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ON BANACH SPACES 
WITH THE GELFAND-PHILLIPS PROPERTY. II (*) 

L. DREWNOWSKI - G. EMMANUELE 

We present some result of lifting of the Gelfand Phillips property from 
Banach spaces E and F to Banach spaces of compact operators and of 
Bochner integrable functions. Moreover we study C ( K )  spaces possessing the 
same property. In the last section we prove some result concerning the so 
called three space problem for the Gelfand Phillips property too. 

1. Introduction. 

Let E be a Banach space. A (bounded) subset A of  E is called 

limited (in E) [2] if, for  every  weak* null sequence (z*)  in the dual  

space E*,  we have z * ( z ) ~  0 uniformly  for z in A. I f  all l imited 

subsets of  E are relatively (norm) compact ,  then E is said to have 

the Gelfand-Phillips property [4] or to be a Gelfand-Phillips space; in 
this case we will often write E C (GP) for  short. This  property was 

first considered by Gelfand [13] who ((proved>> that it is shared by 

all Banach  spaces. That  it is not so was very soon discovered by 

Phillips [16] who  observed that Gelfand 's  proof  is correct  only for  

separable Banach  spaces, and showed that the space l~o does not have 

(*) Work performed under the auspices of G.N.A.EA. of C.N.R. and partially supported 
by M.P.I. of Italy (40%). 
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the property in question (inventing his now classic ~@hillips' Lemma~ 
for this purpose). 

The class of Gelfand-Phillips spaces extends far beyond that 

of separable spaces, and it has quite good permanence properties 

(unfortunately, it is not closed with respect to quotients), but some 
important questions in this area are still open. For instance, no 

dual characterization of the Gelfand-Phillips property has been found 
so far, nor do we know for which precisely compact spaces K 

is C(K) a Gelfand-Phillips space. On the other hand, it would be 
desirable to know more about those Banach spaces which do not have 

the Gelfand-Phillips property: There exist C(K) spaces that lack this 
property and contain no copy of l~; however, it seems to be unknown 

whether or not a Banach space without the Gelfand-Phillips property 

must have a subspace isomorphic to co. The reader is referred to [6], 
[9] [11] and [18] for more information; some of the above statements 
will also be clarified below. 

In this paper, which we consider to be a continuation of [6], 
we first prove that if E and F are Gelfand-Phillips spaces, then so 

is K~o,(E*,F). Here K~o.(E*,F) denotes the Banach space of compact 
and weak*-to-weak continuous linear operators from E* to F ,  equipped 
with the usual operator norm; cf. [17] for more details and references. 
This enables us to give a unified treatment for the results in [6] 

concerning the Gelfand-Phillips property of injective tensor products 
and spaces of compact operators. Next, in Section 3, we show that 
if E is a Gelfand-Phillips space, so are the Lebesgue-Bochner spaces 
Lp(l~, E), for every positive measure /~ and 1 < p < cxz. In fact, we 

also extend this .result to a much broader class of Banach spaces of 
E-valued measurable functions. In Section 4, we consider the class 

of all compact spaces K such that C(K)E (GP), and prove that it 

is closed with respect to arbitrary products. Finally, in Section 5, we 
seek conditions on a closed subspace X C E and/or the quotient space 

E/X assuring that E is a Gelfand-Phillips space. In general, as shown 
in a recent work of Schlumprecht [18], the assumption that both X and 

E/X are Gelfand-Phillips is not enough for E to be Gelfand-PhiUips, 
so at least one of the spaces X and E/X must be required to 
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have a stronger property. Section 5 concludes with some comments  on 

non-Gelfand-Phillips spaces having no subspace isomoprhic to loo. 

The following facts will be used below, often without explicit 
reference. Their verification is straightforward except for the ,<if>> part 

of (B), which is a consequence of  a result in [1]. 

(A) A sequence (x,~) in E is limited (i.e., the set of its terms is 

limited) iff x , ( x ,~ )~  0 for every weak* null sequence (x~) in E*. 

(B) E E (GP) iff every limited weakly null sequence in E is norm 
null. 

(C) If for every separable subspace L of E there exists a complemented 

subspace M in E such that L C M and M E (GP), then, 

E E (GP). 

(D) If A is a limited subset of E,  then 

lim sup II k( )ll = 0 
k~oo zEA 

for every sequence (uk) of continuous linear operator from E into 

another Banach space F such that limk II k(z)ll = 0 for all x in E. 

