57. On a Theorem of R. H. Martin on Certain Cauchy Problems for Ordinary Differential Equations*)

By Giovanni EMMANUELE
Department of Mathematics, University of Catania, Catania, Italy
(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1985)

1. Introduction. Let E be a real Banach space with norm $\|\cdot\|$ and X be a locally closed and convex subset of E. If $B, C: [0, 1] \times X \rightarrow E$ are two (suitable) functions, we consider the following Cauchy problem (CP) $\dot{x} = B(t, x) + C(t, x), \quad x(0) = x_0$

where $x_0 \in X$.

In the paper [2] R. H. Martin obtained the existence of a local solution of (CP) under the following assumptions;

- (C₁) B and C are continuous and bounded in $[0, 1] \times X$;
- (C₂) $\langle x-y, B(t, x)-B(t, y)\rangle \leq \omega(t, ||x-y||)||x-y||$ for all (t, x), (t, y) in $[0, 1]\times X$, where $\omega(t, u)$: $[0, 1]\times [0, \infty)\to [0, \infty)$ is a continuous function such that $\omega(t, 0)=0$ for all $t\in [0, 1]$ and for which the Cauchy problem $\dot{u}=\omega(t, u)$, u(0)=0 has the unique solution u(t)=0 for all $t\in [0, 1]$;
- (C₃) K is a relatively compact subset of E such that $C(t, x) \in K$ for all $(t, x) \in [0, 1] \times X$;
- (C₄) $\lim \inf_{h\to +0} d(x+h(B(t, x)+C(t, x)); X)/h=0 \text{ for all } (t, x)\in [0, 1]\times X;$
- (C₅) C is uniformly continuous on $[0, 1] \times X$.

A diligent examination of the proof of this result shows the important role of the assumptions (C_3) and (C_5).

The hypothesis (C_3) plays a fundamental role also in other results contained in the same paper of Martin; however, recently (see [1]) it has been weakened using the following one;

(C₃)' there is a Lebesgue measurable subset J of [0, 1] with Lebesgue measure m(J)=0 for which C(t,X) is relatively compact for any $t \in J^c$ (J^c denotes the complement of J in [0, 1])

in the setting of Gelfand-Phillips spaces, so improving certain results of [2].

Purpose of this note is to generalize the above cited result of Martin in general Banach spaces using $(C_3)'$ instead of (C_3) .

- 2. The existence results. This section contains the announced generalization of Martin's theorem. Together $(C_3)'$ we shall also use the following other assumptions:
- $(C_1)'$ B+C is continuous on $[0, 1] \times X$ and B and C are both bounded

^{*} Work performed under the auspices of G.N.A.F.A. of C.N.R. and partially supported by M.P.I. of Italy (40%, 1983).

(instead of (C_1));

- (C₂)' the same as in (C₂) with ω now satisfying the following assumptions of Carathéodory type: ω is measurable in $t \in [0, 1]$ for any $u \in [0, \infty)$, continuous in $u \in [0, \infty)$ for almost all $t \in [0, 1]$; moreover, there exists $\alpha \in L^1([0, 1])$ such that $\omega(t, u) \leq \alpha(t)$ for all $(t, u) \in [0, 1] \times [0, \infty)$;
- $(C_5)'$ for each $\varepsilon > 0$ there is a Lebesgue measurable subset I_{ε} of [0, 1] with Lebesgue measure $m(I_{\varepsilon}) < \varepsilon$ such that C(t, x) is uniformly continuous on $I_{\varepsilon}^c \times X$ (instead of (C_5)).

Before proving our result we make a brief remark on the assumption $(C_5)'$; it is not difficult to construct examples of functions C verifying $(C_5)'$ but not (C_5) starting from the following fact: if $h:[0,1]\to E$ is a noncontinuous element of $L^1(m,E)$, then for any $\varepsilon>0$ there is a Lebesgue measurable subset A_ε of [0,1] such that i) $m(A_\varepsilon)<\varepsilon$; ii) $A_\varepsilon^c=[0,1]\setminus A_\varepsilon$ is compact; iii) h is continuous on A_ε^c (this is Lusin's theorem); hence we have that h is uniformly continuous on A_ε^c .

Now, we are ready to show our

Theorem. Let B and C be two functions from $[0,1] \times X$ into E verifying the assumptions $(C_1)'$, $(C_2)'$, $(C_3)'$, (C_4) and $(C_5)'$. Then, the Cauchy problem (CP) has a local solution.

