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Abstract. We study the (DPrcp) and the Gelfand Phillips property in the space
of compact operators. Moreover we give some sufficient conditions in order that
a projective tensor product of two Banach spaces is sequentially Right (SR) or
it has the L-limited property. Moreover we study the Bourgain Diestel property
(BD), the (RDP ∗) property in the space Kw∗(X,Y ). We introduce the dual (SR∗)
property and we give a characterization of it.

In this note we wish to collect some lifting results of certain isomorphic properties
of Banach spaces to spaces of compact operators and to projective tensor products.
In [15] the second author introduced the following

Definition 1. A Banach space X has the (DPrcp) if every Dunford Pettis subset of
X is also relatively compact.

Easily every Schur space has the (DPrcp), since it is well known that Dunford
Pettis sets are conditionally weakly compact (see, for instance, [15]). It is also known
(see again [15]) that every dual Banach space has the (DPrcp) if and only if it has
the weak Radon Nikodym property that is if and only if its predual does not contain
a copy of l1. In [15] and in [19] the authors studied the lifting of the (DPrcp) from
X∗, the dual space of a Banach space X, and from a Banach space Y to the space
K(X,Y ) of all compact operators from X into Y. In this note we shall furnish a new
condition in order that K(X,Y ) has the (DPrcp). Such a result actually is strictly
more general than the previous ones as shown with Example 4.
We shall also study the Gelfand Phillips property for closed subsets of the space
K(X, Y ) (we refer the reader to [32] for more about this property).
We shall also investigate another property, quite recently introduced in [31], i.e. the
so called sequentially Right (in short (SR)) property. From the results in [25] it
follows that the (SR) property is an intermediate property between two other very
famous isomorphic properties, the Pelczynski property (V ) ([30]; see below for the
definition) and the Reciprocal Dunford Pettis (RDP ) property ([18]; see below for
the definition). In this note we give a sufficient condition in order that the projec-
tive tensor product of two Banach spaces can be (SR). Again, we shall relate the
sequential right property with the L-limited property introduced in [29]. Moreover,
following the way drawn by Pelczynski ([30]), we introduce the (SR∗) property that
is a dual property with respect to (SR) property and we give a characterization of
it.
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At the end, we shall study the Bourgain Diestel property (in short (BD)) and the
(RDP ∗) property (see Definition 29 below) in the space Kw∗(X

∗, Y ) of all w∗ − w
continuous compact operators from X∗ into Y.

Our notations are standard. Throughout X, Y, E, F denote Banach spaces, X∗

is the dual of X, and BX stands for its closed unit ball. The closed unit ball BX∗

will always be endowed with the weak-star topology. By N we represent the set of
all natural numbers.
A bounded subset K in a Banach space X is limited (respectively Dunford Pettis )
if

lim
n

sup
x∈K

| x∗n(x) |= 0

for every weak∗ null (respectively weakly null) sequence (x∗n) in X∗.
Also if A ⊂ X∗ and every weak null sequence (xn) in X converges uniformly on

A, we say that A is an L-set. Easily every relatively compact subset of X is limited
and clearly every limited set is a Dunford Pettis set and every Dunford Pettis subset
of a dual Banach space is an L-set, but the converse of these assertions, in general,
are false.

We use the symbol L(X,Y ) for the space of all (linear bounded) operators from
X into Y endowed with the operator norm, while K(X, Y ), W(X, Y ), DP(X,Y )
Lcc(X, Y ) denote the subspaces of all compact, weakly compact, Dunford Pettis (or
completely continuous), limited-completely continuous operators respectively, where
an operator T : X → Y is said to be Dunford Pettis (or completely continuous) if it
maps weakly Cauchy sequences into norm convergent sequences, whereas it is called
limited-completely continuous if it sends limited weakly null sequences into norm
null sequences.

