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We give some theorems showing that W(E, F) is uncomplemented in L(E, F). All 
of them (but Theorem 5) are proved by producing a complemented copy of c,, 
inside of W(E, F) and showing that this contradicts a possible complementation of 
W(E, F) in L(E, F). b 1991 Academc Press, Inc 

Let E, F be two Banach spaces. By L(E, F) (resp. W(E, F)) we denote 
the Banach space of all bounded, linear (resp. bounded, linear, weakly 
compact) operators from E into F. Many papers (see [S-S] and their 
references) have been devoted to the following problem: when is 
K(E, F) = {compact operators from E into F} uncomplemented in 
L(E, F)? No results exist about the position of W(E, F) inside of L(E, F), 
as far as we know. The present note deals with this last question; more 
precisely, we prove that in special cases W(E, F) is not complemented 
in L(E, F). We note that the presence in W(E, F) of a copy of cO does 
not avoid that W(E, F) = L(E, F), as it happened in the case of K(E, F) 
in special settings (see [S-S] and their references); for instance 
W(l,, Z2) = L(&, 12) and W(I,, I,) = L(l,, I,) both contain a copy of c,,. 
Such a copy is not complemented in them, because they are dual Banach 
spaces. 

Motivated by these remarks, we try to construct special complemented 
copies of cO inside of W(E, F), and then prove that this fact is not com- 
patible with a possible complementation of W(E, F) inside of L(E, F). In 
all of our results we shall assume that one (or more) of E, E*, F, F* 
contains a copy of cO, plus some other assumptions; after all, the above 
examples show that some strong hypothesis must be considered. 

The technique we use in the case of W(E, F) is, sometimes, useful even 
for detecting the possible complementation of K(E, F) in L(E, F), as we 
prove at the end of the paper giving a different proof of the following result 
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due to Feder: “K( C( S), L’ ) is not complemented in L( C(S), L’ ), if S is not 
dispersed” [6], when answering a question put by Johnson in [7]. 

Before giving our results we need two definitions and a theorem about 
complemented copies of c0 in Banaah spaces. 

DEFINITION 1 [2]. A (bounded) subset X of a Banach space E is called 
a limited subset if for each weak* null sequence (x,*) c E* one has 

lim sup Ix,*(x)1 =O. 
n x 

DEFINITION 2 [Z]. A Banach space E is said to have the 
Geljiind-Phillips property if any of its limited subsets is relatively compact. 

THEOREM 1 [S, 111. Let (x,) be a copy of the unit vector basis of cO in 
E. If w(x,) is complemented in E, then (x,) is not a limited subset. 
Conversely tf (x,) is not limited, then a suitable subsequence spans a 
complemented copy of cO in E. 

Now, we are ready to prove our theorems; in the first one, we even 
require that E has the Dunford-Pettis property but not the Schur property 
(see [2] for these well-known definitions). 

THEOREM 2. Assume E is a Banach space enjoying the Dunford-Pettis 
property, the Gelfand-Phillips property, but not the Schur property. If F 
contains a copy of cO, then W(E, F) is uncomplemented in L( E, F). 

Proof. Let (x,) c E be a weak null sequence of norm one elements. 
Since E has the Gelfand-Phillips property, (x,) is not limited. There is a 
weak* null sequence (x,*)c E* with inf, [x,*(x,)1 >O. By virtue of a result 
in [ 111 we can assume (and we do) that x: (x,) = 6,,. Let (y,) c F be a 
copy of the unit vector basis of c0 and (y,*) a sequence of biorthogonal 
coefficients. We consider the sequences (x,* @ y,) c W(E, F) and 
(x, @ y,*) c W*(E, F). Clearly, one has (xz 0 y,)(x, 0 y,*) = 6,, and that 
(x,* @ y,) is a copy of the unit vector basis of cO. Now, we show that 
x, @ y,* s 9. Let T E W(E, F). We have 

lT(x,O~,*)l d IIy,*II IlTbJl Gconst. IIT(x,)ll +O 

because x, 2 9 and T is a Dunford-Pettis operator, since TE W(E, F) 
and E has the Dunford-Pettis property. Thanks to Theorem 1 we have that 
a subsequence (x&, @ y,+)) of (x,* 0 yn) spans a complemented copy of 
cO. Now, define $: I, -+ L(E, F) by putting 