Proof. Using $(C_1)'$ and (C_4) we can construct (see [3]) a subinterval [0, T] of [0, 1], a real sequence (ε_n) converging to zero and an equicontinuous sequence (x_n) of absolutely continuous functions from [0, T] into X such that: j) $x_n(0) = x_0$ for any $n \in N$; jj) $||x_n(t) - x_n(s)|| \le M|t - s|$ for any t, $s \in [0, T]$ and any $n \in N$ (here M is a real number such that $||B(t, x)|| + ||C(t, x)|| \le M$ for all $(t, x) \in [0, 1] \times X$; jjj) for any $n \in N$ and almost all $t \in [0, T]$ one has $||\dot{x}_n(t) - [B(t, x_n(t)) + C(t, x_n(t))]|| \le \varepsilon_n$.

If we shall prove that (x_n) has a subsequence which converges uniformly on [0, T], its limit function will be a solution of (CP) (with a standard proof).

Given $\sigma>0$ we choose a Lebesgue measurable subset J_{σ} of [0, T] with $J_{\sigma}\supset [0, T]\cap J$ (J is like in $(C_3)'$) with $m(J_{\sigma})<\sigma/12M$; moreover in $(C_5)'$ we take a Lebesgue measurable subset of [0, 1] with $m(I_{\sigma})<\sigma/12M$; hence, $m(J_{\sigma}\cup I_{\sigma})<\sigma/6M$; moreover, regularity of Lebesgue measure allows us to suppose that J_{σ} and I_{σ} are open in [0, 1]; hence $A_{\sigma}=J_{\sigma}\cup I_{\sigma}$ is open in [0, 1]; this implies that $A_{\sigma}^c\cap [0, T]$ is closed in [0, T] (for brevity we suppose that $A_{\sigma}^c\subset [0, T]$) and moreover

- (a) C(t, X) is relatively compact for any $t \in A_a^c$
- (b) C(t, x) is uniformly continuous on $A_a^c \times X$.

Now, we consider the functions $y_n(t) = C(t, x_n(t))$, $t \in [0, T]$, $n \in N$; from (b) it follows that (y_n) is an equicontinuous (bounded) sequence of $C^0(A_\sigma^c; E)$; since using (a) we have that $\{y_n(t): n \in N\}$ is relatively compact in E for any $t \in A_\sigma^c$ the Ascoli Arzelà Theorem allows us to conclude that (y_n) is relatively compact; for brevity, we shall suppose that the same (y_n) converges uniformly on A_σ^c . Now, we shall prove that (x_n) is uniformly

converging on [0, T]. If we put $h_{nm}(t) = ||x_n(t) - x_m(t)||$, as in [2], we can write the following inequality which is true almost everywhere in [0, T]

$$\begin{aligned} (d/dt)(h_{nm}^2(t)) &\leq 2(x_n(t) - x_m(t), \ \dot{x}_n(t) - \dot{x}_m(t)) \\ &\leq 2h_{nm}(t)[\omega(t, \ h_{nm}(t)) + \|y_n(t) - y_m(t)\| + \varepsilon_n + \varepsilon_m] \\ &\leq 2h_{nm}(t)\omega(t, \ h_{nm}(t)) + K\|y_n(t) - y_m(t)\| + K(\varepsilon_n + \varepsilon_m) \end{aligned}$$

for any $n, m \in N$ where $K=4(MT+||x_0||)$; hence, one has for $r, s \in [0, T]$, s < r, and any $n, m \in N$

$$\begin{split} h_{nm}^2(r) - h_{nm}^2(s) & \leq \int_s^r 2h_{nm}(\tau)\omega(\tau, h_{nm}(\tau))d\tau + TK(\varepsilon_n + \varepsilon_m) + \int_0^T K \|y_n(\tau) - y_m(\tau)\| d\tau \\ & = \int_s^r 2h_{nm}(\tau)\omega(\tau, h_{nm}(\tau))d\tau + TK(\varepsilon_n + \varepsilon_m) \\ & + K \int_{A_\sigma}^0 \|y_n(\tau) - y_m(\tau)\| d\tau + K \int_{A_\sigma}^1 \|y_n(\tau) - y_m(\tau)\| d\tau \,; \end{split}$$

if n, m are sufficiently large we have that $T(\varepsilon_n + \varepsilon_m) < \sigma/3$ and further $\int_{A_\sigma^c} \|y_n(\tau) - y_m(\tau)\| d\tau < \sigma/3$; moreover, we have $\int_{A_\sigma} \|y_n(\tau) - y_m(\tau)\| d\tau < m(A_\sigma) 2M < \sigma/3$; this signifies that for n, m sufficiently large and for $r, s \in [0, T]$ we have

$$h_{nm}^2(r) - h_{nm}^2(s) \le \int_s^r 2h_{nm}(\tau)\omega(\tau, h_{nm}(\tau))d\tau + K\sigma.$$

