On the reciprocal Dunford-Pettis property in projective tensor products

Mathematical Proceedings of the Cambridge Philosophical Society Volume 109, (1991), 161-166

Posted here with the kind permission from the Editor

On the reciprocal Dunford-Pettis property in projective tensor products

By G. EMMANUELE

Department of Mathematics, University of Catania, Italy (*Received 19 December 1989; revised 5 July 1990*)

Abstract

We prove the following result: if a Banach space E does not contain ℓ^1 and F has the (RDPP), then $E \otimes_{\pi} F$ has the same property, provided that $L(E, F^*) = K(E, F^*)$. Hence we prove that if $E \otimes_{\pi} F$ has the (RDPP) then at least one of the spaces E and F must not contain ℓ^1 . Some corollaries are then presented as well as results concerning the necessity of the hypothesis $L(E, F^*) = K(E, F^*)$.

In the famous paper [8] A. Grothendieck introduced the following isomorphic property (that he called the reciprocal Dunford-Pettis property, in symbols (RDPP)): a Banach space E has the (RDPP) if any Dunford-Pettis operator $T:E \to F$ where F is an arbitrary Banach space, is weakly compact. It is known that a Banach space with the so-called property (V) of Pelczynski [13] has the (RDPP) that is inherited even by quotients; the same happens if a Banach space does not contain ℓ^1 : it enjoys the (RDPP). In the case of a Banach lattice, C. Niculescu proved in [12] that E has the (RDPP) if and only if it does not contain complemented copies of ℓ^1 . Furthermore, if K is a compact Hausdorff space and E is a Banach space not containing ℓ^1 , then C(K, E) has the (RDPP)(see [9]), whereas if K is dispersed, then C(K, E) has the (RDPP) if and only if E has the same property (see [1]). As far as we know, no other results about the (RDPP) are known but the following useful characterization of the (RDPP) obtained in [10]:

Theorem 1.A Banach space E has the (RDPP) if and only if each (bounded) subset M of E^* such that

$$\lim_{n} \sup_{M} |x_n(x^*)| = 0 \tag{1}$$

for each w-null sequence $(x_n) \subset E$ is relatively weakly compact.

The purpose of this note is to present a result on the construction of new Banach spaces with the (RDPP) from old ones, by taking (suitable) projective tensor products. More precisely, we prove that if E does not contain ℓ^1 , F has the (RDPP) and $L(E, F^*) = K(E, F^*)$, then $E \otimes_{\pi} F$ has the (RDPP). Here $L(E,F^*)$ and $K(E,F^*)$ denote the Banach spaces of all operators and compact operators from E into F^* , respectively. Hence we show that if $E \otimes_{\pi} F$ has the (RDPP), then necessarily at least one of the spaces E and Fmust not contain ℓ^1 . In order to prove our main theorem we need to use Theorem 1 and the following characterization of Banach spaces not containing ℓ^1 proved in [3]:

Theorem 2.A Banach space E does not contain ℓ^1 if and only if each (bounded) subset M of E^* satisfying (1) is relatively compact.

At the end of the paper we present some results concerning the necessity of the assumption $L(E, F^*) = K(E, F^*)$ considered in the main result, showing that it is not possible to dispense with it completely. We are now ready to prove our main result.

Theorem 3. Let E be a Banach space not containing ℓ^1 and F a Banach space with the (RDPP). If $L(E,F^*) = K(E,F^*)$, then $E \otimes_{\pi} F$ has the (RDPP).

Proof. Let M be a subset of $(E \otimes_{\pi} F)^* = L(E, F^*) = K(E, F^*)$ satisfying (1) and (h_n) a sequence in M. Observe that the closed subspace

$$H = \overline{span}\{h_n(x) : x \in E, n \in \mathbb{N}\}\$$

of F^* is separable and that $(h_n) \subset K(E, H) \subset K(E, F^*)$. Let Y be a countable w^{*}-dense subset of H^* . If $y \in Y$, then the sequence $(h_n^*(y)) \subset E^*$ is a subset satisfying (1). Indeed, let $(x_n) \subset E$ be a w-null sequence. We consider, for $n \in \mathbb{N}$,

