LIFTING OF ROTUNDITY PROPERTIES FROM E TO $L^p(\mu, E)$

GIOVANNI EMMANUELE AND ALFONSO VILLANI

ABSTRACT. We consider some rotundity properties which are extensions of the uniform rotundity and show that these properties lift from the Banach space E (or from the conjugate Banach space E^*) to the Lebesgue-Bochner function space $L^p(\mu, E)$ (or to $(L^p(\mu, E))^*$), 1 . We make no $assumption on <math>E^*$; in particular, we do not assume that E^* has the Radon-Nikodym property.

0. Introduction. In their paper [16] Smith and Turett give several interesting results about the geometry of the Lebesgue-Bochner function spaces $L^{p}(\mu, E)$. In particular they show that the following statement holds.

THEOREM 0. Let (S, \sum, μ) , a finite measure space, and E, a Banach space, be given. Assume that E^* , the conjugate space of E, satisfies the Radon-Nikodym property. Then $L^p(\mu, E)$, 1 , is weaklyuniformly rotund if and only if <math>E is.

One of the purposes of this paper is to prove the above result without any assumption on E^* . (By the way, it is unknown up to now whether the weak uniform rotundity of a Banach space E implies that E^* has the Radon-Nikodym property). Moreover, we consider three other geometric properties, namely weak local uniform rotundity weak^{*} uniform rotundity (in a conjugate space) and weak^{*} local uniform rotundity, and we show that they lift from E (or E^*) to $L^p(\mu, E)$ (or $(L^p(\mu, E))^*$). Also for these properties we will make no assumption on E^* . It is worth noting that assuming the Radon-Nikodym property for E^* would be an effective restriction in this case (see Remark 4 at the end of the paper).

Work performed under the auspices of G.N.A.F.A. of Italian C.N.R. and partially supported by a national project of Italian Mi nistero della Pubblica Istruzione (40% -1983).

Received by the editors on November 14, 1984, and in revised form on Septmeber 6, 1985.

Th question of whether certain properties of a Banach space E are inherited by $L^{p}(\mu, E)$ has been studied extensively (see Day [3], Diestel [4], Leonard and Sundaresan [10] and [11], Mc Shane [13], Smith and Turett [16], Sundaresan [17], Turett and Uhl [18]).

1. Definitions. To begin with, let us recall the cited geometric properties. Two of them ((WUR) and (W*UR)) are directionalizations of the *uniform rotundity* (a property introduced by Clarkson in the famous paper [1]), as underlined by Smith [14]. The remaining properties are localizations of the preceding ones, as it is easily realized. Throughout E will be Banach space with norm $|| \cdot ||$ and E^* will be the conjugate space of E with norm $|| \cdot ||_*$.

DEFINITION 1. (see [2]). E (resp. E^*) is said to be weakly uniformly rotund (WUR) (resp. weakly^{*} uniformly rotund (W^{*}UR)) provided that $||x_n|| = ||y_n|| = 1$ for every $n \in N$ and $||x_n + y_n|| \xrightarrow{w} 2$ imply that $x_n - y_n \xrightarrow{w} 0$ (resp. $||f_n||_* = ||g_n||_* = 1$ for every $n \in N$ and $||f_n + g_n||_* \to 2$ imply that $f_n - g_n \xrightarrow{w^*} 0$).

DEFINITION 2. (see [12] and [9]). $E(resp. E^*)$ is said to be weakly locally rotund (WLUR) (resp. weakly^{*} locally uniformly rotund (W^{*}LUR)) provided that $||x|| = ||y_n|| = 1$ for every $n \in N$ and $||x + y_n|| \to 2$ imply that $y_n^{\stackrel{w}{\to}} x$ (resp. $||f||_* = ||g_n||_* = 1$ for every $n \in N$ and $||f + g_n||_* \to 2$ imply that $g_n^{\stackrel{w}{\to}} f$).

The connections among the above rotundity properties (for a conjugate space) are contained in the chart below where an arrow denotes implication:

 $(WUR) \longrightarrow (W^*UR)$ $\downarrow \qquad \qquad \downarrow$ $(WLUR) \longrightarrow (W^*LUR).$

Obviously, for a general Banach space, this chart reduces to: $(WUR) \rightarrow (WLUR)$. No implication can be reversed (see §4).

