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INTEGRABLE SOLUTIONS OF
A FUNCTIONAL-INTEGRAL EQUATION

G. EMMANUELE

ABSTRACT. We consider a very general functional-integral
equation and we prove the existence of integrable solutions of
this equation.

In this paper we consider the following functional-integral equation

(1) y(t) = f

(
t, r

∫ 1

0

k(t, s)g(s, y(s)) ds

)
t ∈ [0, 1]

and we prove that, under very general hypotheses, it admits a solution
x ∈ L1[0, 1]. We observe that if f(t, u) = ϕ(t) + u we get Hammerstein
integral equations (we refer to [2, 5, 9] and references therein for
papers about existence results concerning this equation as well as for
applications of it to other questions), whereas when g(s, v) = v we
obtain a functional-integral equation recently studied in [3], where the
usefulness of it in applications was also pointed out. Our theorem
extends all of the known results from [2, 3, 5, 6, 7 and 9] because the
hypotheses we consider are very general and natural in the sense that
they are necessary and sufficient conditions for certain (superposition)
operators to take L1[0, 1] into itself continuously, see [8].

We remark that in the results from [2, 3, 5, and 9] assumptions of
monotonicity and coercivity were quite often assumed by the authors,
whereas we dispense completely with them; furthermore, in [3] Banas
and Knap assumed that k(t, s) ≥ 0 a.e. on [0, 1]2; we are able to
dispense with this requirement as well as with the following other
hypothesis:

There exists λ ∈ L1[0, 1] such that |k(t, s)| ≤ λ(t)
t a.e. on [0, 1], s ∈ [0, 1]
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we used in [6], or with “regularity” conditions still put on k in the
recent [7] and in older papers ([see 11]). All of these improvements are
determined by the development of the technique we used in [7] that we
are able to carry out in the present framework; more precisely in [7] we
considered an operator A (defined, in the present setting, by

(2) (Ay)(t) = f

(
t, r

∫ 1

0

k(t, s)g(s, y(s)) ds

)
t ∈ [0, 1])

from a suitable bounded, closed, convex and uniformly integrable (i.e.,
relatively weakly compact) subset Q of L1[0, 1] into itself and we proved
that A is continuous and A(Q) is relatively compact (using heavily the
uniform integrability of Q). An attentive inspection of that proof shows
that the relative compactness of A(Q) only depends on the uniform
integrability of Q, not on the particular form of Q. With this in mind,
we spent some time to look for different (and good) kinds of uniformly
integrable subsets of L1[0, 1] (for a different result, look at the paper
[7]), until we realized that there exists a ball Br of L1[0, 1] containing
a nonempty, bounded, closed, convex and uniformly integrable subset
Q of Br that is invariant under the quoted operator A; we do not
know the nature of Q, but we know that it exists and this is enough
to assert that A(Q) ⊂ Q is relatively compact, thanks to the technique
developed in [7]. Hence, the Schauder fixed point theorem applies to
get a fixed point of A, i.e., a solution of (1).

The main tools we use are two: a measure of weak noncompactness
introduced by De Blasi [4] together with a result about its value on a
bounded subset of L1[0, 1] [1] and a theorem, due to Scorza Dragoni
[10], about measurable functions of two variables.

Definition 1. [4]. Let E be a Banach space and X be a nonempty,
bounded subset of E. If Br denotes the ball centered at θ with radius
r > 0, we put β(X) = inf {r > 0: there exists a weakly compact subset
Y of E with X ⊂ Y + Br}.

Theorem 2. [1]. Let X be a nonempty, bounded subset of L1[0, 1],
then

β(X) = lim
ε→0

{
sup
x∈X

{
sup

{∫
D

|x(t)| dt : D ⊂ [0, 1], m(D) ≤ ε

}}}
.
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Theorem 3. [10]. Let f : [0, 1] × R → R be a function verifying
Caratheodory hypotheses, i.e., f is measurable with respect to t ∈ [0, 1]
for all s ∈ R and continuous in s ∈ R for a.a. t ∈ [0, 1]. Then given
ε > 0 there is a closed subset Dε of [0, 1] with m(Dc

ε) < ε and f |Dε×R

continuous.

Now we are ready to prove our theorem.

