ON BANACH SPACES WITH THE GELFAND-PHILLIPS PROPERTY, III

Journal de Mathematiquees Pures et Appliquees Volume 72, 1993, 327-333

Posted here with the kind permission from the Editor

ON BANACH SPACES WITH THE GELFAND-PHILLIPS PROPERTY, III

By G. EMMANUELE

Abstract.- We present some results showing that the Gelfand-Phillips property lifts from Banach spaces E and F to spaces of linear, bounded operators and to certain tensor products of Banach spaces.

1. Introduction

Let E be a Banach space. A (bounded) subset A of E is called *limited* if, for every weak^{*} null sequence (x_n^*) in the dual space E^* , we have $x_n^*(x) \to 0$ uniformly for x in A. If all limited subsets of E are relatively (norm) compact, then E is said to have the Gelfand-Phillips property (see [8]) or to be a Gelfand-Phillips space (sometimes we shall write $E \in (GP)$ for short). It is well known (see [25] for instance and its References) that Banach spaces with Schur property, separably complemented Banach spaces, Banach spaces with weak^{*} sequentially compact dual balls, dual Banach spaces with the Weak Radon-Nikodym Property are Gelfand-Phillips spaces. Furthermore, l_{∞} doesn't possess this property usually inherited by closed subspaces, so that no space containing l_{∞} can have it. In recent years a lot of papers have been devoted to the study of this family of Banach spaces and, mainly, to the question of the construction of new Gelfand-Phillips spaces from old ones (see [8], [9], [14], [21], [25] and References therein). The present note, which can be seen as a continuation of [9], is concerned with this question, too. More precisely, we shall prove that if E, F are special spaces in (GP) then $L(E,F) \in (GP)$ (L(E,F) = Banach space of linear, bounded operators from E into F) as well as special tensor products of E and F do.

2. The Gelfand-Phillips property for spaces of operators

As far as we know, no results about the Gelfand-Phillips property in L(E,F) exist unless L(E,F) = K(E,F) (K(E,F) = Banach space of compact operators from E into F) that is a Gelfand-Phillips space if and only if E^{*} and F are ([8]); this situation can be justified from the fact that in a lot of cases the hypothesis $L(E,F) \neq K(E,F)$ implies that c_0 embeds into K(E,F) and then l_{∞} embeds into L(E,F).

Theorem 1.-Let E, F be two Banach spaces satisfying one of the following conditions 1) c_0 embeds into either F or E^*

2) F is a complemented subspace of a Banach space Z having an unconditional Schauder decomposition (Z_n) such that $L(E, Z_n) = K(E, Z_n)$ for all $n \in \mathbb{N}$

3) E is a \mathscr{L}_{∞} space and F a \mathscr{L}_{1} space

4) E = C[0,1] and F has cotype 2

5) E is weakly compactly generated, F is a subspace of a space G with a shrinking unconditional basis and E^* or F^* has the bounded approximation property

7) E has an unconditional finite dimensional expansion of the identity.

If $L(E, F) \neq K(E, F)$ then L(E, F) cannot have the Gelfand-Phillips property.

Proof. - Under the assumption $L(E,F) \neq K(E,F)$, results in [10], [12], [15], [17] imply that c_0 embeds into K(E,F) and l_{∞} embeds into L(E,F). Since the Gelfand-Phillips property is inherited by closed subspaces and l_{∞} doesn't have this property, we are done.

So, in particular, if E and F are "classical" Banach spaces, then L(E,F) has the Gelfand-Phillips property if and only if L(E,F) = K(E,F) and E^* and F have it.

So, if one wants to get a new result on the Gelfand-Phillips property in L(E,F) (under the assumption $L(E,F) \neq K(E,F)$), he has to assume that c_0 doesn't embed into K(E,F). As far as we know, there are just two examples of pairs E, F such that E^* , $F \in (GP)$, $L(E,F) \neq K(E,F)$ and c_0 doesn't embed into K(E,F); one ([12]) is obtained by taking E = $F = X, X \ a \mathscr{L}_{\infty}$ -space with Schur property constructed in [2] by Bourgain and Delbaen. For this space we have the following result

Theorem 2. - Let $E^* \in (GP)$ and F have the Schur property. Then $L(E, F) \in (GP)$.