Let (S, \sum, μ) be a measure space. We will denote by $L^p(\mu, E), 1 , the Lebesgue-Bochner function space of <math>\mu$ -equivalence classes of strongly measurable functions $f: S \to E$ with $\int_S ||f(s)||^p d\mu < \infty$,

endowed with the norm

$$|||f||| = \left(\int_{S} ||f(s)||^{p} d\mu\right)^{1/p}$$

We will denote by $||| \cdot |||_*$ the norm of the conjugate space $(L^p(\mu, E))^*$. For our purposes an integral representation theorem for the elements of $(L^p(\mu, E))^*$ will be useful. Its most general form is due to A. and C. Ionescu Tulcea [8] (see also Dinculeanu [7, p. 119]); as far as it is known (see [5, p. 116]), it is used here, in the study of the structure of $L^p(\mu, E)$, for the first time. We state it as a lemma.

LEMMA 0. Let (S, \sum, μ) be a σ -finite measure space. Then for each linear continuous functional L on $L^p(\mu, E)$ there exists a function g, $g: S \to E^*$ such that:

(a) the function $s \to \langle g(s), f(s) \rangle$ is an element of $L^1(\mu, \mathbf{R})$ for every $f \in L^p(\mu, E)$;

(b) $L(f) = \int_{s} \langle g(s), f(s) \rangle d\mu$ for every $f \in L^{p}(\mu, E)$;

(c) the function $s \to ||g(s)||_*$ is an element of $L^q(\mu, \mathbf{R}), 1/p+1/q = 1$; and

(d)
$$|||L|||_* = \left(\int_S ||g(s)||_*^q d\mu\right)^{1/q}$$
.

2. Reformulation of the rotundity properties. In order to obtain useful reformulations of the above rotudity conditions, we consider a class G of real functions G(u, v, t) defined for $u \ge 0, v \ge 0, t \ge 0$. We say that $G \in \mathcal{G}$ provided that:

i) G(u, v, t) > G(u, v, t') if t < t';

- ii) G is continuous;
- iii) $G(u, v, u + v) \ge 0$; and

iv) G(u, v, u + v) = 0 if and only if u = v.

The class \mathcal{G} contains, for example, the functions $G_r, 1 < r < \infty$, given by

(*)
$$G_r(u, v, t) = 2^{r-1}(u^r + v^r) - t^r.$$

LEMMA 1. For every Banach space E the following are equivalent: j) E is (WUR);

jj) any $G \in \mathcal{G}$ satisfies the condition:

(1) for bounded sequences $\{x_n\}, \{y_n\} \subset E, G(||x_n||, ||y_n||, ||x_n + y_n||) \to 0$ implies $x_n - y_n \stackrel{w}{\to} 0$; and

jjj) the condition (1) satisfied by some $G \in \mathcal{G}$.

PROOF. j) \Rightarrow jj). Arguing by contradiction, we assume that the exist $G \in \mathcal{G}, f \in E^*, \varepsilon > 0$ and two bounded sequences $\{x_n\}, \{y_n\} \subset E$ for which $G(||x_n||, ||y_n||, ||x_n + y_n||) \rightarrow 0$ and $|f(x_n - y_n)| \geq \varepsilon$. Since $\{x_n\}, \{y_n\}$ are bounded, we can suppose that $d_1, d_2, l \in [0, \infty[$ exist such that $||x_n|| \rightarrow d_1, ||y_n|| \rightarrow d_2, ||x_n + y_n|| \rightarrow l$; obviously, $l \leq d_1 + d_2$. On the other hand, i) and iii) imply

$$0 \le G(||x_n||, ||y_n||, ||x_n|| + ||y_n||) \le G(||x_n||, ||y_n||, ||x_n + y_n||)$$

and so, letting $n \to \infty$ and using ii), we have

$$0 \le G(d_1, d_2, d_1 + d_2) \le G(d_1, d_2, l) = 0.$$

Hence, by iv), $d_1 = d_2 = d$ follows, whereas i) gives l = 2d. Clearly d > 0.

