CONVERGENCE OF THE MANN–ISHIKAWA ITERATIVE PROCESS FOR NONEXPANSIVE MAPPINGS

G. Emmanuele

Seminar of Mathematics, University of Catania, Catania 95125, Italy

(Received for publication 19 April 1982)

Key words and phrases: Nonexpansive mappings, Mann-Ishikawa iterative process, existence of fixed point, strong and weak convergence, generic property.

SECTION 1

LET E be a Banach space and let X be a bounded, closed and convex subset of E. We consider a function f, f: $X \rightarrow X$, which is nonexpansive, i.e.

$$||fx - fy|| \le ||x - y||$$
 for each $x, y \in X$.

In order to construct a fixed point of f, Ishikawa (see [2]) considered the following iterative process, which is a particular case of an iterative procedure introduced by Mann ([4]): let $x_1 \in X$ and let $\{t_n\}$ be a sequence of real numbers such that there is $b \in \mathbb{R}$ for which

$$0 \le t_n \le b < 1, \sum_{n=1}^{\infty} t_n = \infty.$$

The Mann-Ishikawa sequence is defined by

$$x_{n+1} = (1 - t_n)x_n + t_n f x_n \quad \text{for all } n \in N.$$

In [2] there are proved two very important properties of the above defined sequence $\{x_n\}$; indeed, Ishikawa showed that

$$\lim_{n} \|x_n - fx_n\| = 0 \tag{1.1}$$

$$||x_{n+1} - y|| \le ||x_n - y||$$
 for all $n \in N$ (1.2)

where, in (1.2), y is a fixed point of f, if it exists.

The purpose of this note (sections 2 and 3) is to show that under suitable assumptions on f, X, E we can guarantee that

(i) f has a fixed point

(ii) $\{x_n\}$ converges (either strongly or weakly) to a fixed point of f.

Moreover, in section 4, we prove briefly that certain conditions due to Petryshyn & Williamson (see [6]) can be extended to the Mann-Ishikawa sequences in order to show that (ii) is true; in this case, we suppose that $\mathcal{F}(f) \neq \emptyset(\mathcal{F}(f))$ the fixed point set of f). Always in section 4, we prove that $\{x_n\}$ converges strongly to the unique fixed point of f, if f satisfies a suitable condition of contractive type with $\mathcal{F}(f) \neq \emptyset$.

At the end, in section 5, we prove that most of the Mann-Ishikawa iterative processes converge, in the sense that in a suitable complete metric space M of nonexpansive functions, there exists a dense G_{δ} -subset $\overline{\overline{M}}$ of M for which (i) and (ii) are true.

SECTION 2

In this section, we consider only conditions on f in order to prove our thesis.

 (a_1) First of all, we consider a simple generalization of Theorem 1 of [2]. Indeed, we suppose that

$$\alpha(f(A)) < \alpha(A) \qquad A \subset X, \, \alpha(A) > 0$$

where $\alpha(Y)$, $Y \subset X$, is the Kuratowski measure of noncompactness of Y (see [1]).

It is easy to show that, by (1.1), it follows $\alpha(\{x_n\}) = 0$; and so, there are $\{x_{k(n)}\}$ and $y \in X$ for which $x_{k(n)} \stackrel{s}{\to} y$; by (1.1), y = fy and by (1.2) a $d \ge 0$ exists for which $\lim_{n} ||x_n - y|| = d$; since $\lim_{n} ||x_{k(n)} - y|| = 0$, we obtain d = 0. Then, $x_n \stackrel{s}{\to} y$.