Proof. - In order to prove that $L(E,F) \in (GP)$ it is enough to show that any w-null, limited sequence $(A_n) \subset L(E,F)$ is norm null ([9]). We assume by contradiction that there is a limited sequence (A_n) such that $A_n \xrightarrow{w} 0$ and $||A_n|| = 1$ for all $n \in \mathbb{N}$. Let us consider $y^* \in F^*$ and the operator $A \to A^*(y^*)$ from L(E,F) into E^* ; it is clear that $A_n^*(y^*) \xrightarrow{w} 0$ and $(A_n^*(y^*))$ is limited and so $||A_n^*(y^*)|| \to 0$. So we have

$$|A_n(x_n)(y^*)| \le ||A_n^*(y^*)|| \to 0$$

from which it follows that $A_n(x_n) \xrightarrow{w} 0$. Since F has Schur property, $|| A_n(x_n) || \to 0$ a contradiction. We are done.

Corollary 3. - Let E^* have the Schur property and $F^{**} \in (GP)$. Then $L(E, F) \in (GP)$. *Proof.* - The mapping $T \to T^*$ maps L(E,F) onto a closed subspace of $L(F^*,E^*)$, that has the Gelfand-Phillips property by virtue of Theorem 2.

As we have already said the interest in Theorem 2 is due to the fact it is the first result we know about the Gelfand-Phillips property in L(E,F), under $L(E,F) \neq K(E,F)$. Actually, we can say more. There are a lot of results concerning isomorphic properties of Banach spaces in L(E,F) (see [1], [5], [6], [13], [19], [21] and References therein) when L(E,F) =K(E,F) but, as far as we know, this is the first time that an isomorphic property is shown to lift from E^{*} and F to L(E,F), when $L(E,F) \neq K(E,F)$.

We also remark that among those isomorphic properties that, up to now, are known to pass from E^{*} and F to K(E,F) under the assumption L(E,F) = K(E,F) there is the Radon-Nikodym Property ([1], [5], [22]). Sometimes that assumption is even necessary as results in [5] and [10] prove. However we know that at least in one case K(E,F) has the Radon-Nikodym Property even if L(E,F) \neq K(E,F). Let us assume E = F = Y, where Y is the \mathscr{L}_{∞} -space with the Radon-Nikodym Property such that Y^{*} is isomorphic to l_1 constructed in [2]. It is clear that L(E,F) \neq K(E,F) = E^{*} \otimes_{ϵ} F. But E^{*} = Y^{*} is isomorphic to l_1 and so E^{*} \otimes_{ϵ} F is isomorphic to $l_1 \otimes_{\epsilon}$ F = K(c₀,F) a space that has the Radon-Nikodym Property if and only if F has the same property, as obtained by Diestel and Morrison in [5]. If we take E = F = Y, we get the second example of a pair such that E^{*}, F \in (GP), L(E,F) \neq K(E,F) and $c_0 \not\leftrightarrow$ K(E,F). We do not know if L(Y,Y) \in (GP). The next result is about the space of p-nuclear operators from E into F equipped with the p-nuclear norm (see [6]).

Theorem 4. - Let E^* have the Radon-Nikodym Property and F be separably complemented. Then $N_p(E, F) \in (GP), 1 \le p < \infty$.

Proof. - Let (T_n) be a w-null, limited sequence in $N_p(E,F)$. For each $n, m \in \mathbb{N}$ (and $T_0 = \theta$) choose $x_{n,m,j,k}^* \in E^*$, $y_{n,m,j,k} \in F$ such that

$$||T_n - T_m|| = \inf_j \left\{ \left(\sum_{k=1}^\infty ||x_{n,m,j,k}^*||^p \right)^{1/p} \sup_{||y^*|| \le 1} \left(\sum_{k=1}^\infty ||y^*(y_{n,m,j,k})||^{p'} \right)^{1/p'} \right\}$$

and

$$(T_n - T_m)(\bullet) = \sum_{k=1}^{\infty} x_{n,m,j,k}^*(\bullet) y_{n,m,j,k} \qquad \text{for all } j \in \mathbb{N} .$$

Consider F_0 separable and complemented in F such that F_0 contains each $y_{n,m,j,k}$; $N_p(E,F_0)$ is a closed, complemented subspace of $N_p(E,F)$ containing (T_n) that is w-null and limited in it, too. So it is enough to show that $||T_n|| \to 0$ in $N_p(E,F_0)$. Now, let us put $W = \overline{\text{span}}(x_{n,m,j,k}^*)$ and take E_0 separable, closed subspace of E such that $W \subset$ E_0^* . The restriction map \mathbf{R} from $N_p(E,F_0)$ into $N_p(E_0,F_0)$ maps T_n into a w-null limited sequence of $N_p(E_0,F_0)$. Since E^* has the Radon-Nikodym property, E_0^* is separable and so $N_p(E_0,F_0)$ is a separable space; hence $N_p(E_0,F_0) \in (GP)$ and $||\mathbf{R}T_n|| \to 0$. The choice of E_0 also implies that \mathbf{R} is an isometry on T_n , so that $||T_n|| \to 0$ in $N_p(E,F_0)$. We are done.