A Banach space X has the Dunford-Pettis property (in short (DP) property) if,
for any Banach space Y, every weakly compact operator T : X → Y is completely
continuous. This is equivalent to saying that, for any weakly null sequences (xn)
and (x∗n) in X and X∗ respectively, limn |x∗n(xn)| = 0 (see, e.g., [9][Theorem 1]).
We refer to [9] for more information on the Dunford-Pettis property.
In [30] Pelczynski introduced the property (V): a Banach space X has the property
(V) if for every Banach space Y, every unconditionally converging operator T :
X → Y , i.e. an operator mapping weakly unconditionally converging series onto
unconditionally converging ones, is weakly compact, whereas in [18] Grothendieck
introduced the Reciprocal Dunford-Pettis, in symbols (RDP), property: a Banach
space X has the (RDP) property if for every Banach space Y, every completely
continuous operator T : X → Y is weakly compact.
Every Banach space with the Pelczynski’s Property (V) has the (RDP) property and
every Banach space without copy of l1 has the (RDP) property. In [27] the authors
studied the presence of the (RDP) property in the spaces C(K, E) of all continuous
functions on a compact space K with value in a Banach space E. In [13] the second
author gave a characterization of the (RDP) property. In [13], [16] and in [5] it has
been proved that property (V) and property (RDP) lift from certain Banach spaces
X and Y to their projective or injective tensor product.
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A Banach space X has the Gelfand Phillips property if every its limited set is
relatively compact. Banach spaces having the Gelfand Phillips property are, among
the others, separable Banach spaces, Schur spaces, separably complemented spaces,
reflexive Banach spaces, spaces with weak∗ sequentially compact dual balls and
spaces C(K), where K is both compact and sequentially compact. It is easy to see
that the Gelfand Phillips property, as the (DPrcp), is inherited by closed subspaces.
We will use the notations E⊗πF and E⊗εF, respectively, for the complete projective
and the completed injective tensor product of E and F (see [8] for the needed theory
of tensor products).

To obtain our first result we need the following well known

Theorem 2. [23] Let X be a Banach space without a copy of l1. Let M ⊂ K(X,Y )
such that
1) for every x ∈ X, M(x) = {T (x) : T ∈ M} is relatively compact in Y
2) M is weakly-norm sequentially equicontinuous that is limn supT∈M ||T (xn)|| = 0
for every weakly null sequence (xn) ⊂ X
then M is relatively compact.

Theorem 3. Let X and Y be Banach spaces. If X∗ and Y have the (DPrcp) and,
for every T ∈ L(X,Y ∗∗), for every weakly null sequence (xn) ⊂ X, the sequence
(T (xn)) is an L-set, then K(X, Y ) has the (DPrcp).

Proof. Let M ⊂ K(X,Y ) be a Dunford Pettis set. Then, for every x ∈ X,
M(x) is a Dunford Pettis in Y and, since Y has the (DPrcp) property, it is also a
relatively compact set. So condition (1) of Mayoral’s Theorem is satisfied. Suppose
that condition (2) is not verified. Then there are a positive number ε, a weakly null
sequence (xn) ⊂ X and a sequence (Tn) ⊂ M such that

‖Tn(xn)‖ > ε ∀n ∈ N.

For every y∗ ∈ Y ∗, the set {T ∗
ny∗ : n ∈ N} is also a Dunford Pettis subset of X∗ and

then it is relatively compact. Therefore, since (xn) is weakly null, for every y∗ ∈ Y ∗,
it follows that

〈Tn(xn), y∗〉 = 〈T ∗
n(y∗), xn〉 → 0.

So the sequence (Tn(xn)) is weakly null. Now we prove that (Tn(xn)) is a Dunford
Pettis set. Let (y∗n) be a weakly null sequence in Y ∗. The sequence (xn ⊗ y∗n) is
weakly convergent in X ⊗π Y ∗. Indeed, let H ∈ (X ⊗π Y ∗)∗ = L(X,Y ∗∗). Since
(H(xn)) is an L-set in Y ∗∗ and (y∗n) is weakly null in Y ∗, then

H(xn ⊗ y∗n) = 〈H(xn), y∗n〉 → 0.

Since X⊗πY ∗ embeds into (K(X, Y ))∗, it follows that (xn⊗y∗n) is weakly convergent
also in the space (K(X, Y ))∗. Then, since (Tn) is a Dunford Pettis set, it must be