(E) Continuous linear images of limited sets or sequences are limited. 

(F) Any Banach space isomorphic to a subspace of a Gelfand-Phillips 
space is Gelfand-Phillips itself. 

2. The Gelfand-Phi l l ips  p rope r ty  for K~,(E*,F).  

THEOREM 2.1. I f  E and F are Gelfand-Phillips spaces, then so is 

K,~. (E*, F). 

Proof. According to (B), we have to prove that if (hn) is a 

limited and weakly null sequence in K = Kw.(E*,F), then [Ihn]l ~ 0. 

For each n choose x,~ in E* with [Ix*I] = 1 so that Ilh,~[[ = [[Yn[[, 
where y,, = h,,(z*); this is possible because h.(BE.) is a compact  subset 

" 1  

of F (but the choice for which I[Y,~]]-> ~[]h,~l[ would work a s  w e l l ) .  
2 
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Claim 1. (y,,) is weakly null. 

Fix any y* in F*. Then, for each h in K,  h*(y*)= y*o h is a 

weak* continuous linear functional on E* so that h*(y*)E E C E**. 
We may therefore consider the operator h ~ h*(y*) from K into E,  

and conclude that the sequence (h*(y*)) is limited and weakly null 

in E.  But E E (GP), so I[h*(y*)[[ ~ 0. Now, for each y* in F*, 

y*(yn) = (hn(y ), xn) --~ O, which proves Claim 1. 

Claim 2. (y,,) is limited in F .  

Let (y*) be a weak* null sequence in F*. For each n define 

a,~ E K* by 

o~,(h) * * * * * = yn(h(zn)) = (h (Yn), xn). 

ff  h E K, then h is compact; hence h* is sequentially 

weak*-to-norm continuous, so Ilh*(y*)[I ~ 0. It follows that (a,~) is a 

weak* null sequence in K*. Now, y*(y,,)= a , (h ,~ )~  O, because (h,,) 

is limited in K,  which proves Claim 2. 

Having verified Claims 1 and 2, we may now apply (B) and 

the assumption that F E (GP), to conclude that [Ih,~I] = IlY,,[I ~ O. 

Therefore, by (B), K is a Gelfand-Phillips space. 

COROLLARY 2.2. ([6, Th. 3.1]). I f  both E and F are Gelfand- 
Phillips spaces, so is their injective tensor product E ~ F  = E ~ e F .  

Proof. E ~ F  may be identified with a closed subspace of 

K~,,(E*,F) via an isometrical isomorphism that sends x | y to the 

one-dimensional operator x* ~ z*(z)y. 

COROLLARY 2.3. ([6, Th. 4.2]). I f  the Banach spaces E, F are  

such that both E* and F are Gelfand-Phillips spaces, then also 

K ( E , F ) ,  the space of compact operators from E to F,  is a 

Gelfand-Phillips space. 

Proof The map h ~ h** is an isometric isomorphism of K(E,  F) 

onto K~,(E**,F). 

COROLLARY 2.4. If  E is a Gelfand-Phillips space, so is II(E), the 
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space of all unconditionally convergent series ~ x,~ in E equipped 
with the norm I I (x . ) l l  = s u p { ~  : 

Proof It is easily seen that ll(E) is isometrically isomorphic to 
K(c0, E), and so Corollary 2.3 applies. (Alternatively, the result also 
follows from [6, Th. 5.1].) 

Remark 1) Evidently, the converse to each of the above results is 

also valid. 

2) Theorem 2.1 has been recently obtained also by D. Werner 
[20] (by a slightly different proof). 

3. The Gelfand-Phillips property for Banach spaces of measurable 
vector-valued functions. 

Below, ( S , ~ , / I )  is an arbitrary positive measure space. For 
1 < p <_ c>o, Lp(#, E) = Lp(S, ~ ,  #; E) are the usual Lebesgue-Bochner 

spaces of (strongly) measurable functions from S to the Banach space 

E; see [3], [8]. 

THEOREM 3.1. If E is a Gelfand-Phillips space, so is Lp(#, E) for  
l _ < p < o o .  