Theorem 4. Let us consider the following hypotheses

(h1) f : [0, 1] × R → R verifies Caratheodory hypotheses and there
are h1 ∈ L1[0, 1] and b1 ≥ 0 such that

|f(t, x)| ≤ h1(t) + b1|x| t a.e. in [0, 1], x ∈ R

(h2) k : [0, 1] × [0, 1] → R verifies Caratheodory hypotheses and the
linear operator K defined by

(Kz)(t) =
∫ 1

0

k(t, s)z(s) ds t ∈ [0, 1]

maps L1[0, 1] into itself (this fact implies that K is bounded [11]; let
||K|| denote the norm of such an operator)

(h3) g : [0, 1] × R → R verifies Caratheodory hypotheses and there
are h2 ∈ L1[0, 1] and b2 ≥ 0 such that

|g(t, x)| ≤ h2(t) + b2|x| t a.e. in [0, 1], x ∈ R.

(h4) rb1b2||K|| < 1, r ≥ 0.

Then the equation (1) has a solution x ∈ L1[0, 1].

Proof. Let us put s = (||h1|| + rb1||K|| ||h2||)/(1 − rb1b2||K||). We
first prove that the operator A defined by (2) maps Bs into itself
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continuously. Let x ∈ Bs. We have
∫ 1

0

|Ax(t)| dt =
∫ 1

0

|f(t, r
∫ 1

0

k(t, s)g(s, x(s)) ds|dt

≤
∫ 1

0

{
h1(t) + rb1

∣∣∣∣
∫ 1

0

k(t, s)g(s, x(s)) ds

∣∣∣∣
}

dt

= ||h1|| + rb1

∫ 1

0

∣∣∣∣
∫ 1

0

k(t, s)g(s, x(s)) ds

∣∣∣∣dt

≤ ||h1|| + rb1||K||
∫ 1

0

|g(s, x(s))| ds

≤ ||h1|| + rb1||K||
∫ 1

0

(h2(s) + b2|x(s)|) ds

= ||h1|| + rb1||K|| ||h2|| + rb1b2||K|| ||x||
≤ ||h1|| + rb1||K|| ||h2|| + rb1b2||K||s = s.

The continuity of A is a simple matter to show thanks to our
assumptions (h1), (h2) and (h3), so we don’t give the details.

Now we show that β(A(X)) ≤ rb1b2||K||β(X) for each subset X of
Bs. Toward this aim, we consider two operators F, G defined on L1[0, 1]
with values into L1[0, 1] by putting

(Fy)(t) = f(t, y(t)) and (Gy)(t) = g(t, y(t)) t ∈ [0, 1].

For a subset D ⊂ [0, 1], we have∫
D

|(Fy)(t)| dt ≤
∫

D

h1(t) dt + b1

∫
D

|y(t)| dt y ∈ X

∫
D

|(Gy)(t)| dt ≤
∫

D

h2(t) dt + b2

∫
D

|y(t)| dt y ∈ X.

Since limm(D)→0

∫
D

h1(t) dt = limm(D)→0

∫
D

h2(t) dt = 0, Theorem 2
allows us to affirm that

(3) β(F (X)) ≤ b1β(X) and β(G(X)) ≤ b2β(X).

Moreover, since K is linear and continuous, it is easy to see that

(4) β(K(X)) ≤ ||K||β(X).
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(3) and (4) together give that

(5) β(A(X)) = β(FrKG(X)) ≤ rb1b2||K||β(X).

For brevity, put p = rb1b2||K|| and recall that p < 1 by virtue of (h4).

Now define a decreasing sequence (Bn
s ) of nonempty, bounded, closed

convex subsets of Bs that are invariant under A by putting B1
s =

coA(Bs), Bn+1
s = coA(Bn

s ) for n ∈ N. Applying (5) it is easy to see
that

β(Bn+1
s ) ≤ pn+1β(Bs) n ∈ N

and so

lim
n

β(Bn
s ) = 0.

This implies (see [4]) that Y = ∩n∈NBn
s is a nonempty, closed, convex

and relatively weakly compact (i.e., uniformly integrable) subset of
Bs that is invariant under A also. Now, it is enough to show that
A(y) is relatively compact in order to conclude our proof with a
simple application of the Schauder Fixed Point Theorem. Relative
compactness of A(y) can be proved exactly as in the last part of the
main theorem of [7].

In conclusion, we want to thank the referee for suggesting looking
for more degrees of freedom by assuming, for instance, that p, q ≥
1, G(L1) ⊆ Lq, K(Lq) ⊆ Lp, F (Lp) ⊆ L1. We do not have the answer
to this question in the above general situation; however, if we assume
either

1) |F (t, x)| ≤ h1(t) + b |x|r t a.e. on [0, 1], x ∈ R, r < p

or

2) K(Lp) ⊆ Lq, q = 1

we can repeat the proof of our theorem with Y = Bs.

Indeed, in both cases, the operator FK maps bounded subsets of Lp

into uniformly integrable subsets of L1. Hence the proof of the main
Theorem in [7] can be used to show that A(Y ) = A(Bs) is relatively
compact.
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