Now, we suppose that (x_n) does not converge; hence, there exist an $\eta > 0$ and two real sequences (n_{ν}) and (m_{ν}) such that $||x_{n_{\nu}} - x_{m_{\nu}}||_{C^0([0,T];E)} > \eta$; if we consider the sequence $(h_{n_{\nu}m_{\nu}})$ of real continuous functions we can write easily

$$k_{\scriptscriptstyle
u}^2(r) - k_{\scriptscriptstyle
u}^2(s) \le \int_{\scriptscriptstyle
u}^r 2k_{\scriptscriptstyle
u}(\tau)\omega(\tau, k_{\scriptscriptstyle
u}(\tau))\,d\tau + K\sigma$$

for any $r, s \in [0, T]$ and any ν sufficiently large, where $k_{\nu} = h_{n_{\nu}m_{\nu}}$ for any $\nu \in N$, for the sake of brevity.

Now, we observe that (k_{ν}) is a (bounded) sequence of equicontinuous functions of $C^0([0,T])$; hence, it has a uniformly converging subsequence to a continuous function $k:[0,T]{\rightarrow}R$; from the last inequality easily follows

$$k^2(r) - k^2(s) \le \int_0^r 2k(\tau)\omega(\tau, k(\tau))d\tau$$

for any $r, s \in [0, T]$, using also the arbitrarity of σ . Moreover, if we recall the definition of any k_{ν} , we can easily conclude that k is an absolutely continuous function and hence it is differentiable almost everywhere on [0, T]; this allows to say that

$$k(t)\dot{k}(t) \leq \omega(t, k(t))k(t)$$

for almost all $t \in [0, T]$.

Now, we recall that $||x_{n_{\nu}}-x_{m_{\nu}}||_{C^0([0,T];E)} > \eta$ for any $\nu \in N$; this signifies that k cannot be identically null on [0,T]; hence, let $t^* \in]0$, T[be a point such that $k(t^*) > 0$. Let (α, β) be the maximal interval containing t^* such that k(t) > 0 in $]\alpha$, $\beta[$ and $k(\alpha) = 0$; we can define an absolutely continuous function h from [0,T] into R by putting

 $h(t) = 0 \ (0 \le t \le \alpha); \quad k(t) \ (\alpha < t < \beta); \quad k(\beta) \ (\beta \le t \le T).$

Obviously, $\dot{h}(t) \le \omega(t, h(t))$ almost everywhere on [0, T]; hence, h(t) = 0 on [0, T], i.e. a contradiction. Our proof is complete.

Remark 1. If we suppose that X contains a closed ball centered at x_0 we can drop the assumptions $(C_1)'$ and (C_4) which we used only in order to construct approximate solutions for (CP) and we can substitute them with the following one: B+C verifies assumptions of Carathéodory type.

At the end, we observe that another recent improvement of Martin's result is due to Volkmann ([4]) who dropped the assumption (C_5), when X contains a closed ball centered at x_0 ; the new and interesting technique used in [4] seems however to require the assumptions (C_1) and (C_3), whereas our (usual) argument allows to use assumptions of Carathéodory type, when X contains a closed ball centered at x_0 as in [4] (see Remark 1); furthermore, we can improve (C_3) with (C_3)' and this does not seem possible in [4]; hence, under this point of view our present result uses more large assumptions than that in [4]. But, we have to require the additional assumption (C_5)' in order to prove our Theorem.

These facts imply that the present result is not actually comparable with that due to Volkmann.

References

- [1] G. Emmanuele: Existence of solutions of ordinary differential equations involving dissipative and compact operators in Gelfand-Phillips space (to appear).
- [2] R. H. Martin: Remarks on ordinary differential equations involving dissipative and compact operators. J. London Math. Soc., 10, 61-65 (1975).
- [3] —: Nonlinear Operators and Differential Equations in Banach Spaces. Wiley and Sons (1976).
- [4] P. Volkmann: Ein Existenzsatz für gewöhnliche differentialgleichungen in Banachraume. Proc. Amer. Math. Soc., 80, 297-300 (1980).