Proof If f is in Lv(#,E), then the support of f is of 
g-finite measure. Hence, if L is a separable subspace of Lv(#,E), 
then there exists a set A in ~ of or-finite measure such that 

L C Lv(A,#,E) = ( f  E Lp(S,I~,E) : fxs-a = 0 a.e.), and Lp(A, Iz ,E ) is 
a complemented subspace of Lp(#, E). On the other hand, since A has 

(z-finite measure, Lp(A,#,E) is isometrically isomorphic to Lp(u,E) 
for some finite measure u. This combined with (C) implies that we 
may assume # ( S ) <  c<) in what follows. 

Thus, let # ( S ) <  00, and let ( f , )  be a limited weakly null 
sequence in Lp(#, E). If A E ~ ,  then applying the integration operator 

fA.d#.Lv(iz ,  E ) - ~ E w e  seethat ( f A f ,  d # ) i s  a l i m i t e d w e a k l y  null 
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sequence in E. Since E E (GP), we have 

(,) lirn[ff.du =0 f o r a l l A i n ~ .  
IJA 

Choose an increasing (with respect to refinement) sequence (Trk) of 

finite measurable partitions of S into disjoint sets of positive measure 

such that 

E,~oo(f,~)=f,~ for all n, 

where E,~oo denotes the conditional expectation operator with respect to 

the sub-(r-algebra generated by (Trk). Then, if 

E,~k(f)= ~_, ~A) fAfdl~ 'XA for f in LI(Iz,E), 
AE~rk 

we have 

lim IlE,~k(f) - E,~oo(f)llp = 0 for all f in Lp(#, E), 
k---~oo 

see [3,Chap. V.2]. 

Since the sequence (f,,) is limited in Lv(#, E), we have 

lim sup[[E,u(f,,) - f,,[[v = 0, 
k --'~OO n 

by (D). From (*) it follows that 

l i m  p = o for all k, 
n---*O0 

and taking the preceding relation into account, we arrive at the desired 

equality 

lira I IAIIp --- o.  
ll'--~OO 

above theorem in the proof of a much more 

THEOREM 3.2. Let F be a Banach space whose elements are 
(equivalence classes of) strongly measurable functions from S to the 
Banach space E. Assume that F satisfies the following conditions: 

We will use the 

general result. 
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(a) For each A in ~-~., the operator f ~ f• maps F itself and is 

continuous. 

(b) I f  f E F and (A,,) is a sequence in ~ such that Am I 0, then 

lim IIf Aoll--0 
n'---~OO 

(c) For every A in >~ with 0 < l~(A) < oo there exists /3 in ~,  such 

that /3 C A, #(B) > 0 and 

(c') F(/3) = {fxa : f G F}  C L I ~ , E )  and the inclusion map is 
continuous; 

(c") on F ( B ) M  Loo~,E) ,  the topology induced from Loo~ ,E)  is 

stronger than that induced from F. 

Then, i f  E is a Gelfand-Phillips space, so is F. 

Proof. First consider the case when # ( 8 ) <  oo and conditions (c') 
and (c") are satisfied for /3 = S. Note that in this case condition (b) 

is equivalent to the following one: 

(+) lim Ilfx ll--o for all f in F.  
~ ( A ) ~ 0  

Let (f,,) be a limited weakly null sequence in F .  Then (c') 

implies it is l imited and weakly null in L I(~, E)  as well. By Theorem 
3.1, LI (# ,E)  is a Gelfand-Phillips space, so IIAIII--, o. In particular, 

f,, ~ o in measure. If (Ak) C ~ and #(Ak) ~ 0, then applying (D) to 

the operators 

uk : F ~ F; f ~ fxak 

(which converge pointwise to 0 by (+)) gives 

lira sup IIA• II = 0. 
k----~oo n 

Thus 
lira sup IIAxAII = o. 

~ ( A ) - . 0  n 

This, condition (c"), and the fact that f,, ~ 0 in measure, are 

easily seen to imply that (fn) is norm null in F;  cf. [5, Prop. 2.1(a)]. 

Therefore, F G (GP).  
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Now consider the general case. First observe that each f in F 
has a support of ~-finite measure, as can be easily deduced from (b). 
From this, in view of (C) and (a), it follows that we may assume 

that # is a or-finite measure. Let (B,,) be a maximal (necessarily 
countable!) collection of pairwise disjoint measurable sets such that 
0 < #(B,~)< oo and both conditions (c') and (c") are satisfied with 
B = B , ~ ,  n =  1,2, . . . .  In view of (c), we may assume that S is the 

union of the B,~'s. Then (b) implies that the subspaces F(B,,) form 

an unconditional Schauder decomposition of F ,  and each F(B,~) is in 

(GP) by the first part of the proof. Hence F is a Gelfand-Phillips 

space, by [6, Th. 5.11. 

