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Abstract

We prove the following result: if a Banach space E does not contain `1 and F has the

(RDPP), then E⊗π F has the same property, provided that L(E,F ∗) = K(E, F ∗). Hence

we prove that if E⊗π F has the (RDPP) then at least one of the spaces E and F must not

contain `1. Some corollaries are then presented as well as results concerning the necessity

of the hypothesis L(E, F ∗) = K(E,F ∗).

In the famous paper [8] A. Grothendieck introduced the following isomorphic property

(that he called the reciprocal Dunford-Pettis property, in symbols (RDPP)): a Banach space

E has the (RDPP) if any Dunford-Pettis operator T:E → F where F is an arbitrary Banach

space, is weakly compact. It is known that a Banach space with the so-called property (V)

of Pelczynski [13] has the (RDPP) that is inherited even by quotients; the same happens if

a Banach space does not contain `1: it enjoys the (RDPP). In the case of a Banach lattice,

C. Niculescu proved in [12] that E has the (RDPP) if and only if it does not contain

complemented copies of `1. Furthermore, if K is a compact Hausdorff space and E is a

Banach space not containing `1, then C(K, E) has the (RDPP)(see [9]), whereas if K is

dispersed, then C(K,E) has the (RDPP) if and only if E has the same property (see [1]).

As far as we know, no other results about the (RDPP) are known but the following useful

characterization of the (RDPP) obtained in [10]:

Theorem 1.A Banach space E has the (RDPP ) if and only if each (bounded) subset

M of E∗ such that

lim
n

sup
M
|xn(x∗)| = 0 (1)



for each w-null sequence (xn) ⊂E is relatively weakly compact.

The purpose of this note is to present a result on the construction of new Banach

spaces with the (RDPP) from old ones, by taking (suitable) projective tensor products.

More precisely, we prove that if E does not contain `1, F has the (RDPP) and L(E,F ∗) =

K(E,F ∗), then E ⊗π F has the (RDPP). Here L(E,F∗) and K(E,F∗) denote the Banach

spaces of all operators and compact operators from E into F ∗, respectivley. Hence we

show that if E ⊗π F has the (RDPP), then necessarily at least one of the spaces E and F

must not contain `1. In order to prove our main theorem we need to use Theorem 1 and

the following characterization of Banach spaces not containing `1 proved in [3]:

Theorem 2.A Banach space E does not contain `1 if and only if each (bounded) subset

M of E∗ satisfying (1) is relatively compact.

At the end of the paper we present some results concerning the necessity of the as-

sumption L(E, F ∗) = K(E, F ∗) considered in the main result, showing that it is not

possible to dispense with it completely. We are now ready to prove our main result.

Theorem 3.Let E be a Banach space not containing `1 and F a Banach space with the

(RDPP). If L(E,F∗) = K(E,F∗), then E ⊗π F has the (RDPP).

Proof. Let M be a subset of (E ⊗π F )∗ = L(E,F ∗) = K(E, F ∗) satisfying (1) and

(hn) a sequence in M. Observe that the closed subspace

H = span{hn(x) : x ∈ E,n ∈ N}

of F ∗ is separable and that (hn) ⊂ K(E,H) ⊂ K(E,F ∗). Let Y be a countable w∗−dense

subset of H∗. If y ∈ Y, then the sequence (h∗n(y)) ⊂ E∗ is a subset satisfying (1). Indeed,

let (xn) ⊂ E be a w-null sequence. We consider, for n ∈ N,

|h∗n(y)(xn)| = |hn(xn)(y)| ≤ ‖y‖ ‖hn(xn)‖H = ‖y‖ ‖hn(xn)‖F∗

and we show that ‖hn(xn)‖F∗ → 0. If this were false, there would exist r > 0, (hk(n)), (xk(n))

and (zn) ⊂ BF such that

r < |hk(n)(xk(n))(zn)| for all n ∈ N



Observe that (xk(n) ⊗ zn) ⊂ E ⊗π F and that, for T ∈ (E ⊗π F )∗, one has

|T (xk(n) ⊗ zn)| = |T (xk(n))(zn)| ≤ ‖T (xk(n))‖ → 0

since T is compact and xk(n)
w−→ θ. Hence (xk(n)⊗zn) is w-null and so hk(n)(xk(n))(zn) → 0

a contradiction proving our claim. Hence (h∗n(y)) satisfies (1) and by virtue of Theorem

1 we can assume (and we do) that h∗n(y)) is a weak Cauchy sequence of E∗ (otherwise

we pass to a subsequence) for all y ∈ Y, because Y is countable. Now let x∗∗ ∈ E∗∗ and

consider (h∗∗n (x∗∗)) ⊂ F ∗. We claim that it satisfies (1). Let (zn) be a w-null sequence in

F and consider, for n ∈ N,

|h∗∗n (x∗∗)(zn)| = |h∗n(zn)(x∗∗)| ≤ ‖x∗∗‖ ‖h∗n(zn)‖E∗ .

