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Let X,Y be two Banach spaces. By L(X,Y ) (resp. K(X, Y )) we denote the Banach

spaces of all bounded, linear (resp. compact, bounded, linear) operators from X into Y.

Several papers have been devoted to the question of when c0 embeds isomorphically into

K(X, Y ) (see [5, 8, 9] and their references) and its relationship with the following question:

(i) is K(X,Y ) always uncomplemented in L(X, Y ) when L(X, Y ) 6= K(X, Y ) ?

From those papers it turned out that, in special settings, the embeddability of c0 in

K(X, Y ) implies that (i) is true. The purpose of this short note is to prove that if c0

embeds in K(X,Y ), then K(X, Y ) is always uncomplemented in L(X,Y ), regardless of

the nature of X and Y.

We need the following result due to Feder.

Theorem 1 (Feder [6]).Assume that L(X, Y ) 6= K(X, Y ) and that there a noncom-

pact T ∈ L(X,Y ) and a sequence (Tn) ⊂ K(X, Y ) such that the series
∑

Tn(x) converges

unconditionally to T (x), for all x ∈ X. Then K(X,Y ) is uncomplemented in L(X,Y ).

Remark 1. Following the proof of the main theorem in [4] one can prove that if the

assumption of Theorem 1 holds then c0 embeds in K(X,Y ). The proof of Theorem 2 below

shows that the converse is also true, so that Feder’s hypothesis is exactly equivalent to the

containment of c0 in K(X, Y ).

Theorem 2.Assume that c0 embeds in K(X, Y ). Then K(X, Y ) is uncomplemented in

L(X,Y ).

Proof. First suppose that Y contains a copy of c0. Let (yn) be a copy of the unit

vector basis of c0 in Y, with coefficient functionals (y∗n), and (x∗n) a weak∗ null sequence

in X∗ of norm one elements. Putting Tn = x∗n ⊗ yn for n ∈ N, it is very easy to see that,



for each x ∈ X, the series
∑

Tn(x) converges unconditionally and so it defines an element

T (x) of Y. The mapping T so defined is linear (obviously) and bounded; indeed, since (yn)

is a copy of the unit vector basis of c0 and (x∗n) is a weak∗ null sequence, there is M > 0

such that ‖T (x)‖ ≤ M‖x‖ for all x ∈ X. If T were in K(X, Y ), then T ∗ would be compact,

too; and so the sequence (T ∗(y∗n)) = (x∗n) would be relatively compact, a contradiction.

Hence Theorem 1 applies. Fron now on, we assume that Y contains no copy of c0. Next,

suppose that c0 embeds in X∗. Let (x∗n) be a copy of the unit vector basis of c0 in X∗ and

(yn) be a normalized basic sequence in Y with coefficient functionals (y∗n). Let Tn and T

be as above. The series
∑

Tn(x)(x ∈ X) is (absolutely and so) unconditionally convergent,

since
∑

x∗n is weakly unconditionally convergent. Again using the fact that
∑

x∗n is weakly

unconditionally convergent, we find an M > 0 such that
∑ |x∗n(x)| ≤ M‖x‖ for all x ∈ X.

Hence ‖T (x)‖ ≤ M‖x‖ for all x ∈ X; thus, T being linear, we have T ∈ L(X, Y ). As above

T is not compact and again Theorem 1 yields our result. So we can also assume that c0

does not embed in X∗. Theorem 4 in [9] gives that `∞ does not embed in K(X,Y ). Now

consider a copy (Tn) of the unit vector basis of c0 inside K(X,Y ). For ξ ∈ `∞ and x ∈ X

consider the series
∑

ξnTn(x) that converges unconditionally, because
∑

Tn is weakly

unconditionally convergent and Y does not contain c0. It is possible to define an operator