COROLLARY 3.3. Let F, E (GP) and let ~ be a ~-algebra on a 
set S. Then cca(E, 17,), the Banach space of all countably additive 
vector measures from E to E having a relatively compact range, 
endowed with the semivariation norm, is a Gelfand-Phillips space. 

Proof. Since cca(E, E) can be identified with the injective tensor 

product c a ( E ) ~ E  (cf. [15, Th. 3.11), in view of Corollary 2.2 it is 

enough to verify that ca(E) E (GP). 

Let L be a separable subspace of ca(E). Then (cf [8, p. 
306]) there exists a finite positive measure # on E such that 

L C ca( E ,  #) = {u E ca(~_,) : u << #}. By the Radon-Nikodym theorem, 
ca(~] ,#)  can be identified with L1~),  and the latter space has 
the Gelfand-Phillips property by Theorem 3.1. [This is also an easy 
consequence of the fact that LI(#) has the separable complementation 
property, i.e., the subspace M in Fact (C) can be chosen to 
be separable, and then of course M E (GP)]. By the Lebesgue 
decomposition theorem, ca(~_,,#) is a complemented subspace in 

ca(E). Appealing to (C), we are done. 

Remark 1) The fact that c a ( E ) E  (GP) is actually a direct 
consequence of Theorem 3.1 because ca(E)  is an (abstract) L l-space. 

2) The results in [9] on the Gelfand-Phillips property for 
K ~ ,  E) = (m E cca(~,  E) : m << #} follows immediately from the 

above corollary; cf. also [11]. 
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4. Compact spaces K for which C(K) is a Gelfand-Phillips space. 

If K is a compact (Hausdorff) space and E is a Banach space, 

then C(K, E) denotes the Banach space of all continuous functions 

from K to E,  equipped with the usual sup norm; we write C(K) 
when E is the space of (real or complex) scalars. As noted in [6, Cor. 

3.2]), from Corollary 2.2 it follows that C(K, E) is a Gelfand-Phillips 

space iff both C(K) and E are Gelfand-Phillips spaces. Therefore, as 

far as the Gelfand-Phillips property is concerned, we may restrict our 

attention to the standard O(K) spaces. 

Let K the class of all compact spaces K for which C(K) C (GP). 
As shown in [6. Th. 2.4], K contains the class K of compact spaces 

K satisfying the following condition: 

(DCSC) K has a dense subset S which is conditionally sequentially 

compact, i.e., every sequence in S has a convergent 

subsequence. 

There is also an apparently weaker condition ensuring the 

Gelfand-Phillips property: Let K' be the class of compact spaces K 

such that whenever (G,0 is a decreasing sequence of nonempty open 

subsets of  K,  there exists a convergent sequence (tn) with tn E G,, for 

all n; then we have the following. 

THEOREM 4.1. If  K C K r, then C(K) E (GP). 

Proof. Let (f,,) be a limited weakly null sequence in C(K);  

thus f,, ~ 0 pointwise. Suppose that (rio is not norm null. Then, by 

passing to a subsequence, we may assume that for some r > 0 and all 

n, A,~ = {t E K : IA(t)l > r}~O; Let G,, = U A,,,. Since K C K', there 

exists a sequence (t,0 converging to some point t C K and such that 

t,~ E G,~ for all n. By the definitions of A,~'s and G,~'s, and passing 

again to a subsequence of (f,0 if necessary, we may arrange things 

to have I f . ( t . ) l  > r for all n. Continuing similarly as in the proof of 

Theorem 2.4 in [6], we arrive at a contradiction. 

From the above it follows that 9( C 9(' C • unfortunately, we 

have been unable so far to distinguish between these three classes. 
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As the following two results indicate, these classes have similar 

permanence properties. 

PROPOSITION 4.2. Each of the classes 9(, K', and K is closed 
with respect to continuous images: If  K and L are compact spaces, 

is a continuous map from t f  onto L, and If is in one of these 
classes, then so is, respectively, L. 