2. The Gelfand-Phillips property for special tensor products

In this section we present some results concerning the Gelfand-Phillips property in certain tensor products of Banach spaces. Two of these results are concerned with the projective tensor product of Banach spaces (we refer to [6] for this well-known definition), whereas the other theorems use different tensor norms introduced in [23] and [18].

Theorem 5. - Let E, F be two separably complemented Banach spaces. Then $E \otimes_{\pi} F$ has the Gelfand-Phillips property.

Proof. - Let (x_n) be a limited subset of $\mathbb{E} \otimes_{\pi} \mathbb{F}$. For all $n \in \mathbb{N}$, there is $(z_{h,n})_{h \in \mathbb{N}}$ such that $\lim_{h \to \infty} ||z_{h,n} - x_n|| = 0$ where $z_{h,n} = \sum_{i=1}^{p(h,n)} x_i^n \otimes y_i^n$. Obviously $(z_{h,n})_{h \in \mathbb{N}}$ is a limited subset of $\mathbb{E} \otimes_{\pi} \mathbb{F}$, too.

Since E and F are separably complemented we can choose two separable subspaces E_0 of E and F_0 of F such that $E_0 \supseteq \{x_i^n : i = 1, 2, ..., p(h, n); h, n \in \mathbb{N}\}$, $F_0 \supseteq \{y_i^n : i = 1, 2, ..., p(h, n); h, n \in \mathbb{N}\}$ and $P_1 : E \to E_0, P_2 : F \to F_0$ are projections. For each $z_{h,n}$ we have two norms: $||z_{h,n}||_0$ the norm of $z_{h,n}$ as element of $E_0 \otimes_{\pi} F_0$ and $||z_{h,n}||_{\pi}$ the norm of $z_{h,n}$ as element of $E \otimes_{\pi} F$; it is easy to show that there are $M_1, M_2 > 0$ such that

 $||z_{h,n} - z_{k,m}||_{\pi} \le M_1 ||z_{h,n} - z_{k,m}||_0 \le M_2 ||z_{h,n} - z_{k,m}||_{\pi} \quad \text{for all } h, n, k, m \in \mathbb{N}$

(use the fact that $(X \otimes_{\pi} Y)^* = L(X, Y^*)$, for arbitrary Banach spaces X and Y).

Furthermore, the operator $P_1 \otimes P_2$ maps $E \otimes_{\pi} F$ into $E_0 \otimes_{\pi} F_0$ in such a way that $(P_1 \otimes P_2)(z_{h,n}) = z_{h,n}$ for all $h, n \in \mathbb{N}$; this means that $(z_{h,n})_{h,n\in\mathbb{N}}$ is limited in $E_0 \otimes_{\pi} F_0$ a (separable and hence a) Gelfand-Phillips space. This means that $(z_{h,n})_{h,n\in\mathbb{N}}$ is limited in $E_0 \otimes_{\pi} F_0$ and so, thanks to the above inequalities about $\| \bullet \|_0$, even in $E \otimes_{\pi} F$. This implies that (x_n) is relatively compact in $E \otimes_{\pi} F$. We are done.

In the paper [23] P. Saphar introduced certain tensor norms $d_p, 1 , such that <math>(E \otimes_{d_p} F)^* = \{$ absolutely p'-summing operators T:E \rightarrow F^{*} equipped with the absolutely summing norm $\}, 1/p + 1/p' = 1$. Using the same proof of Theorem 5 we are able to show that following result

Theorem 6. - Let E, F be separably complemented Banach spaces. Then $E \otimes_{d_p} F \in (GP)$.

Theorem 7. - Let E, F contain no copy of l_1 . Let us assume E^* has both the Radon-Nikodym Property and the metric approximation property. Then $E^* \otimes_{\pi} F^* \in (GP)$.

