FIXED POINT THEOREMS IN COMPLETE METRIC SPACES

G. Emmanuele
Seminar of Mathematics, University of Catania, Catania, Italy

(Received 4 February 1980; in revised form 30 June 1980)
Key words: Generalized contractions, fixed point theorems, convergence of sequence of iterates.

1. INTRODUCTION

THE STUDY in fixed point theory has generally developed in three main directions: generalization of conditions which ensure existence, and, if possible, uniqueness, of fixed points; investigation of the character of the sequence of iterates $\left\{T^{n} x\right\}_{n=0}^{\infty}$, where $T: X \rightarrow X, X$ a complete metric space, is the map under consideration; study of the topoligical properties of the set of fixed points, whenever T has more than one fixed point. This note treats only some aspects of the first and second question, along a line followed by many other authors. We mention, in particular, De Blasi [3], Kannan [4], Opial [7], Reich [8-10].

More precisely we consider maps $T: X \rightarrow X$, which satisfy conditions of the type

$$
d(T x, T y) \leqslant \varphi(d(x, y))+\psi(d(T x, x))+\chi(d(T y, y)) \quad \text { for each } x, y \in X,
$$

and for these mappings we prove, under suitable hypotheses, existence and uniqueness of fixed points.

The paper consists of four sections. In Section 1 we prove a fundamental lemma. In Section 2 we use this in order to establish the main fixed point theorems. In Section 3 we obtain some wellknown results as corollaries of our theorems. Further results are presented in Section 4.

1. Through all the paper, X denotes a complete metric space and $T, T: X \rightarrow X$, an asymptotically regular mapping (see [2]); i.e., a function satisfying $\lim _{n} d\left(T^{n} x, T^{n+1} x\right)=0$ for each $x \in X$. Furthermore, we suppose that there exist three functions φ, ψ, χ, from $[0,+\infty[$ into $[0,+\infty[$, which satisfy the assumptions:
($\left.\mathrm{I}_{1}\right) \varphi(r)<r$ if $r>0$,
$\left(\mathrm{I}_{2}\right)$ there exists $\lim _{r \rightarrow \bar{r}^{+}} \varphi(r) \leqslant \varphi(\bar{r})$ for each $\bar{r} \in[0,+\infty[$
$\left(I_{3}\right) \quad \psi(0)=\chi(0)=0$.
Moreover, we suppose that T, φ, ψ, χ satisfy the inequality
($\left.\mathrm{I}_{4}\right) \quad d(T x, T y) \leqslant \varphi(d(x, y))+\psi(d(T x, x))+\chi(d(T y, y)) \quad$ for each $x, y \in X$.
Lemma. Under the above assumptions on X and T and if, in addition, ψ and χ are continuous at $r=0$, then, for each $x \in X$, there exists $z \in X$ such that $\left\{T^{n} x\right\}_{n=0}^{\infty}$ converges to z.

Proof. Suppose that there exists $x \in X$ such that the sequence of iterates is not a Cauchy sequence. Then, following [9] there exist $\varepsilon>0,\{m(j)\}_{j=0}^{\infty},\{n(j)\}_{j=0}^{\infty}$ which satisfy the conditions

$$
\begin{gather*}
m(j)>n(j) \quad \text { for each } j \in N \tag{1.1}\\
\underset{j}{\lim } n(j)=+\infty \tag{1.2}\\
d\left(T^{m(j)} x, T^{n(j)} x\right) \geqslant \varepsilon \tag{1.3}\\
d\left(T^{m(j)-1} x, T^{n(j)} x\right)<\varepsilon . \tag{1.4}
\end{gather*}
$$