(a₂) Now, we suppose that there is $g, g: \mathbb{R}^+ \to \mathbb{R}$, with g(r) < r if r > 0, g continuous from the right and nondecreasing, for which, for each $x, y \in X$,

$$(fx - fy, j)_{+} = (fx - fy, x - y)_{+} \leq g(||x - y||) ||x - y||$$
(2.1)

(or

$$(fx - fy, j)_{+} = (fx - fy, x - y)_{+} \leq g(||x - y||^{2}))$$
(2.1)'

where $(x, j)_+ = (x, y)_+ = \sup\{j(x): j \in J(x)\}, J(x) = \{j, j \in E^*, ||j||^2 = ||x|| = j(x)\}$ (see [1]). Then, we have

$$\|x_n - x_m\|^2 = (x_n - x_m, x_n - x_m)_+ = (x_n - fx_n + fx_n - fx_m + fx_m - x_m, x_n - x_m)_+$$

$$\leq \|x_n - x_m\| (\|x_n - fx_n\| + \|x_m - fx_m\|) + (fx_n - fx_m, x_n - x_m)_+;$$

if $\varepsilon > 0$, a $\nu \in N$ exists for which $n, m \ge \nu$ implies

$$\|x_n - x_m\|^2 \leq \varepsilon + g(\|x_n - x_m\|) \|x_n - x_m\|$$

since, $\alpha(\{x_n\}) = \alpha(\{x_n\}_{n \ge \nu})$, we obtain

$$\alpha^2(\{x_n\}) \leq g(\alpha(\{x_n\}))\alpha(\{x_n\}) + \varepsilon \text{ for all } \varepsilon > 0$$

and so

$$\alpha^{2}(\{x_{n}\}) \leq g(\alpha(\{x_{n}\}))\alpha(\{x_{n}\});$$

this fact implies $\alpha(\{x_n\}) = 0$ and the thesis is true like in (a_1) .

(a₃) We suppose that there exists $g, g: \mathbb{R}^+ \to \mathbb{R}$, continuous with g(r) < r if r > 0, for which (2.1) (or (2.1)') is true.

Then, putting $v_{nm} = ||x_n - x_m||$ and $v_r = \sup_{n,m \ge r} v_{n,m}$, we have like in (a₂):

$$v_{nm}^2 \leq \varepsilon + g(v_{nm})v_{nm}$$
 for all $n, m \geq \nu, \nu = \nu(\varepsilon)$.

Since there exists a sequence of v_{nm} 's which converges to v_r , $r \ge v(\varepsilon)$, we obtain

$$v_r^2 \leq \varepsilon + g(v_r)v_r$$
 for all $r \geq \nu(\varepsilon)$

On the other hand, $v_{r+1} \le v_r$, $r \in N$, and so there is $v \ge 0$ for which $\lim_r v_r = v$. By using continuity of g, we have

$$v^2 \leq g(v)v + \varepsilon$$
 for each $\varepsilon > 0$;

then as in (a_2) , we have v = 0. This fact implies that (i) and (ii) are true.

Now, we show that there exist f's which are nonexpansive and satisfy conditions like in (a_2) or (a_3) , with an example.

We suppose $E = l_1$, X = B(0, 1). We consider a function h, $h: X \to X$, defined by $h: (x_1, x_2, \ldots, x_n, \ldots) \to (-x_1, -x_2, \ldots, -x_n, \ldots)$; we have

$$\|hx\| = \|x\| \qquad \text{for each } x \in X \tag{2.2}$$

$$||hx - hy|| = ||x - y||$$
 for each $x, y \in X$ (2.3)

$$(hx - hy, x - y)_+ \le 0$$
 for each $x, y \in X$ (2.4)

(for a definition of $(., .)_+$ and its calculation in l_1 , see [1]).

Then, let $k, k: X \rightarrow X$, be the following function

$$k: (x_1, x_2, \ldots, x_n, \ldots) \to \frac{1}{2} ((1 - ||x||), x_{p(1)}, x_{p(2)}, \ldots, x_{p(n)}, \ldots)$$

where p is an arbitrary bijection from N onto N.

We have

$$||kx|| \le \frac{1}{2} \qquad \text{for each } x \in X \tag{2.5}$$

$$||kx - ky|| \le ||x - y|| \qquad \text{for each } x, y \in X \tag{2.6}$$

now, we define $f, f: X \rightarrow X$, by

fx = (1/2)(hx + kx) for all $x \in X$;

by (2.2) and (2.5) it follows $fx \in X$, for each $x \in X$; by (2.3) and (2.6) it follows that f is nonexpansive in X; moreover, if x = 0 and y = (1, 0, ..., 0, ...), we have ||f0 - fy|| = ||0 - y||; furthermore, (2.4) and (2.6) imply that, for any $j \in J(x - y)$, for each $x, y \in X$

$$(fx - fy, j)_{+} = (fx - fy, x - y)_{+} \leq (1/2) ||x - y||^{2};$$

then, we have to consider g(r) = (1/2)r in (a_2) and (a_3) .