Proof. - Under our assumptions $E \otimes_{\pi} F$ does not contain l_1 (see [22]) and so $(E \otimes_{\epsilon} F)^*$ has the Weak Radon-Nikodym property and it is a Gelfand-Phillips space (see [25]). Furthermore, $E^* \otimes_{\pi} F^*$ is a closed subspace of $(E \otimes_{\epsilon} F)^*$ ([16]) and so it inherites the Gelfand-Phillips property. We are done. Remark 1. - Theorem 7 actually shows that $E^* \otimes_{\epsilon} F^*$ has the so called (DPrcP), considered in [13].

Now, let us consider a different tensor norm introduced by Levin in [18]. If E is a Banach lattice and F a Banach space, for $z = \sum_{i=1}^{p} x_i \otimes y_i$, Levin put

$$n_E(z) = \inf \left\{ \|u\|_E : u \ge \left| \sum_{i=1}^p x_i < y_i, y^* > \right| : y^* \in F^*, \|y^*\| \le 1 \right\}.$$

He denoted by $\mathbf{E} \otimes \mathbf{F}$ the completion of $(\mathbf{E} \otimes \mathbf{F}, n_E)$.

We have the following result

Theorem 8. - Let E be σ -complete. Then $E \otimes F \in (GP)$, provided $E, F \in (GP)$.

Proof. - Since E ∈ (GP), E cannot contain l_{∞} and so it is an order continuous Banach lattice ([20]). Let (x_n) be a limited sequence in E \bigotimes F; for all $n \in \mathbb{N}$, choose a sequence $(z_{hn})_{n\in\mathbb{N}}$ in E \otimes F such that $n_E(x_n - z_{hn}) \to 0$ as $h \to \infty$. But $z_{hn} = \sum_{i=1}^{p(h,n)} e_i^n \otimes$ y_i^n , for all $h, n \in \mathbb{N}$. Let E₀ be a band containing the subspace spanned by $\{e_i^n : i =$ $1, 2, ..., p(h, n), h, n \in \mathbb{N}$ }; it is known ([20]) that E₀ can be chosen complemented in E; furthermore, E₀ is an order continuous Banach lattice with a weak unit and the projection P:E \xrightarrow{onto} E₀ is a positive operator. It is clear that $(x_n) \subset E_0 \bigotimes$ F, a closed subspace of E \bigotimes F ([18]). Now we show it is possible to define a projection Q: E \bigotimes F \xrightarrow{onto} E₀ \bigotimes F. For $z = \sum_{i=1}^{p} x_i \otimes y_i \in E \otimes F$ we put $Q(z) = \sum_{i=1}^{p} P(x_i) \otimes y_i$. It will be enough to show that Q is continuous, because it is clear that Q is linear and Q restricted to E₀ \otimes F is the identity. From Lemma 5 in [18] it follows that, under our hypothesis,

$$\sup_{\|y^*\| \le 1} \left| \sum_{i=1}^p x_i < y_i, y^* > \right|$$

exists in E and that

$$n_E(z) = \left\| \sup_{\|y^*\| \le 1} \left| \sum_{i=1}^p x_i < y_i, y^* > \right| \right\|_E$$

We have, for $y^* \in F^*$, $||y^*|| \le 1$,

$$\left|\sum_{i=1}^{p} P(x_i) < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \sup_{\|y^*\| \le 1} \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^* > \right| \le |P| \left|\sum_{i=1}^{p} x_i < y_i, y^$$

and so

$$\sup_{\|y^*\| \le 1} \left| \sum_{i=1}^p P(x_i) < y_i, y^* > \right| \le |P| \sup_{\|y^*\| \le 1} \left| \sum_{i=1}^p x_i < y_i, y^* > \right|.$$

Since |P| is a linear, bounded operator ([24]) we get easily

$$n_E(Q(z)) \le \||P|\| n_E(z) \qquad z \in E \otimes F.$$

Now, we can extend Q to all of $E_0 \otimes \widetilde{F}$ by continuity, so obtaining the required projection. We also recall that E_0 is isometrically isomorphic to a Köthe space E_1 on a probability space and that $E_0 \otimes \widetilde{F}$ is isometrically isomorphic to the Köthe space $E_1(F)$ of vector valued functions ([3]). Now, it is enough to apply a recent result in [14] showing that $E_1(F) \in$ (GP). We are done.

The author wishes to thank Prof. Hensgen for pointing out a mistake in a first proof of Theorem 8.