+(t)(x)= f LGh(x) ~,c(njr 5~lmt x~E. 
n=l 
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* is well defined since xk*cn, 5 9, t E I,, and (y,+J is equivalent to the 
unit vector basis of cO. It is clear that IJ is linear. Furthermore, we have 
that there is C2 > 0 such that 

lllc1(5)(x)ll d c2 SUP 14,xk:n,(x)I d c; 115ll,, XEB,, 5:~Lo, 

from which follows the boundedness of $ (we have clearly used the fact 
that (ykcn)) is a copy of the unit vector basis of co). On the other hand, 
thanks to the nature of (y&,), there is C, > 0 so that 

ll$(4Nx)ll 2 c, sup lLXk*c,,(X)I 3 c, 15h-+h,(-a xEB,,hEN,tEI, 
n 

and hence 

ll4vft)ll =sup lIIcI(4)(x)ll 2 c; ll5ll,, 5EL. 
BE 

$ is then an isomorphism from I, onto a closed subspace H of L(E, F), 
mapping c,, onto a closed subspace HI of H n W(E, F). If we assume by 
contradiction that W(E, F) is complemented in L(E, F), it turns out that 
HI is complemented in L(E, F) too (remember that H, was complemented 
in W(E, F)). Hence, we should obtain that H, is complemented in H, i.e., 
c,, is complemented in l,, a fact that is known to be false. The proof is 
complete. 

Remark 1. Since (x,*) can be chosen in SE., if (y,) is an isometric 
copy of the unit vector basis of c0 (i.e., ci = c2 = l), then H, is an isometric 
complemented copy of c0 inside of W(E, F). 

In the above Theorem 2 the assumptions on E were considered just in 
order to guarantee that the considered copy of the unit vector basis of c0 
spanned a complemented subspace of W(E, F). Hence, with the same 
proof, the following result is true (it is similar to Theorem 4 of [7]). 

THEOREM 3. Assume F contains a complemented copy of cO. If E* 
contains a weak* null sequence that is not weak null, then W(E, F) is 
uncomplemented in L(E, F). 

Proof: Let (y,) be a copy of the unit vector basis of c,,, spanning a 
complemented subspace of F. Take a weak* null sequence (x,*) c E* that 
is not weak null. We just have to show that a suitable subsequence of 
(x,* @ y,) is a copy of the unit vector basis of c0 spanning a complemented 
subspace of W(E, F) and then apply the proof of Theorem 2. We observe 
that W(E, F) is isometrically isomorphic to Lw.(E**, F), i.e., the Banach 
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space of all weak*-weak continuous operators from E** into F. Hence 
(x,* @ y,) is a copy of the unit vector basis of c0 even inside of 
L,+,.(E**, F). Let x ** be an element of E** such that inf,, Ix,*(x**)l >O 
(otherwise we pass to a subsequence) and let (y,*) be a weak* null 
sequence in F*, with yz(v,,)=6,,. It is clear that (x**@yz)c 
(L,.(E**, F))* and that inf, 1(x** @ y,T)(x,* 0 y,)l > 0. Furthermore, if 
Tc L&E **, F), one has 

I T(x** 0 y,*)l = I CT(x**)lb,*)I --+O 

and so (x** @ v:) 2 9. Again Theorem 1 gives the existence of a com- 
plemented copy of c0 in (L&E **, F) and hence in) W(E, F), spanned by 
a suitable subsequence of (x,* 0 y,). We are done. 

We observe that L(l,, cO) = W(l,, c,), so that the hypothesis on E* in 
Theorem 3 cannot be dropped. 

COROLLARY 4. Assume E and F contain a complemented copy of cO. 
Then W(E, F) is uncomplemented in L( E, F). 

The next theorem has a different nature, because we do not require the 
presence of a copy of c0 inside of F. 