Tξ(x) =
∑

ξnTn(x) belonging to L(X,Y ). Indeed, Tξ is linear; let y∗ ∈ Y ∗, ‖y∗‖ ≤ 1 and

observe that

|Tξ(x)(y∗)| ≤
∑

|ξnTn(x⊗ y∗)| ≤ ‖ξ‖
∑

|Tn(x⊗ y∗)| (x ∈ X, ξ ∈ `∞). (1)

Because
∑

Tn is weakly unconditionally convergent and because x ⊗ y∗ ∈ (K(X, Y ))∗,

there is M > 0 such that

∑
|Tn(x)(y∗)| ≤ M‖x⊗ y∗‖ = M‖x‖‖y∗‖ (x ∈ X). (2)

The inequalities (1) and (2) imply

‖Tξ(x)‖ ≤ M‖ξ‖‖x‖ (x ∈ X, ξ ∈ `∞), (3)

so giving the continuity of each Tξ. Furthermore, (3) implies

‖Tξ‖ ≤ M‖ξ‖ (ξ ∈ `∞).



Hence it is also possible to define an operator φ : `∞ → L(X,Y ) by putting φ(ξ) = Tξ. If

Tξ ∈ K(X,Y ) for all ξ ∈ `∞, then φ is weakly compact, since we are supposing that `∞

does not embed in K(X, Y ) (see [1], chapter 6); hence, φ maps weakly null sequences into

norm null ones ([1], chapter 6) and so we have

‖φ(en)‖ = ‖Tn‖ → 0,

where (en) denotes the unit vector basis of c0. This is a contradiction. Hence for some

ξ0 ∈ `∞ the operator Tξ0 is not compact. This Tξ0 and the series
∑

ξ0nTn must satisfy

Feder’s assumption in Theorem 1, and our proof is complete.

As a consequence of proposition 1 in [8] and the present Theorem 2 we have the

following.

Corollary.Let Y have the bounded approximation property. If c0 embeds in K(X, Y ),

then K(X, Y ) is not isomorphic to a complemented subspace of a dual space.

In [6] Feder put the following question.

Problem 2 ([6]). Do Banach spaces X and Y exist such that L(X, Y ) 6= K(X, Y )

and such that for each element in L(X,Y ) \K(X, Y ) there does not exist a series as in

Theorem 1?

In the light of Remark 1 this problem by Feder can be reformulated as it follows:

Problem 2 (reformulated). Do Banach spaces X and Y exist such that L(X, Y ) 6=
K(X, Y ) and such that c0 does not embed in K(X, Y )?

Hence conditions assuring that c0 embeds into K(X, Y ) are very useful; a number are

contained in the papers [4, 5, 8, 9] as already quoted. Here we present a further method

to construct isomorphic copies of c0 in spaces of compact operators which is different from

those already cited. It is an extension of techniques used by Holub in [7]; in passing we

observe that we also present a sufficient condition for K(X, Y ) to contain a complemented

copy of the sequence space c0. We shall use the definition of a Gelfand-Phillips space and

a limited subset from [2].



Definition. A Banach space E has the Gelfand-Phillips property if any bounded subset

M of E such that

lim
n

sup
M
|x∗n(x)| = 0 for each weak∗ null sequence (X∗

n) ⊂ E∗ (4)

is relatively compact. A set satisfying (4) is called ’limited’.

Theorem 3. Let X,Y be two Banach spaces satisfying the following assumptions:

(ii) there exist a Banach space G with an unconditional basis (gn) and a biorthogonal

coefficients (g∗n) and two operators R : G → Y, S : G∗ → Y ∗ mapping (gn) and (g∗n) into

normalized basic sequences.

Then c0 embeds in K(X, Y ) (indeed in any subspace H of L(X, Y ) containing X∗ ⊗ε

Y ). If moreover X∗ (or Y ) has the Gelfand-Phillips property, then K(X, Y ) contains a

complemented copy of c0.