$$|h_n^*(y)(x_n)| = |h_n(x_n)(y)| \le ||y|| \, ||h_n(x_n)||_H = ||y|| \, ||h_n(x_n)||_{F^*}$$

and we show that $||h_n(x_n)||_{F^*} \to 0$. If this were false, there would exist r > 0, $(h_{k(n)})$, $(x_{k(n)})$ and $(z_n) \subset B_F$ such that

$$r < |h_{k(n)}(x_{k(n)})(z_n)|$$
 for all $n \in \mathbb{N}$

Observe that $(x_{k(n)} \otimes z_n) \subset E \otimes_{\pi} F$ and that, for $T \in (E \otimes_{\pi} F)^*$, one has

$$|T(x_{k(n)} \otimes z_n)| = |T(x_{k(n)})(z_n)| \le ||T(x_{k(n)})|| \to 0$$

since T is compact and $x_{k(n)} \xrightarrow{w} \theta$. Hence $(x_{k(n)} \otimes z_n)$ is w-null and so $h_{k(n)}(x_{k(n)})(z_n) \to 0$ a contradiction proving our claim. Hence $(h_n^*(y))$ satisfies (1) and by virtue of Theorem 1 we can assume (and we do) that $h_n^*(y)$) is a weak Cauchy sequence of E^* (otherwise we pass to a subsequence) for all $y \in Y$, because Y is countable. Now let $x^{**} \in E^{**}$ and consider $(h_n^{**}(x^{**})) \subset F^*$. We claim that it satisfies (1). Let (z_n) be a w-null sequence in F and consider, for $n \in \mathbb{N}$,

$$|h_n^{**}(x^{**})(z_n)| = |h_n^{*}(z_n)(x^{**})| \le ||x^{**}|| \, ||h_n^{*}(z_n)||_{E^*}.$$

As above we prove that $||h_n^*(z_n)||_{E^*} \to 0$. Thus for all x^{**} in E^{**} , $(h_n^{**}(x^{**}))$ is a relatively weakly compact subset of F^* by virtue of Theorem 1. But $h_n : E \to H$ and h_n is compact, for all $n \in \mathbb{N}$; so $(h_n^{**}(x^{**})) \subset H$. Let z', z'' be two w-sequential cluster points of $(h_n^{**}(x_n^{**}))$. If $y \in Y$ we have

$$z'(y) = \lim_{n} h_{k(n)}^{**}(x^{**})(y) = \lim_{n} x^{**}(h_{k(n)}^{*}(y)) = \lim_{n} x^{**}(h_{n}^{*}(y))$$
$$= \lim_{n} x^{**}(h_{p(n)}^{*}(y)) = \lim_{n} h_{p(n)}^{**}(x^{**})(y) = z''(y),$$

if $h_{k(n)}^{**}(x^{**}) \xrightarrow{w} z'$ and $h_{p(n)}^{**}(x^{**}) \xrightarrow{w} z''$. Hence z'(y) = z''(y) for all $y \in Y$ and so z' = z''since Y is w^{*}-dense in H^* . This means that, for all $x^{**} \in E^{**}$, there is $\tilde{h}(x^{**}) \in H$ such that

$$\tilde{h}(x^{**}) = w - lim_n h_n^{**}(x^{**}).$$

Of course $\tilde{h} \in L(E^{**}, H) \subset L(E^{**}, F^*)$. Now we show that \tilde{h} is w^{*}-w^{*} continuous from E^{**} into F^* . Let (x_{α}^{**}) be a w^{*}-null net in E^{**} and $y \in F$. As at the beginning, $(h_n^*(y))$ satisfies (1). Now Theorem 2 comes into play: $(h_n^*(y))$ is a relatively compact subset of E^* . There exist $x^* \in E^*$ and a subsequence $(h_{k(n)}^*(y))$ converging to x^* . This gives that

$$\lim_{\alpha} \tilde{h}(x_{\alpha}^{**})(y) = \lim_{\alpha} (\lim_{n} h_{k(n)}^{**}(x_{\alpha}^{**})(y)) = \lim_{\alpha} (\lim_{n} x_{\alpha}^{**}(h_{k(n)}^{*}(y)))$$
$$= \lim_{\alpha} x_{\alpha}^{**}(x^{*}) = 0.$$