lim
n
〈Tn(xn), y∗n〉 = lim

n
〈Tn, xn⊗π, y∗n〉 = 0

So we have proved that (Tn(xn)) is a Dunford Pettis set and then, again by the
(DPrcp) property of Y, it must be a compact set. Since it is a weakly null sequence,
it follows that there is a norm null subsequence and it is a contradiction. 2
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Example 4. The hypothesis that, for every T ∈ L(X, Y ∗∗), for every weakly null
sequence (xn) ⊂ X, the sequence (T (xn)) is an L-set, is more general than the hy-
pothesis that L(X,Y ∗∗) = K(X,Y ∗∗). As we shall prove in the following Proposition,
the condition L(X,Y ∗∗) = K(X,Y ∗∗) is equivalent to the hypothesis in Ghenciu and
Lewis’s Theorem [19]. In the following example we consider two Banach spaces X
and Y without the Dunford Pettis property since if one of them has the Dunford
Pettis property, then the thesis of Theorem 3 follows immediately and it is contained
in [19]. Therefore, let us consider the spaces X = lp × c0 and Y = E × lq with
1 < q < p < ∞ where E is the first Bourgain Delbaen space. E is an L∞ space
with the Schur property so it has the (DPrcp). As an L∞ space, its second dual
space embeds into a C(K) space so it has property (V ) of Pelczynski. It follows that
E∗ = M([0, 1]) has property (V ∗) and then, since it is not reflexive, it must contain
a copy of l1. By [20], see also [12], E∗ must contain a complemented copy of l1 and
therefore E∗∗ must contain a copy of c0 [10][Th. V.10]. This allows us to say that
L(F,E∗∗) 6= K(F,E∗∗) for every Banach space F, in particular

L(lp, E
∗∗) 6= K(lp, E

∗∗) (1).

Now let T : X → Y ∗∗ = E∗∗ × lq be a linear continuous operator and let

p1 : Y ∗∗ → E∗∗ p2 : Y ∗∗ → lq

be the natural projections. Define T1 : lp → E∗∗ and T2 : lp → lq by the laws

T1(a) = p1(T (a, 0)) ∀a ∈ lp

T2(a) = p2(T (a, 0)) ∀a ∈ lp
Obviously for every x = (a, b) ∈ lp × c0 one has

T (a, b) = T (a, 0) + T (0, b) = (p1(T (a, 0)), p2(T (a, 0))) + T (0, b) =

(T1(a), T2(a)) + T (0, b)

Let (xn) = (an, bn) be a weakly null sequence in X. Since c0 has the Dunford Pettis
property, the sequence (T (0, bn)) is a Dunford Pettis set. Since E∗∗ has the Dunford
Pettis property, then (T1(an)) is a Dunford Pettis set. Moreover, by Pitt’s Theorem,
T2 is a compact operator, so (T2(an)) is norm null and then it is also a Dunford
Pettis set. It follows that (T (xn)) = (T (an, bn)) is a Dunford Pettis set and then an
L-set. On the other hand, from condition (1) we obtain that L(X, Y ∗∗) 6= K(X, Y ∗∗).

2

The following propositions give some relations about the hypotheses of Theorem 3
and the hypotheses of Ghenciu and Lewis’s Theorem ([19][Th. 3.8]).

Proposition 5. If X∗ has the (DPrcp) and Y ∗ does not contain a copy of l1, then
the following assertions are equivalent
a) for every T ∈ L(X, Y ∗∗) and for every weakly null sequence (xn) ⊂ X, (T (xn)) is
an L-set
b) L(X,Y ∗∗) = K(X,Y ∗∗)
c) L(Y ∗, X∗) = K(Y ∗, X∗)
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Proof. a) → b) Let T ∈ L(X, Y ∗∗). Let (xn) ⊂ X be a weakly null sequence,
then, by the hypothesis, (T (xn)) is an L-set in Y ∗∗. Since Y ∗ does not contain l1,
then (T (xn)) is a compact set [11]. Every subsequence has a norm null subsequence
so (T (xn)) is norm null. Then T is completely continuous and we are done since X
does not contain l1.
b) → c) It is enough to observe that if T ∈ L(Y ∗, X∗), then T = (T ∗

|X)∗|Y ∗ : Y ∗ → X∗

and T ∗
|X is compact.

c) → a) Conversely, let T ∈ L(X,Y ∗∗), and suppose that there is a weakly null
sequence (xn) ⊂ X such that (T (xn)) is not an L-set. So there are an ε > 0, and a
weakly null sequence (y∗n) ⊂ Y ∗ such that ( passing to a subsequence, if necessary)

|〈T (xn), y∗n〉| > ε ∀n ∈ N

|〈T ∗
|Y ∗(y

∗
n), xn〉| > ε ∀n ∈ N

Since T ∗
|Y ∗ is compact, then there is a subsequence (y∗nk

)k such that (T ∗(y∗nk
)) is

norm null and we have a contradiction. So (T (xn)) is an L-set. 2

Remark 6. The hypotheses that Y ∗ does not contain l1 and that X∗ has the (DPrcp)
need only in the implication a) → b). 2

Proposition 7. If L(Y ∗, X∗) = K(Y ∗, X∗), then at least one of the following con-
ditions holds:
a) X∗ has (DPrcp)
b) Y ∗ does not contain l1.

