A remark on the containment of c_0 in spaces of compact operators

Mathematical Proceedings of the Cambridge Philosophical Society Volume 111, (1992), 331-335

Posted here with the kind permission from the Editor

A remark on the containment of c_0 in spaces of compact operators

By G.Emmanuele

Department of Mathematics, University of Catania, Viale A.Doria 6,95125 Catania, Italy

(Received 18 October 1990)

Let X, Y be two Banach spaces. By L(X, Y) (resp. K(X, Y)) we denote the Banach spaces of all bounded, linear (resp. compact, bounded, linear) operators from X into Y. Several papers have been devoted to the question of when c_0 embeds isomorphically into K(X, Y) (see [5, 8, 9] and their references) and its relationship with the following question:

(i) is K(X,Y) always uncomplemented in L(X,Y) when $L(X,Y) \neq K(X,Y)$?

From those papers it turned out that, in special settings, the embeddability of c_0 in K(X, Y) implies that (i) is true. The purpose of this short note is to prove that if c_0 embeds in K(X, Y), then K(X, Y) is always uncomplemented in L(X, Y), regardless of the nature of X and Y.

We need the following result due to Feder.

Theorem 1 (Feder [6]). Assume that $L(X,Y) \neq K(X,Y)$ and that there a noncompact $T \in L(X,Y)$ and a sequence $(T_n) \subset K(X,Y)$ such that the series $\sum T_n(x)$ converges unconditionally to T(x), for all $x \in X$. Then K(X,Y) is uncomplemented in L(X,Y).

Remark 1. Following the proof of the main theorem in [4] one can prove that if the assumption of Theorem 1 holds then c_0 embeds in K(X, Y). The proof of Theorem 2 below shows that the converse is also true, so that Feder's hypothesis is exactly equivalent to the containment of c_0 in K(X, Y).

Theorem 2. Assume that c_0 embeds in K(X, Y). Then K(X, Y) is uncomplemented in L(X, Y).

Proof. First suppose that Y contains a copy of c_0 . Let (y_n) be a copy of the unit vector basis of c_0 in Y, with coefficient functionals (y_n^*) , and (x_n^*) a weak^{*} null sequence in X^* of norm one elements. Putting $T_n = x_n^* \otimes y_n$ for $n \in \mathbb{N}$, it is very easy to see that,

for each $x \in X$, the series $\sum T_n(x)$ converges unconditionally and so it defines an element T(x) of Y. The mapping T so defined is linear (obviously) and bounded; indeed, since (y_n) is a copy of the unit vector basis of c_0 and (x_n^*) is a weak^{*} null sequence, there is M > 0such that $||T(x)|| \leq M ||x||$ for all $x \in X$. If T were in K(X, Y), then T^{*} would be compact, too; and so the sequence $(T^*(y_n^*)) = (x_n^*)$ would be relatively compact, a contradiction. Hence Theorem 1 applies. From now on, we assume that Y contains no copy of c_0 . Next, suppose that c_0 embeds in X^* . Let (x_n^*) be a copy of the unit vector basis of c_0 in X^* and (y_n) be a normalized basic sequence in Y with coefficient functionals (y_n^*) . Let T_n and T be as above. The series $\sum T_n(x)(x \in X)$ is (absolutely and so) unconditionally convergent, since $\sum x_n^*$ is weakly unconditionally convergent. Again using the fact that $\sum x_n^*$ is weakly unconditionally convergent, we find an M > 0 such that $\sum |x_n^*(x)| \le M ||x||$ for all $x \in X$. Hence $||T(x)|| \leq M ||x||$ for all $x \in X$; thus, T being linear, we have $T \in L(X, Y)$. As above T is not compact and again Theorem 1 yields our result. So we can also assume that c_0 does not embed in X^{*}. Theorem 4 in [9] gives that ℓ^{∞} does not embed in K(X,Y). Now consider a copy (T_n) of the unit vector basis of c_0 inside K(X,Y). For $\xi \in \ell^{\infty}$ and $x \in X$ consider the series $\sum \xi_n T_n(x)$ that converges unconditionally, because $\sum T_n$ is weakly unconditionally convergent and Y does not contain c_0 . It is possible to define an operator $T_{\xi}(x) = \sum \xi_n T_n(x)$ belonging to L(X, Y). Indeed, T_{ξ} is linear; let $y^* \in Y^*, ||y^*|| \leq 1$ and observe that