Now, we consider the norm one sequences $\{x_n/||x_n||\}, \{y_n/||y_n||\}$ with n sufficiently large. We have

$$\begin{split} & \left| f\left(\frac{x_n}{||x_n||} - \frac{y_n}{||y_n||}\right) \right| \\ & \geq \left| f\left(\frac{x_n}{d} - \frac{y_n}{d}\right) \right| - \left| f\left(\frac{x_n}{||x_n||} - \frac{x_n}{d}\right) + f\left(\frac{y_n}{d} - \frac{y_n}{||y_n||}\right) \right| \\ & \geq \frac{\varepsilon}{d} - \left| f\left(\frac{x_n}{||x_n||} - \frac{x_n}{d}\right) + f\left(\frac{y_n}{d} - \frac{y_n}{||y_n||}\right) \right|; \end{split}$$

consequently, for n sufficiently large,

(
$$\alpha$$
) $\left| f\left(\frac{x_n}{||x_n||} - \frac{y_n}{||y_n||}\right) \right| \ge \frac{\varepsilon}{2d}.$

On the other hand, (2)

$$2 \ge \left| \left| \frac{x_n}{||x_n||} + \frac{y_n}{||y_n||} \right| \right| \ge \left| \left| \frac{x_n}{d} + \frac{y_n}{d} \right| \right| - \left| \left| \left(\frac{x_n}{||x_n||} - \frac{x_n}{d} \right) - \left(\frac{y_n}{d} - \frac{y_n}{||y_n||} \right) \right| \right| \to 2.$$

(α) and (β) contradict j).

 $jj) \Rightarrow jjj$). This is trivial.

 $jjj) \Rightarrow j$. Consider two arbitrary norm one sequences $\{x_n\}, \{y_n\} \subset E$ such that $||x_n + y_n|| \rightarrow 2$. Then, for any $G \in \mathcal{G}$, we have

$$G(||x_n||, ||y_n||, ||x_n + y_n||) \to G(1, 1, 2) = 0.$$

Since we are assuming jjj), we get $x_n - y_n \xrightarrow{w} 0$.

The proofs of the following Lemmas 2-4 are analogous to that of Lemma 1. They will be therefore omitted.

LEMMA 2. For every conjugate Banach space E^* the following are equivalent:

j) E^* is (W*UR);

jj) any $G \in \mathcal{G}$ satisfies the condition:

(2) for bounded sequences $\{f_n\}, \{g_n\} \subset E^*, G(||f_n||_*, ||g_n||_*, ||f_n + g_n||_*) \rightarrow 0$ implies $f_n - g_n \stackrel{w^*}{\longrightarrow} 0$;

jjj) the condition (2) is satisfied by some $G \in \mathcal{G}$.

LEMMA 3. For every Banach space E the following are equivalent: j) E is (WLUR):

jj) any $G \in \mathcal{G}$ satisfies the condition:

(3) for $x \in E$ and bounded sequence $\{x_n\} \subset E$, $G(||x||, ||x_n||, ||x + x_n||) \to 0$ implies $x_n^{\stackrel{w}{\rightarrow}} x$; iii) the condition (a) is not for the condition of $G \in C$

jjj) the condition (3) is satisfied by some $G \in \mathcal{G}$.

LEMMA 4. For every conjugate Banach space E^* the following are equivalent:

j) E^* is (W*LUR);

jj)any $G \in \mathcal{G}$ satisfies the condition:

(4) for $f \in E^*$ and a bounded sequence $\{f_n\} \subset E^*, G(||f||_*, ||f_n||_*, ||f + f_n||_*) \to 0$ implies $f_n \stackrel{w^*}{\longrightarrow} f$;

jjj) the condition (4) is satisfied by some $G \in \mathcal{G}$.

3. Lifting of the rotundity conditions. In this section we prove our main results concerning the lifting of the considered rotundity conditions from E to $L^{p}(\mu, E)$ (or from E^{*} to $(L^{p}(\mu, E))^{*}$).

For the sake of brevity and clarity we prove them supposing that (S, \sum, μ) is a σ -finite measure space. We shall show later on (see Remarks 1 and 2) how this assumption can be dropped. Also, to avoid triviality, we always suppose the existence of a set $X \in \sum$ with $0 < \mu(X) < \infty$.