Proof. Suppose that X∗ does not have the (DPrcp). So X contains a copy of l1,
then X∗ does not have the Compact Range Property (in short (CRP)) We refer the
reader to [24] and [33] for the definition of the CRP . Let T be an integral operator
from Y ∗ into X∗. By the hypothesis, in particular, it is compact. By [6][Th 4.9], Y ∗

does not contain l1. 2

Corollary 8. If X∗ has the Schur property then (X⊗ε X)∗ and (X⊗π X)∗ have the
(DPrcp).

Proof. Since X∗ has the Schur property, it has the (DPrcp) property. Moreover,
since X has the Dunford Pettis property, every linear operator from X into X∗∗∗

sends weakly null sequences into L-sets. Then K(X,X∗) has the (DPrcp). Since
X∗ is Schur then (X ⊗π X)∗ = L(X, X∗) = K(X,X∗) Moreover since X does not
contain a copy of l1, then (X ⊗ε X)∗ = I(X, X∗) ⊂ K(X,X∗) where I(X, X∗) is
the space of all integral operators from X into X∗. Then (X ⊗ε X)∗ and (X ⊗π X)∗

have the (DPrcp) and we are done. 2

Remark 9. In particular, Corollary 8 gives a simpler proof of Leung’s Theorem,
(see [22]), that states that, if H is the Hagler space, then H ⊗ε H cannot contain a
copy of l1. 2

Recently the second author obtained the following result on the compactness of a
subset in K(X, Y ):
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Theorem 10. [17] Let X be a Banach space such that X∗ has the Gelfand Phillips
property. Let M ⊂ K(X, Y ) such that
1) for every x ∈ X, M(x) = {T (x) : T ∈ M} is relatively compact in Y
2) for every weakly star null sequence (x∗∗n ) ⊂ X∗∗, then (T ∗∗(x∗∗n )) is norm null
uniformly with respect T ∈ H.
then M is relatively compact. 2

In [28] the authors, using Theorem 2, gave a sufficient condition in order that
a closed subspace of the space K(X, Y ) has the Gelfand Phillips property. Using
Theorem 10, we can state the following

Theorem 11. If X∗ has the Gelfand Phillips property, if M is a closed subspace
of K(X,Y ) and, for every x∗∗ ∈ X∗∗, the evaluation map φx∗∗ on M is limited
completely continuous, then M has the Gelfand Phillips property.

Proof. Let H ⊂ M be a limited set. By Theorem 10, we have to prove that
1) for every x ∈ X, H(x) = {T (x) : T ∈ H} is relatively compact in Y,
2) for every weak∗ null sequence (x∗∗n ) ⊂ X∗∗, then (T ∗∗(x∗∗n )) is norm null uniformly
with respect T ∈ H. Condition (1) follows from the hypothesis that, in particular,
for every x ∈ X, the map φx is limited completely continuous. Now, let (x∗∗n ) ⊂ X∗∗

be a weak star null sequence. For every T ∈ H, the adjoint operator T ∗ is compact,
then T ∗(BY ∗) is relatively compact and therefore it is a limited set. Hence T ∗ is a
limited operator and then it is easy to see that T ∗∗ is weak∗-norm continuous. It
follows that (T ∗∗(x∗∗n )) is norm null, so (φx∗∗n

) is a pointwise norm null sequence of
linear continuous operators. Then it converges uniformly on the limited sets [32]. It
follows that

lim
n

sup
T∈H

||φx∗∗n
(T )|| = 0

and we are done. 2

Corollary 12. Y has the Gelfand Phillips property if and only if, for every Banach
space X such that X∗ has the Gelfand Phillips property, then every evaluation map
φx∗∗ : K(X, Y ) → Y is limited completely continuous. 2

In [31] the authors introduced the so called Right topology on a Banach space
X. It is the restriction of the Mackey topology τ(X∗∗, X) to X and it is also the
topology of uniform convergence on absolutely convex σ(X∗, X∗∗) compact sets of
X∗. An operator T : X → Y is said pseudo weakly compact if it takes Right null
sequences of X into norm null sequences of Y. In [7] it was proved that a sequence
(xn) in a Banach space X is Right null if and only if it is a Dunford Pettis set and
weakly null.