$$|T_{\xi}(x)(y^*)| \le \sum |\xi_n T_n(x \otimes y^*)| \le ||\xi|| \sum |T_n(x \otimes y^*)| \qquad (x \in X, \xi \in \ell^{\infty}).$$
(1)

Because $\sum T_n$ is weakly unconditionally convergent and because $x \otimes y^* \in (K(X,Y))^*$, there is M > 0 such that

$$\sum |T_n(x)(y^*)| \le M ||x \otimes y^*|| = M ||x|| ||y^*|| \qquad (x \in X).$$
(2)

The inequalities (1) and (2) imply

$$||T_{\xi}(x)|| \le M ||\xi|| ||x|| \qquad (x \in X, \xi \in \ell^{\infty}),$$
(3)

so giving the continuity of each T_{ξ} . Furthermore, (3) implies

$$||T_{\xi}|| \le M ||\xi|| \qquad (\xi \in \ell^{\infty}).$$

Hence it is also possible to define an operator $\phi : \ell^{\infty} \to L(X, Y)$ by putting $\phi(\xi) = T_{\xi}$. If $T_{\xi} \in K(X, Y)$ for all $\xi \in \ell^{\infty}$, then ϕ is weakly compact, since we are supposing that ℓ^{∞} does not embed in K(X, Y) (see [1], chapter 6); hence, ϕ maps weakly null sequences into norm null ones ([1], chapter 6) and so we have

$$\|\phi(e_n)\| = \|T_n\| \to 0,$$

where (e_n) denotes the unit vector basis of c_0 . This is a contradiction. Hence for some $\xi_0 \in \ell^{\infty}$ the operator T_{ξ_0} is not compact. This T_{ξ_0} and the series $\sum \xi_{0n} T_n$ must satisfy Feder's assumption in Theorem 1, and our proof is complete.

As a consequence of proposition 1 in [8] and the present Theorem 2 we have the following.

Corollary. Let Y have the bounded approximation property. If c_0 embeds in K(X,Y), then K(X,Y) is not isomorphic to a complemented subspace of a dual space.

In [6] Feder put the following question.

Problem 2 ([6]). Do Banach spaces X and Y exist such that $L(X,Y) \neq K(X,Y)$ and such that for each element in $L(X,Y) \setminus K(X,Y)$ there does not exist a series as in Theorem 1?

In the light of Remark 1 this problem by Feder can be reformulated as it follows:

Problem 2 (reformulated). Do Banach spaces X and Y exist such that $L(X,Y) \neq K(X,Y)$ and such that c_0 does not embed in K(X,Y)?

Hence conditions assuring that c_0 embeds into K(X, Y) are very useful; a number are contained in the papers [4, 5, 8, 9] as already quoted. Here we present a further method to construct isomorphic copies of c_0 in spaces of compact operators which is different from those already cited. It is an extension of techniques used by Holub in [7]; in passing we observe that we also present a sufficient condition for K(X,Y) to contain a complemented copy of the sequence space c_0 . We shall use the definition of a Gelfand-Phillips space and a limited subset from [2]. Definition. A Banach space E has the Gelfand-Phillips property if any bounded subset M of E such that

$$\lim_{n} \sup_{M} |x_{n}^{*}(x)| = 0 \quad \text{for each weak}^{*} \text{ null sequence} \quad (X_{n}^{*}) \subset E^{*}$$
(4)

is relatively compact. A set satisfying (4) is called 'limited'.