SECTION 3

Now, we consider conditions on X, E which guarantee the weak convergence of the Mann–Ishikawa sequence to a fixed point of f.

More precisely, we suppose that E satisfies the so-called Opial's condition, i.e. (see [5]) for all x^0

$$\liminf_{n} \|x_n - x^0\| < \liminf_{n} \|x_n - y\| \qquad \text{for each } y \neq x^0$$

for each sequence $\{x_n\}$ which converges weakly to x^0 . If X is convex and weakly compact, we shall prove that (i) and (ii) are true.

By weak compactness of X, there exists $\{x_{k(n)}\}$ which converges weakly to a $y \in X$. With standard proof we show that y = fy. We suppose that $\{x_n\}$ doesn't converge weakly to y; then,

there are $\{x_{h(n)}\}\$ and $z \neq y$ such that $x_{h(n)} \xrightarrow{w} z$; then, z = fz. By (1.2) there are d(y), $d(z) \ge 0$ for which

$$d(y) = \lim_{n} ||x_n - y||, \qquad d(z) = \lim_{n} ||x_n - z||.$$

If $d(y) \leq d(z)$, i.e.

$$\lim_{n} ||x_{n} - y|| \le \lim_{n} ||x_{n} - z||$$
(3.1)

we have an absurdum, since by (3.1) it follows

$$\lim_{n} ||x_{h(n)} - y|| \le \lim_{n} ||x_{h(n)} - z||$$

which isn't true; in a similar way, we show that cannot be $d(y) \ge d(z)$.

Then, $\{x_n\}$ have to converge weakly to y.

SECTION 4

With similar proof like in [6] we can prove the two following theorems which extend some results due to Petryshyn & Williamson to the case of Mann–Ishikawa sequences for nonexpansive mappings (we observe that in [6] quasi-nonexpansive functions are considered).

THEOREM 4.1. Let f, X, E and $\{x_n\}$ be as in section 1. We suppose that $\mathcal{F}(f) \neq \emptyset$. Then, $\{x_n\}$ converges strongly to a fixed point of f if and only if

$$\lim_{n} d(x_n, \mathcal{F}(f)) = 0.$$

THEOREM 4.2. Let f, X, E and $\{x_n\}$ be as in section 1. Then, $\{x_n\}$ converges strongly to a fixed point of f if and only if there is a compact subset K of X for which

$$\lim_{n} d(x_n, K) = 0$$

We observe that it is possible to show a result similar to Theorem 1.2 of [6]. Now, we consider nonexpansive f's satisfying a condition like

"given $\varepsilon > 0$ and $y \in X$ there exists $\delta > 0$ such that for each $x \in X$ for which $\varepsilon \le ||x - y|| \le \varepsilon + \delta$ we have $||fx - fy|| \le \varepsilon - \delta$ ".

If we suppose $\mathscr{F}(f) \neq \emptyset$ for such a f we can prove that the Mann-Ishikawa sequence converges strongly to the (unique) fixed point of f. Indeed, if $0 < \varepsilon = \lim_{n} ||x_n - z||, z = fz$, there is $\delta > 0$ for which $\varepsilon \le ||x_n - z|| < \varepsilon + \delta$, for sufficiently large n, using (1.2). Then, we have $||fx_n - z|| \le \varepsilon - \delta$. Since (1.1) is true, there exists $\bar{n} \in N$ sufficiently large such that

$$||x_{\hat{n}}-fx_{\hat{n}}||+||fx_{\hat{n}}-z||<\varepsilon;$$

by (1.2) it follows that

$$\varepsilon = \lim_{n} ||x_{n} - z|| \le ||x_{\bar{n}} - z|| \le ||x_{\bar{n}} - fx_{\bar{n}}|| + ||fx_{\bar{n}} - z|| < \varepsilon$$

which isn't true. Then, $\varepsilon = 0$ and our thesis is proved.