Now, consider $h \in L(E, F^*) = K(E, F^*)$ defined by $h = \tilde{h}_{|E}$. We have $h^{**} = \tilde{h}$. Indeed, if $x^{**} \in E^{**}$ there is a (bounded) net $(x_{\alpha}) \subset E$ w^{*}-converging to x^{**} ; so we obtain

$$h^{**}(x^{**}) = w^* - \lim_{\alpha} h^{**}(x_{\alpha}) = w^* - \lim_{\alpha} h(x_{\alpha}) = w^* - \lim_{\alpha} \tilde{h}(x_{\alpha}) = \tilde{h}(x^{**})$$

By the construction of \tilde{h} we thus have

$$\lim_{n} h_n^{**}(x^{**})(y^{**}) = h^{**}(x^{**})(y^{**})$$

for all $x^{**} \in E^{**}$ and $y^{**} \in F^{**}$, a fact implying that $h_n \xrightarrow{w} h$ in $K(E, F^*)$ (see [15]). Theorem 3 has the following interesting corollaries

Corollary 4. Assume E and F have the (RDPP) and E^* and F^* are weakly sequentially complete. If $L(E, F^*) = K(E, F^*)$, then $E \otimes_{\pi} F$ has the (RDPP).

Proof. The proof of Theorem 3 (until the definition of \tilde{h}) shows that (h_n) is a weak Cauchy sequence (using a result in [11]). But $K(E, F^*)$ is weakly sequentially complete (see [11]).

Corollary 5. Let E be a subspace of an order continuous Banach lattice. If E, F have the (RDPP) and $L(E,F^*) = K(E,f^*)$, then $E \otimes_{\pi} F$ has the (RDPP).

Proof. If E has the (RDPP) then it cannot contain complemented copies of ℓ^1 . hence ℓ^1 cannot lie inside E (see [16]). Now Theorem 3 may be applied.

Corollary 6. Let E^* not contain ℓ^1 and F have the (RDPP). If $L(E^*, F^*) = K(E^*, F^*)$, then the space $N_1(E,F)$ of all nuclear operators from E into F, has the (RDPP).

Proof. $N_1(E, F)$ is a quotient of $E^* \otimes_{\pi} F$.

Corollary 7. Let E, F be two Banach spaces such that E^{**} and F^* have the (RDPP). Let us assume that ℓ^1 does not embed in either E^{**} or F^* and that either E^{**} or F^* has the Radon-Nikodym property. If $L(E^{**}, F^{**}) = K(E^{**}, F^{**})$, then $(K(E, F()^*$ has the (RDPP). Proof. $(K(E, F))^*$ is a quotient of $E^{**} \otimes_{\pi} F^*$ (see [7]).

One could also ask to what extent the assumption that E does not contain ℓ^1 is necessary for the validity of Theorem 3. We have the following result **Theorem 8.** Let E and F be two Banach spaces with $L(E,F^*) = K(E,F^*)$. Then the following facts are equivalent:

- (j) E and F have the (RDPP) and ℓ^1 fails to embed in at least one of them;
- (jj) $E \otimes_{\pi} F$ has the (RDPP).

Proof. (j) \Rightarrow (jj). If E does not contain copies of ℓ^1 , then Theorem 3 gives the conclusion. Assume now that ℓ^1 cannot be embedded in F. Since $E \otimes_{\pi} F$ is isometrically isomorphic with $F \otimes_{\pi} E$ it is enough to show that $F \otimes_{\pi} E$ has the (RDPP); this will be done using Theorem 3 again. Hence, we have just to show that $L(F, E^*) = K(F, E^*)$. Let us consider