THEOREM 1. $L^{p}(\mu, E)$ is (WUR) if and only if E is.

PROOF. The "only if" part is clear since E is isometrically embedded in $L^{p}(\mu, E)$.

To prove the reverse implication, assume that E is (WUR). We show that jjj) of Lemma 1 is true for $L^p(\mu, E)$, by taking $G = G_p, G_p$ given by (*). All we need to prove is that, for bounded sequences $\{f_n\}, \{g_n\} \subset L^p(\mu, E\}, G_p(||||f_n|||, |||g_n|||, ||f_n + g_n|||) \to 0$ implies $L(f_n - g_n) \to 0$ for each $L \in (L^p(\mu, E))^*$.

Proceeding by contradiction, we assume the existence of bounded sequences $\{f_n\}, \{g_n\} \subset L^p(\mu, E), \sigma > 0$ and $L \in (L^p(\mu, E))^*$ for which $G_p(|||f_n|||, |||g_n|||, ||f_n + g_n|||) \to 0$ and $L(f_n - g_n) \ge 2\sigma$.

Now, according to Lemma 0, L has an integral representation $L(f) = \int_{S} \langle h(s), f(s) \rangle d\mu$, $f \in L^{p}(\mu, E)$, where $h, h : S \to E^{*}$, is weak^{*} measurable and such that $\left(\int_{S} ||h(s)||_{*}^{q} d\mu\right)^{1/q} = ||L|||_{*}, 1/p+1/q = 1$. Hence

$$\int_{S} \langle h(s), f_n(s) - g_n(s) \rangle d\mu \geq 2\sigma, \text{ for each } n \in N.$$

Since *h* satisfies condition c) of Lemma 0, for each $\eta > 0$ there exists a set $S_{\eta} \in \sum, 0 < \mu(S_{\eta}) < \infty$, for which $\left(\int_{S \setminus S_{\eta}} ||h(s)||_{*}^{q} d\mu\right)^{1/q} \leq \eta$; it follows that for some $\tilde{S} \in \sum, 0 < \mu(\tilde{S}) < \infty$,

$$\int_{\tilde{S}} \langle h(s), f_n(s) - g_n(s) \rangle d\mu > \sigma, \text{ for each } n \in N.$$

The inequalities

$$G_{p}(|||f_{n}|||, |||g_{n}|||, |||f_{n} + g_{n}|||) \geq \int_{\tilde{S}} G_{p}(||f_{n}(s)||, ||g_{n}(s)||, ||f_{n}(s) + g_{n}(s)||)d\mu, \text{ for each } n \in N,$$

and the fact that the integrands are nonnegative (by properties i) and iii) of the class \mathcal{G} allow us to suppose (by taking a subsequence if necessary) that $G_p(||f_n(s)||, ||g_n(s)||, ||f_n(s) + g_n(s)||) \to 0$ a.e. on \tilde{S} . Let

 $P_n = \left\{ s \in \tilde{S} : \langle h(s), f_n(s) - g_n(s) \rangle \ge \frac{\sigma}{2\mu(\tilde{S})} \right\}, \ n \in N.$

We have for every $n \in N$,

~

$$\begin{split} \sigma &\leq \int_{\tilde{S}} \langle h(s), f_n(s) - g_n(s) \rangle d\mu \\ &= \int_{P_n} \langle h(s), f_n(s) - g_n(s) \rangle d\mu + \int_{\tilde{S} \setminus P_n} \langle h(s), f_n(s) - g_n(s) \rangle d\mu \\ &\leq \left(\int_{P_n} ||h(s)||_*^q d\mu \right)^{1/q} \left(\int_{P_n} ||f_n(s) - g_n(s)||^p d\mu \right)^{1/p} + \frac{\sigma}{2\mu(\tilde{S})} \mu(\tilde{S} \setminus P_n), \end{split}$$

hence

$$\int_{P_n} ||h(s)||_*^q \geq (\frac{\sigma}{2\gamma})^q,$$

where γ is any upper bound for the real sequence $\{|||f_n||| + |||g_n|||\}$.

This implies the existence of a positive lower bound η for the real sequence $\{\mu(P_n)\}$.