Theorem 3. Let X, Y be two Banach spaces satisfying the following assumptions: (ii) there exist a Banach space G with an unconditional basis (g_n) and a biorthogonal coefficients (g_n^*) and two operators $R : G \to Y, S : G^* \to Y^*$ mapping (g_n) and (g_n^*) into normalized basic sequences.

Then c_0 embeds in K(X,Y) (indeed in any subspace H of L(X,Y) containing $X^* \otimes_{\epsilon} Y$). If moreover X^* (or Y) has the Gelfand-Phillips property, then K(X,Y) contains a complemented copy of c_0 .

Proof. First note that $(S(g_n^*) \otimes_{\epsilon} R(g_n))$ is contained in $X^* \otimes_{\epsilon} Y$. As $(S(g_n^*))$ and $(R(g_n))$ are basic sequences, there is a constant C > 0 such that for any real numbers $a_1, a_2, ..., a_n$ we have

$$C \max_{1 \le i \le n} |a_i| \le \left\| \sum_{i=1}^n a_i \left[S(g_n^*) \otimes_{\epsilon} R(g_n) \right] \right\|_{\epsilon}$$

thanks to the definition of ϵ -tensor norm. On the other hand, S and R induce an operator $S \otimes_{\epsilon} R$ from $G^* \otimes_{\epsilon} G$ into $X^* \otimes_{\epsilon} Y$ (see [1], p. 229) mapping $(g_n^* \otimes_{\epsilon} g_n)$ to $(S(g_n^*) \otimes_{\epsilon} R(g_n))$. So we have, for $a_1, a_2, ..., a_n \in \mathbb{R}$

$$\left\|\sum_{i=1}^{n} a_i \left[S(g_i^*) \otimes_{\epsilon} R(g_i)\right]\right\|_{\epsilon} \le \|S \otimes_{\epsilon} R\| \left\|\sum_{i=1}^{n} a_i \left[g_i^* \otimes_{\epsilon} g_i\right]\right\|_{\epsilon} \le K \|S \otimes_{\epsilon} R\| \max_{1 \le i \le n} |a_i|,$$

where the last inequality is due to the unconditionality of (g_n) . Hence $(S(g_i^*) \otimes_{\epsilon} R(g_i))$ is a copy pf the unit vector basis of c_0 . Assume now that X^* has the Gelfand-Phillips property (we shall proceed similarly if Y has the Gelfand-Phillips property). Then $(S(g_n^*))$ cannot be a limited subset of X^* . Hence, by passing to a subsequence if necessary, we can find a weak^{*} null sequence $(x_n^{**}) \subset X^{**}$ such that $x_n^{**}(S(g_m^*)) = \delta_{nm}$ (see [11]). If (z_n^*) is a (bounded) sequence of biorthogonal coefficients for $(R(g_n))$, the sequence $(x_n^{**} \otimes_{\pi} z_n^*)$ belongs to $K(X, Y)^*$. Furthermore, if $T \in K(X, Y)$, we have

$$| < T, x_n^{**} \otimes_{\pi} z_n^* > | = |T^*(z_n^*)(x_n^{**}))| \to 0$$

because $(T^*(z_n^*))$ is a relatively compact sequence and (x_n^{**}) is weak^{*} null. Hence $(x_n^{**} \otimes_{\pi} z_n^*)$ is a weak^{*} null sequence in $(K(X,Y))^*$ and, by our choices above, one has $(x_n^{**} \otimes_{\pi} z_n^*)(S(g_m^*) \otimes_{\epsilon} R(g_m)) = \delta_{nm}$. It is now easy to see that the operator P from K(X,Y) to $\overline{span}(S(g_n^*) \otimes_{\epsilon} R(g_n))$ defined by $P(T) = \sum \langle T, x_n^{**} \otimes_{\pi} z_n^* \rangle (S(g_n^*) \otimes_{\epsilon} R(g_n))$ is a projection. This completes the proof.