As above we prove that ‖h∗n(zn)‖E∗ → 0. Thus for all x∗∗ in E∗∗, (h∗∗n (x∗∗)) is a relatively

weakly compact subset of F ∗ by virtue of Theorem 1. But hn : E → H and hn is compact,

for all n ∈ N; so (h∗∗n (x∗∗)) ⊂ H. Let z′, z′′ be two w-sequential cluster points of (h∗∗n (x∗∗n )).

If y ∈ Y we have

z′(y) = lim
n

h∗∗k(n)(x
∗∗)(y) = lim

n
x∗∗(h∗k(n)(y)) = lim

n
x∗∗(h∗n(y))

= lim
n

x∗∗(h∗p(n)(y)) = lim
n

h∗∗p(n)(x
∗∗)(y) = z′′(y) ,

if h∗∗k(n)(x
∗∗) w−→ z′ and h∗∗p(n)(x

∗∗) w−→ z′′. Hence z′(y) = z′′(y) for all y ∈ Y and so z′ = z′′

since Y is w∗−dense in H∗. This means that, for all x∗∗ ∈ E∗∗, there is h̃(x∗∗) ∈ H such

that

h̃(x∗∗) = w − limnh∗∗n (x∗∗).

Of course h̃ ∈ L(E∗∗,H) ⊂ L(E∗∗, F ∗). Now we show that h̃ is w∗−w∗ continuous from

E∗∗ into F ∗. Let (x∗∗α ) be a w∗-null net in E∗∗ and y ∈ F. As at the beginning, (h∗n(y))

satisfies (1). Now Theorem 2 comes into play: (h∗n(y)) is a relatively compact subset of

E∗. There exist x∗ ∈ E∗ and a subsequence (h∗k(n)(y)) converging to x∗. This gives that

lim
α

h̃(x∗∗α )(y) = lim
α

(lim
n

h∗∗k(n)(x
∗∗
α )(y)) = lim

α
(lim

n
x∗∗α (h∗k(n)(y)))

= lim
α

x∗∗α (x∗) = 0 .



Now, consider h ∈ L(E,F ∗) = K(E, F ∗) defined by h = h̃|E . We have h∗∗ = h̃. Indeed, if

x∗∗ ∈ E∗∗ there is a (bounded) net (xα) ⊂ E w∗−converging to x∗∗; so we obtain

h∗∗(x∗∗) = w∗ − lim
α

h∗∗(xα) = w∗ − lim
α

h(xα) = w∗ − lim
α

h̃(xα) = h̃(x∗∗) .

By the construction of h̃ we thus have

lim
n

h∗∗n (x∗∗)(y∗∗) = h∗∗(x∗∗)(y∗∗)

for all x∗∗ ∈ E∗∗ and y∗∗ ∈ F ∗∗, a fact implying that hn
w−→ h in K(E, F ∗) (see [15]).

Theorem 3 has the following interesting corollaries

Corollary 4.Assume E and F have the (RDPP) and E∗ and F∗ are weakly sequen-

tially complete. If L(E,F ∗) = K(E, F ∗), then E⊗πF has the (RDPP).

Proof. The proof of Theorem 3 (until the definition of h̃) shows that (hn) is a weak

Cauchy sequence (using a result in [11]). But K(E, F ∗) is weakly sequentially complete

(see [11]).

Corollary 5.Let E be a subspace of an order continuous Banach lattice. If E, F have

the (RDPP) and L(E,F∗) = K(E,f∗), then E⊗πF has the (RDPP).

Proof. If E has the (RDPP) then it cannot contain complemented copies of `1. hence

`1 cannot lie inside E (see [16]). Now Theorem 3 may be applied.

Corollary 6.Let E∗ not contain `1 and F have the (RDPP). If L(E∗,F∗) = K(E∗,F∗),

then the space N1(E,F) of all nuclear operators from E into F, has the (RDPP).

Proof. N1(E,F ) is a quotient of E∗ ⊗π F.

Corollary 7.Let E,F be two Banach spaces such that E∗∗ and F∗ have the (RDPP).

Let us assume that `1 does not embed in either E∗∗ or F∗ and that either E∗∗ or F∗ has the

Radon-Nikodym property. If L(E∗∗,F∗∗) = K(E∗∗,F∗∗), then (K(E, F ()∗ has the (RDPP).

Proof. (K(E, F ))∗ is a quotient of E∗∗ ⊗π F ∗ (see [7]).

One could also ask to what extent the assumption that E does not contain `1 is necessary

for the validity of Theorem 3. We have the following result



Theorem 8.Let E and F be two Banach spaces with L(E,F∗) = K(E,F∗). Then the

following facts are equivalent:

(j) E and F have the (RDPP) and `1 fails to embed in at least one of them;

(jj) E⊗πF has the (RDPP).

Proof. (j) ⇒ (jj). If E does not contain copies of `1, then Theorem 3 gives the

conclusion. Assume now that `1 cannot be embedded in F. Since E ⊗π F is isometrically

isomorphic with F ⊗π E it is enough to show that F ⊗π E has the (RDPP); this will be

done using Theorem 3 again. Hence, we have just to show that L(F,E∗) = K(F,E∗). Let

us consider

T : F → E∗ and T ∗ : E∗∗ → F ∗.