$$T: F \to E^*$$
 and $T^*: E^{**} \to F^*$

Define $\tilde{T} = T^*_{|E}$ and note that \tilde{T} is compact, by our assumptions. Let $x^{**} \in B_{E^{**}}$; there is a net $(x_{\alpha}) \subset B_E$ weak^{*} converging to x^{**} . Then the net $(T^*(x_{\alpha}))$ weak^{*} converges to $T^*(x^{**})$. But $(T^*(x_{\alpha}))$ is contained in $\tilde{T}(B_E)$, a relatively compact set and so a suitable subnet $(\tilde{T}(x_{\alpha\beta}))$ must converge strongly; of course its limit is $T^*(x^{**})$. This means that

$$T^*(B_{E^{**}}) \subset \overline{\tilde{T}(B_e)},$$

i.e. T^* and so T is compact.

 $(jj) \Rightarrow (j)$. That E and F have the (RDPP) is clear. Assume, now, that ℓ^1 can be embedded in E and F. Hence $(L^1 \text{ and so}) \ell^2$ can be embedded in E^* and F^* . From this we have that $\ell^2 \otimes_{\epsilon} \ell^2$ is isomorphic to a subspace of $L(E, F^*)$: but c_0 embeds into $\ell^2 \otimes_{\epsilon} \ell^2$. This is a contradiction.

From Corollary 4 and Theorem 8 it follows that if E and F are two banach spaces with the (RDPP), with weakly sequentially complete duals and $L(E, F^*) = K(E, F^*)$, then one of them fails to contain ℓ^1 . We note that if a Banach space with local unconditional structure (see [2]) has the (RDPP), then its dual space is weakly sequentially complete, as pointed out in the paper [4].

We conclude the paper with a few remarks on the assumption $L(E, F^*) = K(E, F^*)$ used in Theorem 3. If E^* has the Schur property and F the (RDPP), then it always holds true. Indeed, the unit ball B_E of E is a Dunford-Pettis set (i.e. a set such that $\lim_n \sup_{B_E} |x_n^*(x)| = 0$ for each w-null sequence $(x_n^*) \subset E^*$). Hence, $T(B_E)$ satisfies (1) in F^* , for any $T \in L(E, F^*)$. Such a T must be weakly compact and hence compact, thanks to our assumption on E^* . We remark that if E^* merely has the Schur property, then E cannot contain ℓ^1 . Hence we have

Corollary 9.Let E^* have the Schur property and F the (RDPP). Then $E \otimes_{\pi} F$ has the (RDPP).

Corollary 10.Let $E = \ell^p$, where $1 , and <math>F = c_0$. Then $E \otimes_{\pi} F$ has the (RDPP).

Observe, now, that if E is an \mathcal{L}_{∞} -space and F^* a subspace of an \mathcal{L}_1 -space, then any $T \in L(E, F^*)$ is (2-absolutely summing and hence) Dunford-Pettis. So we obtain

Corollary 11. Let E be an \mathcal{L}_{∞} -space not containing ℓ^1 and F have the (RDPP). If F^* is a subspace of an \mathcal{L}_1 -space, then $E \otimes_{\pi} F$ has the (RDPP).

The last results show that the assumption $L(E, F^*) = K(E, F^*)$ is even necessary, in special cases, for the validity of Theorem 3 and Theorem 8.

Corollary 12. Let E not contain ℓ^1 and F have the (RDPP). If F^* is complemented in a Banach space Z with an unconditional Schauder decomposition (Z_n) , with Z_n satisfying the Schur property for all $n \in \mathbb{N}$, then the following facts are equivalent:

(h) $E \otimes_{\pi} F$ has the (RDPP);

(hh) $L(E,F^*) = K(E,F^*).$

Proof. (h) \Rightarrow (hh). If (hh) were false, a result in [5] would give the existence of a copy of c_0 into $K(E, F^*)$, a contradiction. The implication (hh) \Rightarrow (h) follows from Theorem 3.