Remark 2. Observe that the hypothesis that X^* has the Gelfand-Phillips property was used just to provide the sequence (x_n^{**}) used in the proof of Theorem 3. It could be replaced by the hypothesis that $(S(g_n^*))$ (resp. $(R(g_n))$) spans a complemented subspace of X^* (resp. Y) because even in this case $(S(g_n^*))$ cannot be limited: otherwise it would be limited in its closed linear span, a separable space, i.e. a space with the Gelfand-Phillips property. Hence $(S(g_n^*))$ would be relatively compact.

We note that if X is a Banach space containing ℓ^1 and Y a Banach space containing ℓ^p , for some $p \ge 2$, then c_0 embeds in K(X, Y) which cannot be complemented in L(X, Y). Indeed, by a famous result in [10], X^* must contain a copy of $(L^1$ and hence of) ℓ^2 . Furthermore, there is an operator as required in Theorem 3 from ℓ^2 into ℓ^p , since $p \ge 2$. Theorem 3 can be applied to this situation. This way we generalize the following result due to Feder ([6]): $K(C(S), L^1)$ is not complemented $L(C(S), L^1)$, when S is not dispersed (and other results from [6]), when answering a question put in [8].

As another consequence of Theorem 3 (second part) we note that the space $\ell^p \otimes_{\epsilon} \ell^q$ (a closed subspace of $K(\ell^{p'}, \ell^q)$, with 1/p + 1/p' = 1) contains a complemented copy of c_0 , provided that $1 < p' \leq q < \infty$; indeed, in this case there is an operator as required in Theorem 3 from $\ell^{q'}$, with 1/q + 1/q' = 1, into ℓ^p , mapping the unit vector basis of $\ell^{q'}$ onto the unit vector basis of ℓ^p . Hence the considered space is neither a Grothendieck space (i.e. a space such that any operator from it to c_0 is weakly compact) nor a dual space. We recall that in the remaining case, (i.e. when $1 < q < p' < \infty$), it is well known that $\ell^p \otimes \ell^q$ is reflexive (and so both Grothendieck and dual). Further, let us consider $\ell^{\infty} \otimes_{\pi} \ell^p$ where $1 . Its dual space is <math>L(\ell^{\infty}, \ell^{p'})$, where 1/p + 1/p' = 1, and this latter space contains a copy of c_0 as a consequence of Theorem 3. Therefore $\ell^{\infty} \otimes_{\pi} \ell^p$, where 1 , is not a Grothendieck space because its dual is not weakly sequentially complete. Finally, we present a result similar to Theorem 6 in [9], but for different classes of Banach spaces; it makes use of Theorem 2.

Theorem 4. Assume that X and Y satisfy one of the following two assumptions:

(i) X is an \mathcal{L}_{∞} -space and Y is a closed subspace of an \mathcal{L}_1 -space,or

(ii) X = C[0, 1] and Y is a space with cotype 2.

Then the following four assertions are equivalent:

- (1) $K(X,Y) \neq L(X,Y)$
- (2) c_0 embeds in K(X, Y)
- (3) ℓ^{∞} embeds in L(X, Y)
- (4) K(X,Y) is uncomplemented in L(X,Y)