Proof. The assertion is obvious in the case of classes K and K'. If 

I f  E K,  then the induced composition operator C r  C(K) is a 
linear isometric embedding,  hence C(I f )E  (GP) implies C(L)E (GP). 

THEOREM 4.3. Each of the classes If', If", and If is closed with 
respect to arbitrary products. 

Proof. The productivity of K has been already noted in [6, p. 
406]; since it is rather straightforward in the case of K', we will 
prove it only for the class K 

If K,  L E K,  then C(K x L) ~_ C(K,C(L)) (cf. [19]), and 
C(K,C(L))  ~ C(If)~C(L); hence K x L E K by Corollary 2.2. Thus 

K is closed with respect to finite products. 

Now let Kj E K for j E J (an index set), and let K = IJj~jKy. 

First consider the case when J is infinite countable, say J = N.  
Fix a point (3j)je/v in K and, for each j ,  let Lj = K1 • . . .  x Kj. Let 
(f,~) be a limited weakly null sequence in C(K). Then, for each j ,  
the sequence (gj.,~) in C(Lj )  defined by 

gj,,~(tl, � 9  tj) = f n ( t l , . . . ,  tj, Sj+l, s]+2,...) 

is limited and weakly null. Since Lj E K (by the first part of the 

proof), it follows that 

(*) 119J,nll = s u P { l f ~ ( t l , . . . ,  ty, 8j+l,.. 31 : ~ L j }  ---+ a s  n---+ o<~. 

Suppose (f,~) is not norm null; then we may assume that there 

exists r > 0 such that IIAII > 2r for all n. 
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Claim Given j and m, there exists t = (ti)iEN E K and n > m 
such that 

IA(t) - f n ( t l , . . . ,  t], 8]+1,8j+2,.. ")1 > ~'" 

Indeed, using (*) we can find n > m so that Ilgy,~ll < r; next, as 

IIf.II > 2r, we can choose t in K- such that If.(t)l  > 2r, and then the 
above inequality is immediate. 

An easy induction based on the above claim produces now a 

strictly increasing sequence (n:.) in N,  and a sequence (t j) of points 
J in K such that, denoting u: = ( t { , . . . ,  ty, sy+l, sy+2,...) and hy = f,~j, we 

have 

(~) [hj(t j) - hj(uY)l > r for all j .  

Now observe that if we define functionals pj 6 C(K)*  by 

Pi( f )  = f (  t j) - f (uJ),  

then, by the uniform continuity of f ,  p y ( f ) ~  0 for all f in C ( K ) .  
Thus ~ j )  is a weak* null sequence in C(K)*.  Therefore, since (by) is 

limited, pj(hj)  ~ O, contradicting (:~). Thus IIAII --' o, which concludes 
the proof in the case of countable products. 

Now let J be an arbitrary (uncountable) index set, and let, 
as before, ( f , )  be a limited weakly null sequence in G(K) .  Since 
each f E C ( K )  depends only on a contable set of coordinates (cf. 
[12, 3.2.H]), there exists a countable subset I of J such that 

' for j E I. Let (sy) be a fixed fn((t j))  = f~((t~)) whenever tj = tj 
element of K,  and let g,, C G(Kl), where K / =  I-ljczK j, be defined by 

I g,((t j) je[)  = f , ( ( t j ) j es ) ,  

where t j= t~ ,  for j E I,  and tj = s j  for j E J - I .  Then (g,~) is a 

limited and weakly null sequence in C(K') ;  hence, by the preceding 

part of the proof, 

IIAll  : IIg ll 0 as  n ---* o o .  

Thus K E K  
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Remark Since C(flN)~_ l~ ~ (GP) although /3N is homeomorphic 
to a subspace of the product space [0, 1] t~ E K, none of the classes 
K 9(, or K' is closed with respect to closed subspaces. 

5. The three-space problem for the Gelfand-Phillips property. 

T. Schlumprecht [18] has recently constructed a closed subspace 

E in l~ containing co such that E/co E (GP) but E q~ (GP). Thus, 
in general, it is not true that a Banach space E is Gelfand-Phillips 

provided it has a closed subspace X such that both X and E / X  
are Gelfand-Phillips. Such a conclusion is nevertheless valid when the 

assumptions about X and-/or E,/X are appropriately strengthened. 