Then, we have

$$
\varepsilon \leqslant d\left(T^{m(j)} x, T^{n(j)} x\right) \leqslant d\left(T^{m(j)} x, T^{m(j)-1} x\right)+d\left(T^{m(j)-1} x, T^{n(j)} x\right)<\varepsilon+d\left(T^{m(j)} x, T^{m(j)-1} x\right)
$$

which implies

$$
\begin{equation*}
\lim _{j} d\left(T^{m(j)} x, T^{n(j)} x\right)=\varepsilon . \tag{1.5}
\end{equation*}
$$

On the other hand

$$
\begin{gathered}
d\left(T^{m(j)} x, T^{n(j)} x\right) \leqslant d\left(T^{m(j)} x, T^{m(j)+1} x\right)+d\left(T^{n(j)} x, T^{n(j)+1} x\right)+d\left(T^{m(j)+1} x,\right. \\
\left.T^{n(j)+1} x\right) \leqslant d\left(T^{m(j)} x, T^{m(j)+1} x\right)+d\left(T^{n(j)} x, T^{n(j)+1} x\right)+\varphi\left(d\left(T^{m(j)} x, T^{n(j)} x\right)\right) \\
+\psi\left(d\left(T^{m(j)+1} x, T^{m(j)} x\right)\right)+\chi\left(d\left(T^{n(j)+1} x, T^{n(j)} x\right)\right)
\end{gathered}
$$

that is

$$
\begin{gathered}
d\left(T^{m(j)} x, T^{n(j)} x\right)-\varphi\left(d\left(T^{m(j)} x, T^{n(j)} x\right)\right) \leqslant d\left(T^{m(j)} x, T^{m(j)+1} x\right)+d\left(T^{n(j)} x,\right. \\
\left.T^{n(j)+1} x\right)+\psi\left(d\left(T^{m(j)+1} x, T^{m(j)} x\right)\right)+\chi\left(d\left(T^{n(j)+1} x, T^{n(j)} x\right)\right)
\end{gathered}
$$

and, letting $j \rightarrow+\infty$

$$
\varepsilon-\lim _{j} \varphi\left(d\left(T^{m(j)} x, T^{n(j)} x\right)\right) \leqslant 0
$$

Hence, by (1.3) and (1.5) it follows that $\varepsilon=0$, a contradiction. Since X is a complete metric space, the proof is complete.
2. In this section we shall prove two fixed point theorems: the first for noncontinuous, the second for continuous mappings.

Theorem 1. Let $X, T, \varphi, \psi, \chi$ be as in the Lemma. Furthermore, we suppose that $\chi(r)<r$ if $r>0$. Then T has a unique fixed point.

Proof. Uniqueness is obvious by virtue of hypotheses $\left(\mathrm{I}_{1}\right),\left(\mathrm{I}_{3}\right)$ and $\left(\mathbf{I}_{4}\right)$. So let us show existence. From the Lemma there is a $z \in X$ such that $T^{n} x \rightarrow z$, as $n \rightarrow+\infty$, for each $x \in X$. Since

$$
\begin{gathered}
d(z, T z) \leqslant d\left(z, T^{n} x\right)+d\left(T^{n} x, T^{n+1} x\right)+d\left(T^{n+1} x, T z\right) \leqslant d\left(z, T^{n} x\right)+d\left(T^{n} x, T^{n+1} x\right) \\
+\varphi\left(d\left(T^{n} x, z\right)\right)+\chi(d(T z, z))+\psi\left(d\left(T^{n} x, T^{n+1} x\right)\right)
\end{gathered}
$$

we have

$$
d(z, T x)-\chi(d(z, T z)) \leqslant 2 d\left(z, T^{n} x\right)+d\left(T^{n} x, T^{n+1} x\right)+\psi\left(d\left(T^{n} x, T^{n+1} x\right)\right)
$$

and, letting $n \rightarrow+\infty$, we have

$$
0 \leqslant d(z, T z)-\chi(d(z, T z)) \leqslant 0 ;
$$

thus, $z=T z$ follows.
Remark 1. Obviously, the role of the functions ψ and χ can be reversed.
For continuous functions, we can prove the following result.
Theorem 2. Let $X, T, \varphi, \psi, \chi$ be as in the Lemma. If, in addition, T is continuous, then it has a unique fixed point.