Definition 13. [31] A Banach space X is said sequentially Right if, for any Banach
space Y, every pseudo weakly compact operator T : X → Y is weakly compact. 2

Definition 14. [25] A subset K of X∗ is said a Right set if for every Right null
sequence (xn) ⊂ X one has

lim
n

sup
x∗∈K

|x∗(xn)| = 0
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2

Theorem 15. [25] X is sequentially Right if and only if every Right set in X∗ is
relatively weakly compact. 2

Proposition 16. The following assertions are equivalent
a) every bounded set in X∗ is a Right set
b) every Right null sequence is norm null
c) X has the (DPrcp).

Proof. a) → b) Suppose that there is a Right null sequence (xn) that is not norm
null. So there is an ε > 0 and a subsequence (xnk

) such that

‖xnk
‖ > ε ∀k ∈ N

Then, for every k ∈ N, there is x∗k ∈ BX∗ such that

|x∗k(xnk
)| > ε

Since (x∗k) is a Right set we have a contradiction.
b) → c) Suppose that A is a Dunford Pettis set that is not relatively compact.
So there is an ε > 0 and a subsequence (xn) ∈ A such that ‖xn − xm‖ > ε for
every n,m ∈ N with n 6= m. Since A is Dunford Pettis set, it is also conditionally
weakly compact. So there is a weakly Cauchy subsequence (xnk

). Hence the sequence
(xnk

− xnk+1
) is weakly null. Since it is contained in A − A, it is also a Dunford

Pettis sequence then it is Right null. By the hypothesis it is norm null and it leads
to a contradiction.
c) → a) Let K be a bounded set in X∗ and let (xn) be a Right null sequence. Since
X has the (DPrcp), (xn) is a compact set therefore it is norm null. It follows that

lim
n

sup
x∗∈K

|x∗(xn)| ≤ supx+∈K ‖x∗‖ ‖xn‖ → 0

and it proves that K is a Right set. 2

Corollary 17. A Banach space X is reflexive if and only if it has the (DPrcp) and
it is sequentially Right.

Proof. If X is reflexive, it has Property (V) of Pelczynski, then it is also sequential
Right, moreover, since X∗ does not contain l1, then X∗∗ has the (DPrcp) and then X
has the same property. The converse follows from Theorem 15 and Proposition 16. 2

In the following Theorem we give a sufficient condition in order that the projective
tensor product of two sequentially Right spaces enjoys the same property.

Theorem 18. If X and Y are sequentially Right and L(X,Y ∗) = K(X, Y ∗) then
X ⊗π Y is sequentially Right.

Proof. Let H ⊂ (X⊗πY )∗ = L(X, Y ∗) = K(X,Y ∗) be a Right set. We prove that
H is relatively weakly compact. Let (Tn) be a sequence in H. Using the compactness
of each Tn, standard arguments allow us to suppose that there is a weak∗ dense
countable set M ⊂ Y ∗∗. For every y∗∗ ∈ M we define φy∗∗ : K(X, Y ∗) → X∗ by
putting φy∗∗(T ) = T ∗y∗∗. Suppose that {φy∗∗(Tn) : n ∈ N} is not a Right set in X∗.
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Then there are ε > 0 and a Right null sequence (xn) ⊂ X such that (passing to a
subsequence if necessary)

|〈y∗∗, Tnxn〉| > ε ∀n ∈ N.