Corollary 12 even proves that the hypotheses that E does not contain ℓ^1 and F has the (RDPP) alone are not strong enough to guarentee that $E \otimes_{\pi} F$ has the (RDPP): $\ell^p \otimes_{\pi} \ell^q$, where 1 and <math>q, q' are dual numbers, does not have the (RDPP) since $L(E, F^*) \neq K(E, F^*)$ in this setting. We conclude with the following

Theorem 13. Assume one of the following hypotheses holds:

(k) E is an \mathcal{L}_{∞} -space and F^* a subspace of an \mathcal{L}_1 -space;

(kk) E = C(K), K Hausdorff compact space, F^* is a space with co-type 2;

(kkk) E has the Dunford-Pettis property and F contains a copy of ℓ^1 .

If $E \otimes_{\pi} F$ has the (RDPP), then $L(E,F^*) = K(E,F^*)$.

Proof. Assume that $E \otimes_{\pi} F$ has the (RDPP) and (k) or (kk) holds. It is known that any operator from E into F^* is 2-absolutely summing, from [14], and so it factorizes through a Hilbert space; in [6] we remarked that this fact implies that $L(E, F^*)$ contains a copy of c_0 , if $L(E, F^*) \neq K(E, F^*)$. This is a contradiction. If (kkk) is true, we can proceed as follows. Assume $E \otimes_{\pi} F$ has the (RDPP); from Theorem 8, E is not allowed to contain copies of ℓ^1 . Hence the unit ball of E is a Dunford-Pettis set as well as $T(B_E)$ for each T in $L(E, F^*)$. Since F has the (RDPP) and a Dunford-Pettis set in F^* satisfies (1), $T(B_E)$ is weakly compact. Since E has the Dunford-Pettis property, T is a Dunford-Pettis operator and hence a compact operator, because ℓ^1 does not embed in E, as stated at the beginning. Since T is arbitrary, the proof is complete.

This work was done under the auspices of GNAFA of CNR and partially supported by MURST of Italy (40%).

REFERENCES

- P. Cembranos. On Banach spaces of vector valued continuous functions. Bull. Austr. Math. Soc. 28 (1983), 175-186.
- 2. E. Dubinski, A. Pelczynski and H. P. Rosenthal. On Banach spaces X for which $\Pi_2(\mathcal{L}_{\infty}, X) = B(\mathcal{L}_{\infty}, X)$. Studia Math. 44 (1972), 617-648.
- G. Emmanuele. A dual characterization of Banach spaces not containing ℓ¹. Bull. Polish Acad. Sci. Math. 34 (1986), 155-160.
- G. Emmanuele. On Banach spaces with the property (V^{*}) of Pelczynski. II. Ann. Mat. Pura Appl. (To appear).
- G. Emmanuele. On the containment of c₀ by spaces of compact operators. Bull. Sci. Math. (To appear).

- 6. G. Emmanuele. *Dominated operators on C*[0,1] *and the (CRP)*. Collect. Math. (To appear).
- G. Godefroy and P. Saphar. Duality in spaces of operators and smooth norms on Banach spaces. Illinois J. Math. 32 (1988), 672-695.
- A. Grothendieck. Sur les applicationes lineaires faiblement compactes d'éspace du type C(K). Canad. J. Math. 5 (1953), 129-173.
- 9. N. J. Kalton, E. Saab and P. Saab. On the Dieudonné property for $C(\Omega, E)$. Proc. Amer. Math. Soc. 96 (1986), 50-52.
- 10. T. Leavelle. The Reciprocal Dunford-Pettis Property. To appear.
- D. R. Lewis. Conditional weak compactness in certain inductive tensor products. Math. Ann. 201 (1973), 201-209.
- C. Niculescu. Weak compactness in Banach lattices. J. Operator Theory 9 (1981), 217-231.
- A. Pelczynski. Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Polish Acad. Sci. Math. 10 (1962), 641-648.
- G. Pisier. Factorization of Linera Operators and Geometry of Banach Spaces. CBMS Regional Conf. Series in Math. no. 60 (American Mathematical Society, 1986).
- W. Ruess. Duality and geometry of spaces of compact operators. In Functional Analysis: Surveys and Recent Results 3, Studies in Math. and its Applications no.90 (north Holland, 1984).
- L. Tzafriri. Reflexivity in Banach lattices and their subspaces. J. Funct. Anal. 10 (1972), 1-18.