Proof. Uniqueness follows as in Theorem 1. Let $z \in X$ be such that $T^{n} x \rightarrow z$, as $n \rightarrow+\infty$. From continuity of T we obtain

$$
\lim _{n} T^{n+1} x=T z
$$

and, since T is asymptotically regular, we have $z=T z$.
Remark 2. If X is a closed, non-void, subset of a Banach space B, Theorem 2 is still true under the assumption: " T is a strongly-weakly continuous mapping from X into X ".

Remark 3. From the Lemma, Theorem 1 and Theorem 2, there follows that the sequence of iterates $\left\{T^{n} x\right\}_{n=0}^{\infty}$ converges to the unique fixed point of T, for each $x \in X$.

Remark 4. In [3] the author puts the following question: "Let T be an asymptotically regular, continuous mapping and let S be a non-void, weakly closed subset of a Hilbert space X. If $T, T: S \rightarrow S$, satisfies the condition

$$
\|T x-T y\| \leqslant p\|x-y\|+q(\|T x-x\|+\|T y-y\|), \quad p^{2}+q^{2}=1, \quad p, q \neq 0
$$

for each $x, y \in S$, does the sequence $\left\{T^{n} x\right\}_{n=0}^{\infty}$ converge to the unique fixed point of T, if it exists?"
By using Theorem 2, with $\varphi(r)=p r, \psi(r)=\chi(r)=q r$ for each $r \in[0,+\infty[$, we answer, positively, to this question. Furthermore, if we use Theorem 1, we can dispense with the continuity of T.
3. In this section we obtain some well-known results, as corollaries of our previous theorems.

Corollary 1 [6]. Let T be a function from X into X. We suppose that there exists a map f, f : $[0,+\infty[\rightarrow[0,+\infty[$, continuous from the right for each $r \in[0,+\infty[$, such that

$$
d(T x, T y) \leqslant f(d(x, y)), \quad \text { for each } x, y \in X
$$

If $f(r)<r$, for $r>0$, then the sequence $\left\{T^{n} x\right\}_{n=0}^{\infty}$ converges to the unique fixed point of T.

Proof. We use Theorem 2. In this theorem let $\varphi(r)=f(r), \psi(r)=\chi(r)=0$ be, for each $r \in[0$, $+\infty$ [. Moreover, if $v \in N$ exists such that $T^{v+1} x=T^{v} x$, for each $x \in X, T$ is a asymptotically regular mapping. On the contrary, one has, for each $x \in X$ such that this v doesn't exist,

$$
d\left(T^{n+1} x, T^{n} x\right) \leqslant f\left(d\left(T^{n} x, T^{n-1} x\right)\right)<d\left(T^{n} x, T^{n-1} x\right) \quad \text { for each } n \in N
$$

Put $d=\lim d\left(T^{n+1} x, T^{n} x\right)$, we have $d \leqslant \mathrm{f}(d) \leqslant d$ and so $d=0$.

Corollary 2 [1]. Let X, T be as in Corollary 1. Suppose that f, from [$0,+\infty$ [into [$0,+\infty[$ is a non-decreasing function, continuous from the right such that

$$
d(T x, T y) \leqslant f(d(x, y)), \quad \text { for each } x, y \in X .
$$

If $f(r)<r(r>0)$ and if X is bounded, then T has a unique fixed point.
Corallary 3 [3]. Let T be an asymptotically regular and continuous function, such that T maps S into S, with S a non-void weakly closed subset of a Hilbert space H. Also, we suppose that T satisfies

$$
\|T x-T y\| \leqslant\|T x-x\|+\|T y-y\|, \quad \text { for each } x, y \in X
$$