Proof. We start by showing that (1) implies (2). We observe that any element in L(X,Y) factorizes through a suitable $\ell^2(\Gamma)$ space, as any 2-absolutely summing operator must do (see [3]). Hence, if $T \in L(X, Y) \setminus K(X, Y)$, there are two non-compact operators $R: X \to \ell^2(\Gamma)$ and $S: \ell^2(\Gamma) \to Y$ so that T = SR. If P_j is the projection from $\ell^2(\Gamma)$ onto the closed span generated by the element e_j (belonging to a basis $(e_i)_{i \in I}$), then $T_j =$ $SP_j R \in K(X, Y)$. Furthermore, for all $x \in X$, we have $T(x) = \sum_{j \in \Gamma} T_j(x)$ unconditionally. We choose a sequence $(x_n) \subset B_X$ such that $(T(x_n))$ is not relatively compact. Let $n \in N$; it is clear that the set $\Gamma_n = \{j : j \in \Gamma, T_j(x_n) \neq 0\}$ is at most countable and so the set $\Gamma_0 = \bigcup_n \Gamma_n$ is at most countable, too; we can order it as a sequence (j_k) and consider, for $x \in X$, the series $\sum T_{j_k}(x)$ that converges unconditionally to an element B(x) of Y. The mapping $x \to B(x)$ is clearly linear. It is quite easy to show that the same mapping is s-w sequentially continuous and so, by virtue of the Closed Graph Theorem, it is bounded, i.e. $B \in L(X,Y)$. Moreover, $B(x_n) = T(x_n)$ for all $n \in \mathbb{N}$, and so B is not compact. The proof of the main result in [4] now shows that (2) is true. Since the implication $(2) \Rightarrow (4)$ is just Theorem 2 and $(4) \Rightarrow (1)$ is obvious, we see that (1), (2) and (4) are equivalent. That (2) implies (3) is a general fact (see [5]); so we have to show that (3) gives (2). Under (3) we can have $K(X,Y) \neq L(X,Y)$; in this case the above proof works again to give (2). otherwise, K(X,Y) = L(X,Y) from which we get that ℓ^{∞} embeds into K(X,Y). This completes the proof of Theorem 4.

This work was performed under the auspices of G.N.A.F.A. of C.N.R. and partially supported by M.U.R.S.T. of Italy (40% 1988).

Note added in proof. The reformulation of Problem 2 above shows that it has a positive solution, because of the existence of a \mathcal{L}_{∞} -space X with Schur property (see [12]). Indeed, it is clear that $L(X, X) \neq K(X, X)$ and yet c_0 does not embed into K(X, X) which is weakly sequentially complete, because of the following facts: X and X^{*} are weakly sequentially complete and X has the Schur property, so that each weakly compact operator from X into Y is compact. Though the paper [12] appeared before Feder raised Problem 2, the condition in Problem 2 is hard to study. Our reformulation makes it easier to study and leads to the solution above.

REFERENCES

- J. Diestel and J. J. Uhl, jr. Vector Measures. Math. Surveys no. 15 (American Mathematical Society, 1977).
- J. Diestel and J. J. Uhl, jr. Progress in Vector Measures, 1977-83. Lecture Notes in Math. vol. 1033 (Springer-Verlag, 1983).
- J. Diestel. Sequences and series in Banach Spaces. Graduate Texts in Math. no. 92 (Springer-Verlag, 1984).
- G. Emmanuele. On the containment of c₀ by spaces of compact operators. Bull. Sci. Math. (2) 115 (1991), 177-184.
- M. Feder, On subspaces of spaces with an unconditional basis and spaces of operators. Illinois J. Math. 34 (1980), 196-205.
- M. Feder, On the nonexistence of a projection onto the space of compact operators. Canad. Math. Bull. 25, (1982), 78-81.
- J. R. Holub. Tensor product bases and tensor diagonals. Trans. Amer. Math. Soc. 151 (1970), 563-579.

- J. Johnson. Remarks on Banach spaces of compact operators. J. Funct. Anal. 32 (1979), 304-311.
- 9. N. J. Kalton. Spaces of compact operators. Math. Ann. 208 (1974), 267-278.
- 10. A. Pelczynski. On Banach spaces containing $L^{1}(\mu)$. Studia Math. 30 (1968), 231-246.
- T. Schlumprecht. Limited sets in Banach spaces. Doktorarbeit, Universität München (1987).
- 12. J. Bourgain and F. Delbaen. A class of special \mathcal{L}_{∞} -spaces. Acta Math. 145 (1980), 155-176..

Department of Mathematics, University of Catania, Viale A.Doria
 6,95125 Catania, Italy