Let

$$Q_n = \left\{ s \in P_n : (||f_n(s)|| + ||g_n(s)||)^p \le \frac{2\gamma^p}{\eta} \right\}.$$

Then, we have, for every $n \in N$,

$$\begin{split} \frac{\mu(P_n)}{\eta}\gamma^p &\geq \int_{P_n} (||f_n(s)|| + ||g_n(s)||)^p d\mu \\ &\geq \int_{P_n \setminus Q_n} (||f_n(s)|| + ||g_n(s)||)^p d\mu \\ &\geq \int_{P_n \setminus Q_n} (||f_n(s)|| + ||g_n(s)||)^p d\mu \geq \mu(P_n \setminus Q_n) \frac{2\gamma^p}{\eta}; \end{split}$$

hence $\mu(Q_n) \geq \frac{\eta}{2}$ for every $n \in N$.

Consequently, denoting $Q = \limsup_n Q_n$, we have $\mu(Q) \ge \eta/2$.

Then it is possible to take $t \in Q$ for which $G_p(||f_n(t)||, ||g_n(t)||, ||f_n(t) + g_n(t)||) \to 0$.

Since $t \in \bigcap_{n=1}^{\infty} Q_{h(n)}$, for a suitable subsequence $\{Q_{h(n)}\}$ of $\{Q_n\}$, then $\{f_{h(n)}(t)\}, \{g_{h(n)}(t)\}$ are bounded sequences in E and so, by Lemma 1, $f_{h(n)}(t) - g_{h(n)}(t) \stackrel{w}{\to} 0$. This is absurd since $\langle h(t), f_{h(n)}(t) - g_{h(n)}(t) \rangle \ge \frac{\sigma}{2\mu(\tilde{S})}$ for each $n \in N$.

The proof is complete.

The proof of Theorem 1 can be adapted to show the following

THEOREM 2. $(L^p(\mu, E))^*$ is $(W^* UR)$ if and only if E^* is.

In a similar way, the proofs of the remaining results concerning (WLUR) and (W^*LUR) are quite analogous, so it will be enough to display only one of them. To show that our techniques work in the case of a conjugate Banach space, we will prove Theorem 4 concerning (W^*LUR) .

THEOREM 3. $L^{p}(\mu, E)$ is (WLUR) if and only if E is.

THEOREM 4. $(L^p(\mu, E))^*$ is (W*LUR) if and only if E^* is.

PROOF. Clearly, if $(L^p(\mu, E))^*$ is (W^*LUR) , then E^* is. Vice-versa, suppose that E^* is (W^*LUR) . We show that jjj) of Lemma 4 is true for $L^p(\mu, E))^*$, by taking $G = G_q$, 1/p + 1/q = 1, G_q given by (*). Proceeding by contradiction, we assume the existence of an $L \in (L^p(\mu, E))^*$, a bounded sequence $\{L_n\} \subset (L^p(\mu, E))^*$, a $\sigma > 0$ and an $f \in L^p(\mu, E)$, for which $G_q(||L|||_*, ||L_n|||_*, ||L + L_n|||_*) \to 0$ and $(L_n - L)(f) \ge \sigma$.

According to Lemma 0, L, L_1, L_2, \ldots have integral representations by means of weak^{*} measurable g, g_1, g_2, \ldots

By (d) of Lemma 0,

$$\int_{S} G_{q}(||g(s)||_{*}, ||g_{n}(s)||_{*}, ||g(s) + g_{n}(s)||_{*})d\mu =$$

$$G_{q}\left(\left(\int_{S} ||g(s)||_{*}^{q} d\mu\right)^{1/q}, \left(\int_{S} ||g_{n}(s)||_{*}^{q} d\mu\right)^{1/q}, \left(\int_{S} ||g(s) + g_{n}(s)||_{*}^{q} d\mu\right)^{1/q}\right) \to C$$

and, by (b) of Lemma 0,

$$\int_{S} \langle g_n(s) - g(s), f(s) \rangle d\mu \geq \sigma.$$

As in Theorem 1 we can suppose that

$$G_q(||g(s)||_*||g_n(s)||_*, ||g(s) + g_n(s)||_*) \to 0 \text{ a.e. on } S;$$

hence, by properties i) and iii) of the class \mathcal{G} , we obtain

$$G_q(||g(s)||_*, ||g_n(s)||_*, ||g(s)||_* + ||g_n(s)||_*) \to 0$$
 a.e. on S.