Proof. First note that (S(g∗n) ⊗ε R(gn)) is contained in X∗ ⊗ε Y. As (S(g∗n)) and

(R(gn)) are basic sequences, there is a constant C > 0 such that for any real numbers

a1, a2, ..., an we have

C max
1≤i≤n

|ai| ≤
∥∥∥∥∥

n∑

i=1

ai [S(g∗n)⊗ε R(gn)]

∥∥∥∥∥
ε

thanks to the definition of ε−tensor norm. On the other hand, S and R induce an operator

S⊗ε R from G∗⊗ε G into X∗⊗ε Y (see [1], p. 229) mapping (g∗n⊗ε gn) to (S(g∗n)⊗ε R(gn)).

So we have, for a1, a2, ..., an ∈ R∥∥∥∥∥
n∑

i=1

ai [S(g∗i )⊗ε R(gi)]

∥∥∥∥∥
ε

≤ ‖S ⊗ε R‖
∥∥∥∥∥

n∑

i=1

ai [g∗i ⊗ε gi]

∥∥∥∥∥
ε

≤ K ‖S ⊗ε R‖ max
1≤i≤n

|ai|,

where the last inequality is due to the unconditionality of (gn). Hence (S(g∗i ) ⊗ε R(gi))

is a copy pf the unit vector basis of c0. Assume now that X∗ has the Gelfand-Phillips

property (we shall proceed similarly if Y has the Gelfand-Phillips property). Then (S(g∗n))

cannot be a limited subset of X∗. Hence, by passing to a subsequence if necessary, we can

find a weak∗ null sequence (x∗∗n ) ⊂ X∗∗ such that x∗∗n (S(g∗m)) = δnm (see [11]). If (z∗n)

is a (bounded) sequence of biorthogonal coefficients for (R(gn)), the sequence (x∗∗n ⊗π z∗n)

belongs to K(X,Y )∗. Furthermore, if T ∈ K(X, Y ), we have

| < T, x∗∗n ⊗π z∗n > | = |T ∗(z∗n)(x∗∗n ))| → 0



because (T ∗(z∗n)) is a relatively compact sequence and (x∗∗n ) is weak∗ null. Hence (x∗∗n ⊗π

z∗n) is a weak∗ null sequence in (K(X, Y ))∗ and, by our choices above, one has (x∗∗n ⊗π

z∗n)(S(g∗m) ⊗ε R(gm)) = δnm. It is now easy to see that the operator P from K(X, Y )

to span(S(g∗n) ⊗ε R(gn)) defined by P (T ) =
∑

< T, x∗∗n ⊗π z∗n > (S(g∗n) ⊗ε R(gn)) is a

projection. This completes the proof.

Remark 2. Observe that the hypothesis that X∗ has the Gelfand-Phillips property

was used just to provide the sequence (x∗∗n ) used in the proof of Theorem 3. It could be

replaced by the hypothesis that (S(g∗n)) (resp. (R(gn))) spans a complemented subspace

of X∗ (resp. Y ) because even in this case (S(g∗n)) cannot be limited: otherwise it would be

limited in its closed linear span, a separable space, i.e. a space with the Gelfand-Phillips

property. Hence (S(g∗n)) would be relatively compact.

We note that if X is a Banach space containing `1 and Y a Banach space containing

`p, for some p ≥ 2, then c0 embeds in K(X,Y ) which cannot be complemented in L(X, Y ).

Indeed, by a famous result in [10], X∗ must contain a copy of (L1 and hence of) `2.

Furthermore, there is an operator as required in Theorem 3 from `2 into `p, since p ≥ 2.

Theorem 3 can be applied to this situation. This way we generalize the following result

due to Feder ([6]): K(C(S), L1) is not complemented L(C(S), L1), when S is not dispersed

(and other results from [6]), when answering a question put in [8].