THEOREM 5. Let F contain a complemented copy of 1’. Assume E is such 
that L(E, I’) # K(E, 1’). Then W(E, F) is uncomplemented in L(E, F). 

Proof. As can be easily checked W(E, I’ ) is complemented in W(E, F). 
Since 1’ has the Schur property, W(E, I’) = K(E, 1’). Let T denote an 
element of L(E, 1’ ) not in K(E, 1’ ). Using the existence of an unconditional 
basis in 1’ we can easily construct a series C T,, in K(E, 1’ ) such that 
C T,(x) converges unconditionally to T(x), for all x E E. A result due to 
Feder [6] gives that K(E, 1’) is uncomplemented in L(E, 1’). Now, assume 
by contradiction that W(E, F) is complemented in L(E, F); it follows that 
W( E, 1’) is complemented in L(E, F). On the other hand, we have the 
following chain of (isometric) embeddings 

K(E, l’)qL(E, Z’)GL(E, F). (1) 

By virtue of the previous remarks and (1) alike, K( E, 1’ ) should be 
complemented in L(E, 1’ ), a contradiction concluding the proof. 

COROLLARY 6. Assume F contains a complemented copy of 1’ and E has 
a quotient isomorphic to 1’. Then W(E, F) is uncomplemented in L(E, F). 

Remark 2. The same proof of Theorem 5 shows that the following 
variation of that result is true. 
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THEOREM 5'. Let F contain a complemented copy of a Banach space Z 
with the Schur property. If E contains a complemented copy of I’, then 
W(E, F) is uncomplemented in L(E, F). 

We only remark that, under such hypotheses, K(E, Z) is not complemen- 
ted in L(E, Z) [S]. 

Finally, we present the announced new proof of a result by Feder [6] 
using the same technique of the construction of a complemented copy of c0 
inside of K(E, F). 

THEOREM 7. K(C(S), L’) is not complemented in L(C(S), L’), if S is a 
Hausdorff compact space that is not dispersed. 

ProoJ: Since S is not dispersed, 1’ embeds into C(S) (see [9]) and, by 
virtue of a famous theorem of Pelczynski (see [lo]), L’ embeds into 
C*(S). Now, it is well known that the Rademacher functions span Z2 inside 
of L’. So we are in the following position: there is an isomorphism R 
(resp. S) from 1’ into C*(S) (resp. L’). 

We shall show that, if (e,) is the unit vector basis of 12, then 
(Ne,) 0, S(e,)) is a copy of the unit vector basis of c0 inside of 
K(C(S), L’) (equal to C*(S) 0, L’ because L’ has the approximation 
property [ 11). For brevity we suppose II(R(en)il = IIS(e,)ll = 1 for all n E N. 
Since (R(e,)) and (S(e,)) are basic sequences, there are biorthogonal 
sequences (x,*) in C**(S) and (y,*) in L”. Hence it is clear, from the 
definition of c-tensor norm, that, for any choice of a;, i= 1, . . . . n, we have 

max [ai/ 6 i a,(R(e,) 0, S(ei)) 
I <;<?I II i= 1 II 

On the other hand, R and S induce an operator R 0, S from I2 0, l2 
into C*(S) 0, L’ (see [l, p. 229]), mapping e, 0, e, onto R(e,) 0, S(e,). 
So we have 

II f- aiR(ei) 0, S(ei) < IIR 0, SII 
i= 1 I( 

i aiei 0, ei d ,FF$~ Iail IIR 0, Sll. 
i= 1 II . . 

Hence c0 embeds isomorphically in K(C(S), L’). Now, observe that 
K(C(S), L’) (equal to C*(S) 0, L’) has the Gelfand-Phillips property [4] 
and so c,, embeds complementably in K( C( S), L’ ), by virtue of a result in [ 5, 
and 111. If we assume, by contradiction, that K(C(S), L’) is complemented 
in L(C(S), L’), being L’ complemented in its bidual (L’)**, c0 should 
be complemented in L(C(S), (L’)**), the dual space of C(S) 0, L”, a 
contradiction that finishes our proof. 
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