A condition like the above one is satisfied if f is a G-contraction (see [3], p. 47).

SECTION 5

In the last section, we consider the following set

$$M = \{f; f: X \to X, f \text{ nonexpansive}\},\$$

endowed with the metric

 $d(f,g) = \sup\{||fx - gx||: x \in X\};\$

it is known that (M, d) is a complete metric space.

It is known that there exist nonexpansive functions which are fixed point free; for these mappings the Mann–Ishikawa iterative process doesn't converge strongly. Nevertheless, we can prove the following result:

THEOREM 5.1. If there is $a \in \mathbb{R}$ for which

 $0 < a \le t_n$ for each $n \in N$,

there exists a dense G_{δ} -subset $\overline{\overline{M}}$ of M such that, for each $g \in \overline{\overline{M}}$, (i) and (ii) hold.

Proof. First of all, we observe that, if $M^0 = \{f; f \in M, f \text{ is a contraction with constant of contractivity <math>k_f \in [0, 1[\}, \overline{M}^0 = M \text{ and } (i), (ii) \text{ are true for any } f \in M^0$.

Now, we consider

$$M_1 = \bigcap_{n \in \mathbb{N}} \bigcup_{f \in M^0} B(f, \bigvee (f, 1/n)),$$

where $B(h,r) = \{g, g \in M, d(h,g) < r\}$ and $\bigvee (f, 1/n)$ is a real number such that $b \bigvee (f, 1/n)/(1 - H_f) \leq 1/n$, where $H_f = 1 - a + ak_f < 1$.

If $f \in M_1$, for each $n \in N$, there exists $f_n \in M^0$ such that $d(f, f_n) \leq \bigvee (f_n, 1/n)$. If we put, for each $h \in M_1$,

$$x_{m+1}^{h} = (1 - t_m)x_m^{h} + t_m h x_m^{h} \qquad \text{for all } m \in N$$

we have, if $x_1^g = x_1^{f_m} = x_1 \in X$,

$$\|x_{m+1}^g - x_{m+1}^{f_m}\| \le b \lor (f_n, 1/n) \sum_{i=0}^{m-1} H_{f_n}^i \quad \text{for all } m \in N;$$
(5.1)

we observe that (5.1) can be showed easily by induction on m.

By (5.1) it follows that

$$\limsup_{m} \|x_{m+1}^g - x_{m+1}^{f_n}\| \le 1/n.$$

Now, we observe that Vidossich (see [7]) has proved that there is a dense G_{δ} -subset M_2 of M such that $M_2 \supseteq M^0$ and

(b₁) each $g \in M_2$ has a unique fixed point x^g .

(b₂) the function $f \rightarrow x^f$, $x^f = fx^f$, is continuous from M_2 into X.

Then, we put $\overline{\overline{M}} = M_1 \cap M_2$; obviously, $\overline{\overline{M}}$ is a nonempty dense G_{δ} -subset of $M(\overline{\overline{M}} \supseteq M^0)$ and (i) is true for any $g \in \overline{\overline{M}}$. We have only to show (ii). for this purpose, let $g \in \overline{\overline{M}}$; there exists a sequence $\{f_n\} \subseteq M^0$ for which (5.1) is true. Then, we have

$$||x_m^g - x^g|| \le ||x_m^g - x_n^{f_m}|| + ||x_n^{f_m} - x^{f_n}|| + ||x^{f_n} - x^g||$$
 for all $m, n \in N$.

Given $\varepsilon > 0$, there exists $\mu \in N$ for which $||x^{f_n} - x^g|| \le \varepsilon$, for each $n \ge \mu$; then, if $\bar{n} \ge \mu$, $\bar{n} \ge 1/\varepsilon$, one has

$$\limsup_{m} \|x_{m+1}^{g} - x^{g}\| \le \limsup_{m} \|x_{m+1}^{g} - x^{f_{n}}\| + \limsup_{m} \|x_{m+1}^{f_{n}} - x^{f_{n}}\| + \limsup_{m} \|x_{m}^{f_{n}} - x^{g}\| \le 2\varepsilon$$

for each $\varepsilon > 0$.