Remark 2. - The same procedure of "locally embedding" of $E \otimes F$ into a Köthe space of vector valued functions can be used to show the following facts

- (i) $E \otimes F$ contains l_{∞} iff either E or F does (use [11])
- (ii) $E \otimes F$ contains c_0 iff either E or F does (use [7])
- (iii) $E \otimes F$ contains l_1 iff either E or F does (use [16])
- (iv) $E \otimes F$ has The Radon-Nikodym Property iff E and F have it (use [4]).

REFERENCES

- K. T. Andrews, The Radon-Nikodym Property for spaces of operators, J. London Math. Soc., 28, 1983, pp.113-122.
- [2] J. Bourgain, F. Delbaen, A class of special \mathscr{L}_{∞} spaces, Acta Math., 145, 1980, pp. 155-176.

- [3] A. V. Bukhavlov, Spaces of vector valued functions and tensor products, Siberian Math. J., 13, 1972, pp. 851-857.
- [4] A. V. Bukhvalov, Radon-Nikodym Property in Banach spaces of measurable vector functions, Math. Notes, 26, 1979, pp. 939-944.
- [5] J. Diestel, T. J. Morrison, The Radon-Nikodym Property for the space of operators, Math. Nachr., 92, 1979, pp.7-12.
- [6] J. Diestel, J. J. Uhl, jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
- [7] P. Dowling, A stability property of a class of Banach spaces not containing c_0 , preprint.
- [8] L. Drewnowski, On Banach spaces with the Gelfand-Phillips property, Math. Z., 193, 1986, pp.405-411.
- [9] L. Drewnowski, G. Emmanuele, On Banach spaces with the Gelfand-Phillips property, II, *Rend. Circolo Mat. Palermo, 38, 1989, pp. 377-391.*
- [10] G. Emmanuele, On the containment of c₀ by spaces of compact operators, Bull. Sci. Math. 115, 1991, pp. 177-184.
- [11] G. Emmanuele, Copies of l_∞ in Köthe spaces of vector-valued functions, Illinois J. Math., 36 (2), 1992, pp. 293-296.
- G. Emmanuele, A remark on the containment of c₀ in spaces of compact operators, Math.
 Proc. Cambridge Phil. Soc., 111, 1992, pp. 438-441.
- [13] G. Emmanuele, Banach spaces in which Dunford-Pettis sets are relatively compact, Archiv der Math., 58, 1992, pp. 477-485.
- [14] G. Emmanuele, Gelfand-Phillips property in Köthe spaces of vector-valued functions, *Rend. Circolo Mat. Palermo*, 40, 1991, pp. 438-441.
- [15] M. Feder, Subspaces of spaces with an unconditional basis and spaces of operators, *Illinois J. Math.*, 24, 1980, pp. 196-205.
- [16] V. A. Geiler, L. V. Chubarova, Spaces of measurable vector-functions not containing l₁, Math. Notes, 34, 1983, pp. 698-700.
- [17] N. J. Kalton, Spaces of compact operators, Math. Ann., 208, 1974, pp. 267-278.

- [18] V. L. Levin, Tensor products and functors in categories of Banach spaces defined by KBlineals, Trans. Moscow Math. Soc., 20, 1969, pp.41-77.
- [19] D. R. Lewis, Conditional weak compactness in certain inductive tensor products, Math. Ann., 201, 1973, pp.201-209.
- [20] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, II, Function Spaces, Ergegnisse der Mathematik und ihrer Grenzgebiete, 97, Springer-Verlag, 1979.
- [21] M. Mastylo, On interpolation spaces with the Gelfand-Phillips property, Math. Nachr., 137, 1988, pp. 27-34.
- [22] W. Ruess, Duality and Geometry of Spaces of Compact Operators, in Functional Analysis: Surveys and recent Results, III, Math. Studies, 90, North Holland, 1984.
- [23] P. Saphar, Produits tensoriels d'espaces de Banach et classes d'applications lineaires, Studia Math., 38, 1970, pp. 71-100.
- [24] H. H. Schaefer, Banach Lattices and Positive Operators, Die Grundleheren der mathematischen Wissenschaften in Einzeldarstellungen, Band 97, Springer-Verlag, 1974.
- [25] T. Schlumprecht, Limited sets in Banach Spaces, Ph. D. Dissertation, München, 1987.

G. Emmanuele Department of Mathematics University of Catania Viale A. Doria 6, 95125 Catania, Italy