Since $\lim_{v\to\infty} G_q(u, v, u+v) = \infty$, we have that $\{g_n(s)\}$ is a bounded sequence in E^* , a.e. on S. Using Lemma 4, $g_n(s) \stackrel{w^*}{\to} g(s)$ a.e. on S. It follows that $\langle g_n(s) - g(s), f(s) \rangle \to 0$ a.e. on S. On the other hand, for any $X \in \sum$ and any $n \in N$, we have

$$\int_{X} |\langle g_{n}(s) - g(s), f(s) \rangle| d\mu \leq \operatorname{const} \left(\int_{X} ||f(s)||^{p} d\mu \right)^{1/q}$$

As a consequence of this, if we define, for $s \in S$ and $n \in N$,

$$h_n(s) = |\langle g_n(s) - g(s), f(s) \rangle|,$$

then we have that $\{h_n\}$ is a sequence in $L^1(\mu \mathbf{R})$ for which all the assumptions of Vitali Convergence Theorem [6, Theorem III.6.15] are satisfied. It follows that $h_n \to 0$ in $L^1(\mu, \mathbf{R})$, whence

$$\int_{S} \langle g_{\boldsymbol{n}}(s) - g(s), f(s) \rangle d\mu \to 0,$$

a contradiction. The proof is complete.

REMARK 1. To extend Theorem 1 to the case of an arbitrary measure space (S, \sum, μ) it is enough to notic that, by Lemma III.8.5 of [6], for any two sequences $\{f_n\}, \{g_n\} \subset L^p(\mu, E)$ there exist a σ -finite measure space (S_1, \sum_1, μ_1) and a closed separable subspace E_1 of Esuch that $L^p(\mu_1, E_1)$ is isometrically isomorphic to a (closed) subspace M of $L^p(\mu, E)$ and $\{f_n\}, \{g_n\} \subset M$. Since $L^p(\mu_1, E_1)$ is (WUR) if E_1 is (this has already been shown), it is clear that condition jjj) of Lemma 1 is verified for $L^p(\mu, E)$ if E is (WUR).

A similar argument shows that Theorem 3 holds for an arbitrary measure space.

REMARK 2. Also the extension of Theorem 2 and Theorem 4 to the case of an arbitrary measure space (S, \sum, μ) is achieved by means of a suitable application of Lemma III.8.5 of [6]. Indeed, according to that, for any sequence $\{H_n\} \subset (L^p(\mu, E))^*$ and any $f \in L^p(\mu, E)$, there are a σ -finite measure space (S_1, \sum_1, μ_1) and a closed separable subspace E_1 of E such that:

h) there exists an isometric isomorphism *i* from $L^{p}(\mu_{1}, E_{1})$ into $L^{p}(\mu, E)$;

hh) $f \in i(L^{p}(\mu_{1}, E_{1}));$ and

hhh) for each $n \in N$, the norm of the element $H_n \circ i$ of $(L^p(\mu_1, E_1))^*$ is equal to $|||H_n|||_*$.

From this remark it is clear that condition jjj) of Lemma 2 (resp. Lemma 4) is verified if E^* is (W^{*}UR) (resp. if E^* is W^{*}LUR)).

REMARK 3. The techniques used in this paper allow us to extend the lifting results concerning *local uniform rotundity* and *uniform rotundity in every direction* due to Smith and Turett [16, Theorem 2 and Theorem 6] to the case of an arbitrary (not necessarily finite) measure space (S, \sum, μ) . Moreover they can be used to prove that the conjugate space $(L^p(\mu, E))^*$ is strictly rotund or uniformly rotund in every direction whenever E^* is. We leave the details to the reader.

4. Addendum: two examples. To finish we would like to display some examples showing that no implication in the chart (C) can be reversed.