Then, for each $x \in S$, the sequence $\left\{T^{n} x\right\}_{n=0}^{\infty}$ converges to the unique fixed point of T.
Proof. In Theorem 2, we take $\varphi(r)=0, \psi(r)=\chi(r)=r$ for each $r \geqslant 0$.
Corollary 4 [3]. Let T be, $T: S \rightarrow S, S$ a non-void weakly closed subset of a Hilbert space H, an asymptotically regular and continuous mapping, such that

$$
\|T x-T y\| \leqslant p\|x-y\|+q(\|T x-x\|+\|T y-y\|), \quad \text { for each } x, y \in X
$$

with $p^{2}+q^{2}<1$. Then, the thesis of Corollary 3 is true.
Proof. In Theorem 1, we put $\varphi(r)=p r, \psi(r)=\chi(r)=q r$, for each $r \geqslant 0$. We observe that, by using Theorem 1 , we can dispense with the continuity of T.

Corollary 5 [8]. Let (X, d) be a complete metric space and let a, b, c be nonnegative numbers, with $a+b+c<1$. Furthermore, suppose that $T: X \rightarrow X$ satisfies

$$
d(T x, T y) \leqslant a d(x, y)+b d(T x, x)+c d(T y, y), \quad \text { for each } x, y \in X
$$

Then, T has a unique fixed point.
Proof. We can take, in Theorem 1, $\varphi(r)=a r, \psi(r)=b r, \chi(r)=c r$, for each $r \in[0,+\infty[$. Since, for each $n \in N$, we have

$$
d\left(T^{n+1} x, T^{n} x\right) \leqslant a d\left(T^{n} x, T^{n-1} x\right)+b d\left(T^{n+1} x, T^{n} x\right)+c d\left(T^{n} x, T^{n-1} x\right), \quad x \in X
$$

if follows that

$$
d\left(T^{n+1} x, T^{n} x\right) \leqslant\left(\frac{a+c}{1-b}\right)^{n} d(T x, x), \quad x \in X
$$

This fact implies that T is asymptotically regular, being $a+b+c<1$.
Remark 5. Under the assumptions of Corollary 5, we have, by virtue of Remark 3, that the sequence $\left\{T^{n} x\right\}_{n=0}^{\infty}$ converges to the unique fixed point of T.

Corollary 6 [5]. Let $T, T: X \rightarrow X$, be a mapping satisfying the condition

$$
d(T x, T y) \leqslant(x, y)-\Delta(d(x, y)), \quad \text { for each } x, y \in X
$$

where $\Delta, \Delta:[0,+\infty[\rightarrow[0,+\infty[$, is a continuous function such that $\Delta(r)>0$, if $r>0$. Then, for each $x \in X$, the sequence $\left\{T^{n} x\right\}_{n=0}^{\infty}$ converges to the unique fixed point of T.

Proof. Asymptotical regularity follows as in Corollary 1. By putting, in Theorem $1, \phi(r)=$ $r-\Delta(r), \psi(t)=\chi(r)=0$ for each $r \in[0,+\infty$ [one obtains the thesis. We observe that we can dispense with the continuity of Δ. In fact it suffices that Δ is a right continuous or a monotonically nondecreasing function.
4. In this section, we consider mappings $T, T: X \rightarrow X$, satisfying all assumptions of n. 1 , with the exception of $\left(\mathrm{I}_{4}\right)$, which is replaced with
$\left(\mathrm{I}_{4}^{\prime}\right) \quad d(T x, T y) \leqslant \varphi(d(x, y))+p(d(x, y)) \psi(d(T x, x))+q(d(x, y)) \chi(d(T y, y))$ for each $x, y \in X$.
Here $p, p:[0,+\infty[\rightarrow[0,+\infty[$, is a function such that
(I $\left.\mathrm{I}_{5}\right) \lim _{s \rightarrow \bar{s}+} p(s)<+\infty$, for each $\bar{s} \in[0,+\infty[$
and $q, q:[0,+\infty[\rightarrow[0,+\infty[$, is a function such that
(I6) $\lim _{s \rightarrow 0+} q(s)<1$ and $\lim _{s \rightarrow \bar{s}+} q(s)<+\infty$, for each $\bar{s} \in[0,+\infty[$.
Before proving the announced fixed point theorems, we observe that in this case the Lemma is still true if we suppose that ψ, χ are continuous functions as $r \rightarrow 0+$. Then, with standard arguments, we prove