PROPOSITION 5.1. Suppose X is a closed subspace of a Banach 

space E such that E / X  E (GP). Then E E (GP) if (and only if) every 
weakly null sequence (z,~) C X which is limited in E is norm null. 

Proof Let Q : E  ~ E / X  be the quotient map, and let (z,~) be a 
limited weakly null sequence in E. Then the sequence (Qzn) is limited 

and weakly null in E / X  E (GP), hence IIQz,~ll ~ o. It follows that 

there is a sequence (a:n)C X such that Ilz,~- z,~ll ~ o. Clearly, (z,~) 
is weakly null and limited in E so, by the assumption, IIz,~l]--. o. In 

consequence, I]z,~ll--, o, which proves that E E (GP). 

COROLLARY 5.2. If a closed subspace X of a Banach space E 

has the Schur property (i.e., weakly null sequences in X are norm 
null), and E / X  E (GP), then E E (GP). 

TtlEOREM 5.3. Suppose X is a Gelfand-Phillips subspace in a 
Banach space E, and suppose there exists a closed subspace k" in E 

such that its dual closed unit ball t3y. is w*-sequentially compact and 

X + Y is dense in E. Then E E (GP). 

Proof First of all observe that the quotient map maps Y onto a 
dense subspace of E / X ,  hence also B(E/x~, is w*-sequentially compact 
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(cf. [2]) which implies that E / X  E (GP) (see e.g. [6, Cor. 2.3]). 
Since also X E (GP), the condition in Proposition 5.1 will be satisfied 
(and we will conclude that E E (GP)) if we prove that every sequence 
(z,,) C X that is limited in E is limited in X as well. For this to 
hold, it suffices to know that every w*-null sequence (z~,)C X* can 

be extended (term by term) to a sequence (z*)C E" having a w*-null 
subsequence. We are now going to show that it is indeed so. 

Let a sequence (z~,)C X* be w*-null (hence norm bounded). For 

each n apply the Hahn-Banach theorem to find a norm-preserving 

extension w~, E E* of a:,~. By the assumption about F ,  there is a 

subsequence (w~,) such that its restriction to Y is pointwise convergent. 

Since, moreover, the sequence w~,lX = z* k. converges pointwise to zero, 

we see that (w~) is pointwise convergent on the dense subspace X + F  
of E. But this sequence is also bounded, hence it must converge 

pointwise on E to a functional w*E E*. Now let z* = w* k, k, - w*; then 

the sequence (z~.)C E* is weak* null and z*k,I X = z*k. for every r~ 
This concludes the proof. 

COROLLARY 5.4. Let X be a closed subspace o f  a Banach space 

E, and assume that X E (GP) and E / X  is separable. Then E E (GP). 

Remark As was observed above, the assumptions about Y in 
Theorem 5.3 imply that E / X  has a weak* sequentially compact 

dual ball. It should be however pointed out that this last property 

alone would not permit us to prove that E E (GP). In fact, the 
non-Gelfand-Phillips space E in Schlumprecht's counterexample is such 
that B~E/co). is weak* sequentially compa&! 

We conclude with the following consequence of a result in [7]. 

PROPOSITION 5.5. If  a Banach space 1~ has a closed subspace 

X such that both X and E / X  are Gelfand-Phillips spaces, then E 

contains no isomorphic copy of  loo. 

Remark Thus, in particular, the non-Gelfand-Phillips space in 

Schlumprecht's counterexample contains no copy of goo. Also the 

loo-free closed subspaces E(= X.fl) of l,~ constructed earlier, for 
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different purposes,  by  Haydon  [14], are easily checked to lack the 

Gelfand-Phil l ips property. In fact, that this is so for the first of  his 

two  examples  (the one given in Section 1 of  [14]) is readily seen by 

inspecting the proof  of  his Proposit ion lB.  (Alternatively, this space 

contains co so, by a result in [101, if it were  a Gelfand-Phil l ips space, 

i t  would  contain a complemented  copy  of  co, which is impossible  

because  it is a Grothendieck space.) As for the second of  Haydon ' s  

spaces E = X A ,  the  algebra A defining this space is such that every 

infinite subset  of  w = {0, 1 , . . . )  contains an infinite set from A which, 

again by inspecting the proof  of  Proposi t ion 1B (see also [18, Proof  

of  Th. 8]), implies that E is not a Gelfand-Phil l ips space. 
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