EXAMPLE 1. (a (W*UR) conjugate norm in l^{∞} that is not (WLUR)). By [19; Theorem 5, p. 427]) it is possible to introduce in c_0 an equivalent norm which is (WUR). The corresponding dual norm in l^1 is uniformly Gateaux differentiable and so it determines a dual norm in l^{∞} that is (W*UR) (for these implications see Cudia [2; Corollary 3.14, p. 295]). On the other hand l^{∞} cannot be equivalently renormed (WLUR) (see [12, Theorem 5.3, p. 261]).

EXAMPLE 2 (a (WLUR) conjugate norm in $l^1 \times l^2$ that is not (W*UR)). In [15] Smith gives an example (Example 6) of a conjugate norm on l^1 which is (LUR), denoting it by $|| \cdot ||_E$, and an example (Example 1) of a conjugate norm on l^2 which is (LUR) but not (W*UR), denoting it by $|| \cdot ||_L$. Then, the norm $||(x, y)||_{E \times L} = (||x||_E^2 + ||y||_L^2)^{\frac{1}{2}}$ on $l^1 \times l^2$ is an equivalent conjugate norm that is ((LUR) and hence) (WLUR) but not (W*UR).

REMARK 4. We observe that Example 1 furnishes an example of conjugate norm in l^{∞} that is (W*UR), whereas l^{∞} does not satisfy the Radon-Nikodym property; in the same way, Example 2 furnishes an example of a norm in $l^1 \times l^2$ that is (WLUR), whereas $(l^1 \times l^2)^* = l^{\infty} \times l^2$ does not satisfy the Radon-Nikodym property.

References

1. J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.

2. D.F. Cudia, The geometry of Banach spaces, Smoothness, Trans. Amer. Math. Soc. 110 (1964), 284-314.

3. M.M. Day, Some more uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 504-507.

4. J. Diestel, L_X^1 is weakly compactly generated if X is, Proc. Amer. Math. Soc. 48 (1975), 508-510.

5. J. Diestel, J.J. Uhl, Jr., Vector measures, Math. Surveys n. 15, A.M.S. Providence, Rhode Island, 1977.

6. N. Dunford, J.T. Schwartz, *Linear Operators*, part I, Interscience, New York and London, 1958.

7. N. Dinculeanu, Linear operations on L^p -spaces, Vector and Operator Valued Measures and Applications, Academic Press, New York, 1973.

8. A. and C. Ionescu Tulcea, *Topics in the theory of lifting*, Ergebnisse Math. Grenzgebiete, Band **48**, Springer-Verlag, New York, 1969.

9. J. Kolomy, Duality mappings and characterization of Reflexivity of Banach spaces, Boll. Un. Mat. It. 1 (1982), 275-283.

10. I.E. Leonard and K. Sundaresan, Smoothness and duality in $L_p(E,\mu)$, J. Math. Anal. Appl. 46 (1974) 513-522.

11. _____ and ____, Geometry of Lebesgue-Bochner function spaces Smoothness, Trans. Amer. Math. Soc. 198 (1974), 229-251.

12. J. Lindenstrauss, Weakly compact sets-Their topological properties and the Banach spaces they generate, Annals of Math. Studies **69**, Princeton University Press, 1972.

13. E.J. McShane, *Linear functionals on certain Banach spaces*, Proc. Amer. Math. Soc. 1 (1950), 402-408.

14. M.A. Smith, Banach spaces that are uniformly rotund in weakly compact sets of directions, Can J. Math. 29 (1977), 963-970.

15. ——, Some examples concerning rotundity in Banach spaces, Math. Ann. 233 (1978), 155-161.

16. _____, B. Turett, Rotundity in Lebesgue-Bochner function spaces, Trans. Amer. Math. Soc. 257 (1980), 105-118.

17. K. Sundaresan, The Radon-Nikodym Theorem for Lebesgue-Bochner function spaces, J. Funct. Anal. 24 (1977), 276-279.

18. B. Turett, J.J. Uhl, Jr., $L_p(\mu, X)$ (1 has the Radon-Nikodym property if X does by martingales, Proc. Amer. Math. Soc.**61**(1976), 347-350.

19. V. Zizler, Banach spaces with the differentiable norms, Comment. Math. Univ. Carol. 9 (1968), 415-440.

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI CATANIA, VIALE A. DORIA 6, 95125 CATANIA, ITALY