So (Tn(xn)) is not weakly null. We claim that it cannot be weakly convergent to an
element y∗0 6= 0, too. By contradiction, assume that (Tn(xn)) weakly converges to
some y∗0 6= 0. If y0 ∈ Y and y∗0(y0) 6= 0, then, in particular,

lim
n
〈y0, Tn(xn)〉 = y∗0(y0)

Now we observe that (xn⊗y0) is Right null. Indeed, if A ∈ (X⊗π Y )∗ = L(X, Y ∗) =
K(X,Y ∗), then

|(A(xn ⊗ y0)| ≤ ‖A(xn)‖ ‖yn‖ → 0;

so (xn⊗y0) is weakly null. Moreover, if (An) is a weakly null sequence in (X⊗πY )∗ =
L(X,Y ∗) = K(X, Y ∗), then by the famous Kalton’s test for weak convergence in
spaces of compact operators ([26]), it follows that

lim
n
〈x∗∗, A∗

ny0〉 = 0 ∀x∗∗ ∈ X∗∗

that is the sequence (A∗
n(y0)) is weakly null in X∗. Since (xn) is a Dunford Pettis

set, it must be
lim

n
〈xn, A

∗
ny0〉 = 0

that is
lim

n
An(xn ⊗ y0) = 0

So, we can deduce that (xn ⊗ y0) is Dunford Pettis and then Right null. Since
(Tn) is a Right set, we have reached the sought-for contradiction. It follows that
(Tn(xn)) is not a relatively weakly compact sequence so, since Y is sequential Right,
it is not a Right set. Then there are a Right null sequence (yn) and σ > 0 such that

|〈Tn(xn), yn〉| > σ.

But the sequence (xn ⊗ yn) is a Right set ([1]) and we have a contradiction. So we
have proved that {φy∗∗(Tn) : n ∈ N} is a Right set in X∗. Since X is sequentially
Right, (φy∗∗(Tn)) has a weakly convergent subsequence. By passing to a subsequence,
by countability of M, we can say that, for every y∗∗ ∈ M, the sequence (φy∗∗(Tn)) is
weakly convergent. Now, given x∗∗ ∈ X∗∗, define

φx∗∗ : K(X,Y ∗) → Y ∗

by putting
φx∗∗(T ) = T ∗∗(x∗∗) ∀T ∈ K(X,Y ∗).

With an argument similar to the one above, one can prove that {φx∗∗(Tn) : n ∈ N}
is a Right set and then it is relatively weakly compact. It easy to prove that, if (Tnr)
and (Tnk

) are two subsequences of (Tn), then (φx∗∗(Tnr)) and (φx∗∗(Tnk
)) are weakly

convergent to the same element. Therefore, for every subsequence (φx∗∗(Tnr)), re-
peating the above proof, there is a subsequence weakly convergent to the same
element. It follows that (φx∗∗(Tn)) is weakly convergent. We can define

S : X∗∗ → Y ∗
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by the law
S(x∗∗) := weak − lim

n
T ∗∗

n (x∗∗)

and
B : Y ∗∗ → X∗

by the law
B(y∗∗) := weak − lim

n
T ∗

n(y∗∗)

It follows

〈x∗∗, B(y∗∗)〉 = lim
n
〈x∗∗, T ∗

n(y∗∗)〉 =

lim
n
〈T ∗∗

n x∗∗, y∗∗〉 =

〈S(x∗∗), (y∗∗)〉 =

〈x∗∗, S∗(y∗∗)〉
Hence,

B = S∗.
It follows easily that B is weak∗-weak continuous, so it is a conjugate operator.
This means that there is T : X → Y ∗ such that B = T ∗. By the hypothesis, T is a
compact operator. Let x∗∗ ∈ X∗∗ and y∗∗ ∈ Y ∗∗ then

lim
n
〈y∗∗, T ∗∗

n (x∗∗)〉 = 〈y∗∗, S(x∗∗)〉 =

〈S∗(y∗∗), x∗∗〉 =

〈B(y∗∗), x∗∗)〉 =

〈T ∗(y∗∗), x∗∗)〉 =

〈y∗∗, T ∗∗(x∗∗)〉
that is (Tn) is weakly convergent to T, always thanks to Kalton’s test ([26]). 2

Corollary 19. lp⊗π Y (p > 1), where Y is the second Bourgain Delbaen space, and
lp ⊗π c0 have the sequential Right property.