Define T̃ = T ∗|E and note that T̃ is compact, by our assumptions. Let x∗∗ ∈ BE∗∗ ; there

is a net (xα) ⊂ BE weak∗ converging to x∗∗. Then the net (T ∗(xα)) weak∗ converges to

T ∗(x∗∗). But (T ∗(xα)) is contained in T̃ (BE), a relatively compact set and so a suitable

subnet (T̃ (xαβ
)) must converge strongly; of course its limit is T ∗(x∗∗). This means that

T ∗(BE∗∗) ⊂ T̃ (Be),

i.e. T ∗ and so T is compact.

(jj) ⇒ (j). That E and F have the (RDPP) is clear. Assume, now, that `1 can be

embedded in E and F . Hence (L1 and so) `2 can be embedded in E∗ and F ∗. From this

we have that `2⊗ε `2 is isomorphic to a subspace of L(E,F ∗): but c0 embeds into `2⊗ε `2.

This is a contradiction.

From Corollary 4 and Theorem 8 it follows that if E and F are two banach spaces with the

(RDPP), with weakly sequentially complete duals and L(E,F ∗) = K(E,F ∗), then one of

them fails to contain `1. We note that if a Banach space with local unconditional structure

(see [2]) has the (RDPP), then its dual space is weakly sequentially complete, as pointed

out in the paper [4].

We conclude the paper with a few remarks on the assumption L(E, F ∗) = K(E, F ∗)

used in Theorem 3. If E∗ has the Schur property and F the (RDPP), then it always

holds true. Indeed, the unit ball BE of E is a Dunford-Pettis set (i.e. a set such that

limn supBE
|x∗n(x)| = 0 for each w-null sequence (x∗n) ⊂ E∗). Hence, T (BE) satisfies (1) in



F ∗, for any T ∈ L(E, F ∗). Such a T must be weakly compact and hence compact, thanks

to our assumption on E∗. We remark that if E∗ merely has the Schur property, then E

cannot contain `1. Hence we have

Corollary 9.Let E∗ have the Schur property and F the (RDPP). Then E⊗πF has

the (RDPP).

Corollary 10.Let E = `p, where 1 < p ≤ ∞, and F = c0. Then E⊗πF has the

(RDPP).

Observe, now, that if E is an L∞-space and F ∗ a subspace of an L1-space, then any

T ∈ L(E, F ∗) is (2-absolutely summing and hence) Dunford-Pettis. So we obtain

Corollary 11.Let E be an L∞-space not containing `1 and F have the (RDPP). If

F ∗ is a subspace of an L1-space, then E⊗πF has the (RDPP).

The last results show that the assumption L(E, F ∗) = K(E,F ∗) is even necessary, in

special cases, for the validity of Theorem 3 and Theorem 8.

Corollary 12.Let E not contain `1 and F have the (RDPP). If F∗ is complemented in

a Banach space Z with an unconditional Schauder decomposition (Zn), with Zn satisfying

the Schur property for all n ∈ N, then the following facts are equivalent:

(h) E⊗πF has the (RDPP);

(hh) L(E,F∗) = K(E,F∗).

Proof. (h) ⇒ (hh). If (hh) were false, a result in [5] would give the existence of a copy

of c0 into K(E, F ∗), a contradiction. The implication (hh) ⇒ (h) follows from Theorem

3.

Corollary 12 even proves that the hypotheses that E does not contain `1 and F has the

(RDPP) alone are not strong enough to guarentee that E⊗π F has the (RDPP): `p⊗π `q,

where 1 < p < q′ < ∞ and q, q′ are dual numbers, does not have the (RDPP) since

L(E, F ∗) 6= K(E, F ∗) in this setting. We conclude with the following

Theorem 13.Assume one of the following hypotheses holds:

(k) E is an L∞-space and F∗ a subspace of an L1-space;

(kk) E = C(K), K Hausdorff compact space, F∗ is a space with co-type 2;

(kkk) E has the Dunford-Pettis property and F contains a copy of `1.



If E⊗πF has the (RDPP), then L(E,F∗) = K(E,F∗).

Proof. Assume that E ⊗π F has the (RDPP) and (k) or (kk) holds. It is known

that any operator from E into F ∗ is 2-absolutely summing, from [14], and so it factorizes

through a Hilbert space; in [6] we remarked that this fact implies that L(E,F ∗) contains

a copy of c0, if L(E, F ∗) 6= K(E, F ∗). This is a contradiction. If (kkk) is true, we can

proceed as follows. Assume E⊗π F has the (RDPP); from Theorem 8, E is not allowed to

contain copies of `1. Hence the unit ball of E is a Dunford-Pettis set as well as T (BE) for

each T in L(E, F ∗). Since F has the (RDPP) and a Dunford-Pettis set in F ∗ satisfies (1),

T (BE) is weakly compact. Since E has the Dunford-Pettis property, T is a Dunford-Pettis

operator and hence a compact operator, because `1 does not embed in E, as stated at the

beginning. Since T is arbitrary, the proof is complete.

This work was done under the auspices of GNAFA of CNR and partially supported

by MURST of Italy (40%).
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