X/Z. Then L1(µ, Y ) is
complemented in cabv(µ, Y ).

Proof: It follows from Theorem 5 that it is enough to show that Q̃ is onto. If
Q is like in Theorem 5, then Q∗∗ is a quotient map from X∗∗ onto Y ∗∗ = X∗∗/Z
(use the reflexivity of Z). Corollary 7 gives that for each ν ∈ cabv(µ, Y ), a closed

subspace of cabv(µ,X∗∗/Z), there is ν̃ ∈ cabv(µ,X∗∗) so that (̃Q∗∗)(ν̃) = ν. If
we prove that ν̃ takes its values into X we shall be done. Let E ∈ Σ; we have that
ν(E) ∈ Y and so there is xE ∈ X for which Q(xE) = Q∗∗(xE) = ν(E). On the
other hand, Q∗∗

[

ν̃(E)
]

= ν(E) from which it follows that ν̃(E)− xE ∈ kerQ∗∗ =
Z. Hence ν̃(E) ∈ xE + Z that is contained in X . We are done. �

Corollary 8 can be applied with X = L1(0, 1) and Z the reflexive subspace
spanned by the Rademacher functions.
We observe that the assumptions on Z in all of the above results cannot be

dropped at all as one can see easily in the case X = l1, Y = c0. Indeed, in such
a case cabv(µ,X) = L1(µ,X), but L1(µ, Y ) is not complemented in cabv(µ, Y )
([5]).

Remark 9. During the proofs of Corollaries 7 and 8 what actually we showed
is that the map Q̃, defined in Theorem 5, is a quotient map, under any of the
following assumptions:

(i) X is a dual Banach space and Z is a w∗-closed subspace of X ;
(ii) X is an arbitrary Banach space and Z is a reflexive subspace of X .
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So we can obtain very easily that under (i) or (ii), if X has the Compact Range
property or the Weak Radon-Nikodym property or the Weak∗∗ Radon-Nikodym
property (we refer to [15] for these known definitions) or the Radon-Nikodym
property, then Y = X/Z has the same property(we observe that under (i) these
facts are already known).

Another consequence of Corollaries 7 and 8 is the following result about the
containment of c0 by Banach lattices

Proposition 9. Let X be a Banach lattice and Z a closed subspace of X both
satisfying one of the two assumptions (i) and (ii). If Z has the Radon-Nikodym
property, the following facts are equivalent

(1) X does not contain c0;
(2) Y = X/Z does not contain c0.

Proof: Let us suppose X does not contain c0. Hence the result in [7] implies
that L1(µ,X) is complemented in cabv(µ,X). From our previous results it follows
that L1(µ, Y ) is complemented in cabv(µ, Y ); hence c0 is not allowed to live in
Y ([5]). Conversely, if c0 is not in Y , being also not contained in Z that has
the Radon-Nikodym property, it follows from a (general) result in [1] that c0
does not embed into X . Since there is no proof of this fact in [1] we shall give
one here. So we prove that if X/Z,Z do not contain c0, then X itself does not
contain c0. By contradiction, let us suppose c0 lives in X ; hence, there is a
weakly unconditionally converging series

∑

i

xi in X that is not unconditionally

converging. There are ǫ > 0 and two sequences (pn), (qn) of integers such that

pn < qn < pn+1 and ‖
qn
∑

i=pn

xi‖ > ǫ for all n ∈ N . If Q denotes the quotient

map from X onto X/Z and yi = Q(xi), i ∈ N , the series
∑

n

[

qn
∑

i=pn

yi
]

is (weakly

and hence) unconditionally converging, since X/Z does not contain c0. Choose

sn ∈ X so that Q(sn) =
qn
∑

i=pn

yi and ‖sn‖ < 1/2
n for all n ∈ N (passing to a

subsequence if necessary). The series
∑

n
sn is so absolutely summing and hence

unconditionally converging in X . Put zn = sn −
qn
∑

i=pn

xi for all n ∈ N . Clearly

(zn) ⊂ Z. If x∗ ∈ X∗, we may calculate as follows

∑

n

|zn(x
∗)| ≤

∑

n

|sn(x
∗)|+

∑

n

|





qn
∑

i=pn

xi



 (x∗)| ≤

‖x∗‖
∑

n

1

2n
+

∑

n

|xn(x
∗)| < +∞
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since
∑

n
xn was weakly unconditionally converging. It follows that

∑

n
zn is (weakly

and hence) unconditionally converging in Z, since Z does not contain c0. So we

have zn → Θ. Since, sn → Θ too, we get
qn
∑

i=pn

xi → Θ, a contradiction. We are

done. �

Actually, when X is a Banach lattice and (ii) is true, it is not difficult to
show that (1) of Proposition 9 implies that Y is weakly sequentially complete; to
reach such a result it is enough to use the Lohman’s Lifting Theorem about weak
Cauchy sequences ([14]).
At the end we give two more results, the first generalizing the main result from

[7]; since the proofs are straightforward we do not give them.

Corollary 10. Let Y be a quotient space of a complemented subspace X of a
Banach lattice by a reflexive subspace. Then the following facts are equivalent

(1) X does not contain c0;
(2) Y does not contain c0;
(3) X is weakly sequentially complete;
(4) Y is weakly sequentially complete;
(5) X is complemented in its bidual and L1(µ,X) is complemented
in cabv(µ,X);

(6) Y is complemented in its bidual and L1(µ, Y ) is complemented
in cabv(µ, Y );

(7) L1(µ,X) is complemented in (L1(µ,X))
∗∗;

(8) L1(µ, Y ) is complemented in (L1(µ, Y ))
∗∗.

Corollary 11. Let X be a dual Banach space complemented in a Banach lattice
L, Z a w∗-closed subspace of X with the Radon-Nikodym property, Y = X/Z.
Then the following facts are equivalent

(1) X does not contain c0;
(2) Y does not contain c0;
(3) X is complemented in its bidual and L1(µ,X) is complemented
in cabv(µ,X);

(4) Y is complemented in its bidual and L1(µ, Y ) is complemented
in cabv(µ, Y );

(5) L1(µ,X) is complemented in (L1(µ,X))
∗∗;

(6) L1(µ, Y ) is complemented in (L1(µ, Y ))
∗∗.

We finish the paper with the following natural questions

Question 1. Is L1(µ,X) complemented in (L1(µ,X))
∗∗ if X is complemented

in X∗∗ and X does not contain copies of c0?

Question 2. Is L1(µ,X) complemented in cabv(µ,X) if X does not contain
copies of c0?
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Notes: While writing down the present version of the note we learnt that Prof. Rao (after
reading a preliminary version of it) has also got Theorem 4 and Corollary 8, independently.
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Prof. Wnuk realized that the main result of the paper [7] was already known; it is Lemma 3.7
in the paper
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