This fact implies that

$$\lim_{m} \|x_{m+1}^{g} - x^{g}\| = 0.$$

Then, the proof is complete.

REFERENCES

- 1. DEIMLING G., Ordinary differential equations in Banach spaces. Lecture Notes in Mathematics, p. 596. Springer, Berlin (1977).
- 2. ISHIKAWA S., Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Am. Math. Soc. 59, 65-71 (1976).
- 3. KRAUTHAUSEN A., MÜLLER G., REINERMANN J. & SCHÖNEBERG R., New fixed point theorems for compact and nonexpansive mappings and applications to Hammerstein equations, Sonderforschungsbereich Approximation und Optiemerung, Universität Bonn 1976.
- 4. MANN W. R., Mean value methods in iteration, Proc. Am. Math. Soc. 4, 506-510 (1953).
- 5. OPIAL Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc. 73, 591-597 (1967).
- 6. PETRYSHYN W. V. & WILLIAMSON T. E., Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. An. Appl. 43, 459-497 (1973).
- 7. VIDOSSICH G., Existence, Uniqueness and Approximation of fixed points as a generic property, Bol. Soc. Bras. Math. 5, 17-29 (1974).

NOTES

We suppose that (2.1) is true for a g such that

(i) g(r) < r if r > 0;

(ii) there exists

$$\lim_{r \to t^+} g(r) \leq g(\bar{r}), \text{ for } \bar{r} \in \mathbb{R}^+.$$

Then, using a proof as in "D. W. Boyd & J. S. W. Wong-On nonlinear contractions-Proc. Am. Math. Soc. 20. 458–464 (1969)", we can show that $\{x_n\}$ converges strongly to the unique fixed point of f.

We observe that in (a_2) and (a_3) we can use $(.,.)_-$ (see [1]) instead of $(.,.)_+$.

Another result about weak convergence can be obtained if E is strictly convex, X is weakly compact and convex and f satisfies the following conditions

(j) f is demiclosed, i.e. $y_n - fy_n \stackrel{s}{\to} \theta$, $y_{k(n)} \stackrel{w}{\to} y$ imply y = fy (then $\mathcal{F}(f) \neq \emptyset$). (jj) there is an increasing function φ , $\varphi: \mathbb{R}^+ \to \mathbb{R}^+$, which satisfies $\varphi(0) = 0$, $\lim_{n \to +\infty} \varphi(r) = +\infty$ and such that

$$((i-f)(x) - (i-f)(y), x-y)_{+} \ge [\varphi(||x||) - \varphi(||y||)][||x|| - ||y||]$$

where *i* denotes the identity mapping on *E*.

In this case, we have that $\mathcal{F}(f)$ is a singleton; and so, by demiclosedness, $x_n \xrightarrow{w} x$, $\{x\} = \mathcal{F}(f)$.

We observe that a function f satisfying (jj) is called φ -accretive (see "H. Brezis & M. Sibony-Methodes d'approximation et d'iteration pour les operateurs monotones-Arch. Rat. Mech. An. 28, 59-82 (1967/68)").

Now, we suppose that E satisfies the following assumption

$$y_n \xrightarrow{\kappa} y, ||y_n|| \rightarrow ||y||$$
 imply $y_n \xrightarrow{s} y$

(see "K. Fan, I. Glicksberg-Some geometric properties of the spheres in a normed linear space-Duke Math. J. 25, 553-568 (1958)").

Since $x_n - fx_n \to \theta$, we have $||x_n|| \to ||x||$, $\{x\} = \mathcal{F}(f)$ (see Lemme 2.1 by Brezis & Sibony, op. cit.). Moreover, as above, $x_n \to x$; so, $x_n \to x$. In this way, we extend a result by Gwinner ("J. Gwinner—On the convergence of some iteration processes in uniformly convex Banach spaces—*Proc. Am. Math. Soc.* 71, 29–35 (1978)").