Proof. For every p > 1, the space lp has the Pelczynski’s Property (V ) so it
is also sequentially Right. The second Bourgain Delbaen space is also sequentially
Right [25]. Moreover suppose 1 < p < +∞, then every operator T : lp → Y ∗ is
weakly compact. Since Y ∗ is isomorphic to l1 it is also compact. If p = +∞ every
linear operator T : l∞ → Y ∗ is absolutely summing since it is defined on an L∞space
and has its values in a space with cotype two. Then, as before, it is also a compact
operator. The same holds if we replace Y with c0. So the hypotheses of Theorem 18
are satisfied. 2

Remark 20. Since the second Bourgain Delbaen space does not have the Pelczynski
property (V ) the result in Corollary 19 cannot be deduced from Emmanuele and
Hensgen’s Theorems ([16]) about the property (V) in the projective tensor products.
On the other hand from Emmanuele’s Theorem [13] about the property (RDP ) we
can obtain then lp ⊗π Y (p > 1), where Y is the second Bourgain Delbaen space has
the (RDP ) property, but the sequential Right property in a Banach space without



10 R. CILIA AND G.EMMANUELE

the Dunford Pettis property is, in general, a stronger property then the Reciprocal
Dunford Pettis property. 2

Corollary 21. If X and Y are sequentially Right and at least one of X∗ or Y ∗ is
a Schur space, then X ⊗π Y is sequentially Right.

Proof. If Y ∗ is a Schur space, then every T ∈ L(X,Y ∗) sends Right null
sequences of X in norm null sequences of Y ∗, so it is pseudo weakly compact. Since
X is sequentially Right, every T ∈ L(X, Y ∗) is weakly compact and then again, by
the Schur property, it is compact. So we can apply Theorem 18. If X∗ is a Schur
space, then, with the same arguments, it follows that Y ⊗π X is sequentially Right
and therefore we are done. 2

Theorem 22. If X and Y have the Dunford Pettis property the following assertions
are equivalent
a) X and Y are sequentially Right and at least one of them does not contain l1
b) X ⊗π Y is sequentially Right and L(X,Y ∗) = K(X, Y ∗).

Proof.
a) → b) It follows from the proof of Corollary 21 since one of the space X∗ or Y ∗

is a Schur space.
b) → a) Obviously X and Y are sequentially Right. Since X⊗π Y has the Reciprocal
Dunford Pettis property and L(X,Y ∗) = K(X, Y ∗), then we can apply Theorem 8
in [13]. 2

Theorem 23. If X is an L∞ space and X∗, Y are sequentially Right, then K(X,Y )
is sequentially Right too.

Proof. Let H ⊂ (K(X, Y )∗ be a Right set. Since K(X, Y ) = X∗ ⊗ε Y it
follows that H is a Right subset of (X∗⊗ε Y )∗. Since X∗ is an L∞ space, there is an
isomorphism S from (X∗⊗ε Y )∗ into C(K,Y )∗ where K = BX∗∗∗ endowed with the
weak∗ topology ([4]). S is obtained as the restriction of the adjoint of the projection
P : C(K,Y ) → X∗∗∗ ⊗ε Y to the subspace (X∗ ⊗ε Y )∗ of (X∗∗∗ ⊗ε Y )∗. It is easy to
prove that S(H) is a Right set in C(K,Y )∗. Since Y is sequentially Right, C(K,Y )
is sequentially Right ([25][Th 4.2]) then S(H) is weakly compact. Since S is an
isomorphism, then H is weakly compact too. 2

Definition 24. [29] A subset A of a dual space X∗ is called an L-limited set if every
weak null and limited sequence (xn) in X converges uniformly on A. A Banach
space X has the L-limited property if every L-limited set in X∗ is relatively weakly
compact. 2

Theorem 25. If X and Y have the L-limited property and L(X,Y ∗) = K(X, Y ∗)
then X ⊗π Y has the same property.

Proof. It follows adapting the proof of Theorem 18 2

Proposition 26. A Banach space X has the L-limited property if and only if it is
sequentially Right and it has the Grothendieck property.
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Proof. Suppose that X has the L-limited property. Let T : X → Y be a pseudo
weakly compact operator. Let (xn) be a limited and weakly null sequence then it is
also a Right null sequence. So (T (xn)) is norm null. Then T is limited completely
continuous. Hence, by [29], it is weakly compact and we are done. Moreover by
[29][Theorem 2.10], X has the Grothendieck property. Conversely, suppose that X is
sequentially Right and that it has the Grothendieck property. Hence every Right null
sequence it is also limited and weakly null, then every limited completely continuous
operator is also a pseudo weakly compact operator. Since X is sequentially right, it
is a weakly compact operator, therefore X has the L-limited property. 2

As for the Property (V ) of Pelczynski and the (RDP) property, we can introduce
the so called (SR∗) property that is a dual property with respect the sequential
Right property.