Theorem 3. If $X, T, \varphi, \psi, \chi, p, q$ satisfy all previous assumptions and, in addition, $\chi(r) \leqslant r$ for each $r \in\left[0,+\infty\left[\right.\right.$, then T has a unique fixed point. Moreover, the sequence $\left\{T^{n} x\right\}_{n=0}^{\infty}$ converges to the unique fixed point of T.

This last Theorem 3 generalizes the following result of [10].
"Let (X, d) be a complete metric space. If $T, T: X \rightarrow X$, satisfies

$$
\begin{equation*}
d(T x, T y) \leqslant a(d(x, y)) d(x, y)+(b(x, y)) d(T x, x)+c(d(x, y)) d(T y, y) \tag{4.1}
\end{equation*}
$$

where $x, y \in X, x \neq y$, and a, b, c are monotonically decreasing functions from [$0,+\infty$ [into $[0,1[$ such that $a(s)+b(s)+c(s)<1$, the T has a unique fixed point".
To this end, we observe, first of all, that T is an asymptotically regular mapping (see [10]). Moreover, we can take

$$
\varphi(r)=\left\{\begin{array}{ll}
0 & r=0 \\
a(r) r & r \neq 0
\end{array} ; \psi(r)=\chi(r)=r \quad \text { for each } r \in[0,+\infty[; \quad p(s)=1\right.
$$

for each $s \in\left[0,+\infty\left[\right.\right.$; since we may assume $c(s)<\frac{1}{2}$ (see [9])

$$
q(s)= \begin{cases}\frac{1}{2} & s=0 \\ c(s) & s \neq 0\end{cases}
$$

By using Theorem 3 we obtain that T has a unique fixed point in X and, furthermore, that the sequence of iterates coverges to this unique fixed point.

Finally, if T is a continuous mapping satisfying assumptions as in the Lemma we may prove a result as Theorem 2, without assumptions $\lim _{s \rightarrow 0+} p(s)<+\infty$ and $\lim _{s \rightarrow 0+} q(s)<1$.

REFERENCES

1. Browder F. E., On the convergence of successive approximation for non linear functional equations, Indag. math. XXX(1), 27-35 (1968).
2. Browder F. E. \& Petrishyn W. V., The solution by iteration of non-linear functional equations in Banach spaces, Rull. Am. math. Soc. 72, 571-575 (1966).
3. De Blasi F. S., Fixed points for Kannan's mappings in Hilbert spaces, Boll. Un. mat. Ital. (4)9, 818-823 (1974).
4. Kannan R., Some results on fixed points, Bull. Calcutta math. Soc. 60, 71-76 (1968).
5. Krasnosel'ski M. A. \& Stecenko V. Ja., About the theory of equations with concave operators (in Russian), Sib. mat. Zh. 10(3) 565-572 (1969).
6. Mukherjea A., Contractions and completely continuous mappings, Nonlinear Analysis, TMA 1(3), 235-247 (1977).
7. Opial Z., Weak convergence of the sequence of successive approximation for non expansive mappings, $B u l l$. Am. math. Soc. 73, 591-597 (1967).
8. Retch S., Some remarks concerning contraction mappings, Can. math. Bull. 14, 121-124 (1971).
9. Reich S., Fixed point of contractive functions, Boll. Un. mat. Ital. (4)5, 2642 (1972).
10. Reich S., Kannan's fixed point theorem, Boll. Un. mat. Ital. (4)4, 1-11 (1971).