As another consequence of Theorem 3 (second part) we note that the space `p ⊗ε `q

(a closed subspace of K(`p′ , `q), with 1/p + 1/p′ = 1) contains a complemented copy of

c0, provided that 1 < p′ ≤ q < ∞; indeed, in this case there is an operator as required in

Theorem 3 from `q′ , with 1/q +1/q′ = 1, into `p, mapping the unit vector basis of `q′ onto

the unit vector basis of `p. Hence the considered space is neither a Grothendieck space

(i.e. a space such that any operator from it to c0 is weakly compact) nor a dual space. We

recall that in the remaining case, (i.e. when 1 < q < p′ < ∞), it is well known that `p⊗ `q

is reflexive (and so both Grothendieck and dual). Further, let us consider `∞ ⊗π `p where

1 < p ≤ 2. Its dual space is L(`∞, `p′), where 1/p+1/p′ = 1, and this latter space contains

a copy of c0 as a consequence of Theorem 3. Therefore `∞ ⊗π `p, where 1 < p ≤ 2, is not

a Grothendieck space because its dual is not weakly sequentially complete.



Finally, we present a result similar to Theorem 6 in [9], but for different classes of

Banach spaces; it makes use of Theorem 2.

Theorem 4.Assume that X and Y satisfy one of the following two assumptions:

(i) X is an L∞−space and Y is a closed subspace of an L1−space,or

(ii) X = C[0, 1] and Y is a space with cotype 2.

Then the following four assertions are equivalent:

(1) K(X,Y ) 6= L(X, Y )

(2) c0 embeds in K(X, Y )

(3) `∞ embeds in L(X, Y )

(4) K(X,Y ) is uncomplemented in L(X,Y )

Proof. We start by showing that (1) implies (2). We observe that any element in

L(X,Y ) factorizes through a suitable `2(Γ) space, as any 2−absolutely summing operator

must do (see [3]). Hence, if T ∈ L(X, Y ) \K(X, Y ), there are two non-compact operators

R : X → `2(Γ) and S : `2(Γ) → Y so that T = SR. If Pj is the projection from `2(Γ)

onto the closed span generated by the element ej (belonging to a basis (ei)i∈I), then Tj =

SPjR ∈ K(X, Y ). Furthermore, for all x ∈ X, we have T (x) =
∑

j∈Γ Tj(x) unconditionally.

We choose a sequence (xn) ⊂ BX such that (T (xn)) is not relatively compact. Let n ∈ N ;

it is clear that the set Γn = {j : j ∈ Γ, Tj(xn) 6= 0} is at most countable and so the set

Γ0 =
⋃

n Γn is at most countable, too; we can order it as a sequence (jk) and consider, for

x ∈ X, the series
∑

Tjk
(x) that converges unconditionally to an element B(x) of Y. The

mapping x → B(x) is clearly linear. It is quite easy to show that the same mapping is

s-w sequentially continuous and so, by virtue of the Closed Graph Theorem, it is bounded,

i.e. B ∈ L(X, Y ). Moreover, B(xn) = T (xn) for all n ∈ N, and so B is not compact. The

proof of the main result in [4] now shows that (2) is true. Since the implication (2) ⇒ (4)

is just Theorem 2 and (4) ⇒ (1) is obvious, we see that (1), (2) and (4) are equivalent.

That (2) implies (3) is a general fact (see [5]); so we have to show that (3) gives (2). Under

(3) we can have K(X,Y ) 6= L(X, Y ); in this case the above proof works again to give (2).

otherwise, K(X, Y ) = L(X, Y ) from which we get that `∞ embeds into K(X, Y ). This

completes the proof of Theorem 4.



This work was performed under the auspices of G.N.A.F.A. of C.N.R. and partially

supported by M.U.R.S.T. of Italy (40% 1988).

Note added in proof. The reformulation of Problem 2 above shows that it has a

positive solution, because of the existence of a L∞−space X with Schur property (see

[12]). Indeed, it is clear that L(X,X) 6= K(X, X) and yet c0 does not embed into K(X, X)

which is weakly sequentially complete, because of the following facts: X and X∗ are weakly

sequentially complete and X has the Schur property, so that each weakly compact operator

from X into Y is compact. Though the paper [12] appeared before Feder raised Problem

2, the condition in Problem 2 is hard to study. Our reformulation makes it easier to study

and leads to the solution above.
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