Definition 27. A bounded subset K of a Banach space X is said Right∗ set if for
every Right null sequence (x∗n) in X∗ it follows

lim
n

sup
x∈K

|x∗n(x)| = 0

A Banach space X has the (SR∗) property if every Right∗ set is relatively weakly
compact. 2

As for the well known properties (V ) and (RDP ), if E has the sequential Right
property, then its dual has the (SR∗) property.

Proposition 28. If every conjugate pseudo weakly compact operator T ∗ : E∗ → F ∗

is weakly compact, then E has the (SR∗) property.

Proof.
Let K be a Right∗ set. Let (xn)n ⊂ K. Define

S : l1 → E

by the law

S(y) :=
∞∑

n=1

ynxn ∀y = (yn) ∈ l1.

It is trivial to prove that S is a linear continuous operator. Observe that

〈S∗x∗, y〉 = 〈x∗, S(y)〉 =

〈x∗,
∞∑

n=1

ynxn〉 =

〈y, (x∗(xn))n〉
that is

S∗(x∗) = ((x∗(xn))n

Let (x∗n) ⊂ X∗ be a Right null sequence and suppose that (S∗(x∗n)) is not norm null.
Then, we can suppose that there is an ε > 0 such that

‖S∗(xn)‖ > ε
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that is
sup
m
|x∗n(xm)| > ε ∀n ∈ N

For every n ∈ N there is xmn such that

|x∗n(xmn)| > ε

Since (xmn) is a Right∗ set and (x∗n) is Right null we have a contradiction. So we
have proved that S∗ is pseudo weakly compact. By the hypothesis it is also weakly
compact. Then (xn) = (S(en)) is weakly convergent and we are done. 2

Since every pseudo weakly compact operator is an unconditional operator and
since every Dunford Pettis operator is pseudo weakly compact, using well known
characterizations of properties (V ∗) and (RDP ∗) (see [14]), it follows that

(V ∗) → (SR∗) → (RDP ∗).

The space E = (
∑

ln∞)1 has property (V ∗) then it has the (SR∗) property but E∗∗

contains l∞ then it is not weakly sequentially complete. Hence E∗ does not have
the (SR) property.
We end by considering two more isomorphic properties

Definition 29. A Banach space X has the Bourgain Diestel Property, (in short
(BD) property, [3]) if every its limited subset is relatively weakly compact.
A Banach space X has the (RDP ∗) property if every its Dunford Pettis subset is
relatively weakly compact. 2

Theorem 30. If X and Y have the (BD) property (respectively the (RDP ∗) prop-
erty) and Kw∗(X

∗, Y ) = Lw∗(X
∗, Y ), then Kw∗(X

∗, Y ) has the same property.

Proof. The two proofs are similar so we give just the one about (RDP ∗) property.
So let (hn) be a Dunford Pettis sequence; hence (hn) is a weakly conditionally
compact set and we can suppose that it is a weak Cauchy sequence. So for all
x∗ ∈ E∗ the sequence (hn(x∗)) is a Dunford Pettis sequence that is also weakly
Cauchy. Since F has the (RDP ∗) property, we can conclude that there is the weak
limit in F. Define h : E∗ → F by putting

h(x∗) := w − lim
n

hn(x∗).

It is trivial to prove that h ∈ L(E∗, F ). Similarly we are allowed to define k : F ∗ → E
by putting

k(y∗) := w − lim
n

h∗n(y∗)

It is easy to prove that h∗ = k and that h is w∗ − w continuous. Then h ∈
Lw∗(X

∗, Y ) = Kw∗(X
∗, Y ). Now we prove that (hn) is weakly convergent to h. By

the Rainwater’s Theorem, we have to prove that for each φ∗ ∈ extBKw∗ (X∗,Y ), then
φ∗(hn − h) → 0. By Ruess and Stegall Theorem there are x∗ and y∗ such that
φ∗ = x∗ ⊗ y∗. By the definition of h,

hn(x∗ ⊗ y∗) = hn(x∗)(y∗) → h(x∗)(y∗)

and we are done. 2
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Doria 6, 95100 Catania (Italy)

E-mail address: emmanuele@dmi.unict.it


