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ON BANACH SPACES WITH THE GELFAND-

PHILLIPS PROPERTY, III

By G. EMMANUELE

Abstract.- We present some results showing that the Gelfand-Phillips property lifts

from Banach spaces E and F to spaces of linear, bounded operators and to certain tensor

products of Banach spaces.

1. Introduction

Let E be a Banach space. A (bounded) subset A of E is called limited if, for every

weak∗ null sequence (x∗n) in the dual space E∗, we have x∗n(x) → 0 uniformly for x in

A. If all limited subsets of E are relatively (norm) compact, then E is said to have the

Gelfand-Phillips property (see [8]) or to be a Gelfand-Phillips space (sometimes we shall

write E ∈ (GP) for short). It is well known (see [25] for instance and its References)

that Banach spaces with Schur property, separably complemented Banach spaces, Banach

spaces with weak∗ sequentially compact dual balls, dual Banach spaces with the Weak

Radon-Nikodym Property are Gelfand-Phillips spaces. Furthermore, l∞ doesn’t possess

this property usually inherited by closed subspaces, so that no space containing l∞ can

have it. In recent years a lot of papers have been devoted to the study of this family of

Banach spaces and, mainly, to the question of the construction of new Gelfand-Phillips

spaces from old ones (see [8], [9], [14], [21], [25] and References therein). The present

note, which can be seen as a continuation of [9], is concerned with this question, too.

More precisely, we shall prove that if E, F are special spaces in (GP) then L(E,F) ∈ (GP)

(L(E,F) = Banach space of linear, bounded operators from E into F) as well as special

tensor products of E and F do.



2. The Gelfand-Phillips property for spaces of operators

As far as we know, no results about the Gelfand-Phillips property in L(E,F) exist unless

L(E,F) = K(E,F) (K(E,F) = Banach space of compact operators from E into F) that is a

Gelfand-Phillips space if and only if E∗ and F are ([8]); this situation can be justified from

the fact that in a lot of cases the hypothesis L(E,F) 6= K(E,F) implies that c0 embeds into

K(E,F) and then l∞ embeds into L(E,F).

Theorem 1.-Let E, F be two Banach spaces satisfying one of the following conditions

1) c0 embeds into either F or E∗

2) F is a complemented subspace of a Banach space Z having an unconditional Schauder

decomposition (Zn) such that L(E,Zn) = K(E,Zn) for all n ∈ N
3) E is a L∞ space and F a L1 space

4) E = C[0, 1] and F has cotype 2

5) E is weakly compactly generated, F is a subspace of a space G with a shrinking uncon-

ditional basis and E∗ or F ∗ has the bounded approximation property

7) E has an unconditional finite dimensional expansion of the identity.

If L(E, F ) 6= K(E, F ) then L(E, F ) cannot have the Gelfand-Phillips property.

Proof. - Under the assumption L(E,F) 6= K(E,F), results in [10], [12], [15], [17] imply that

c0 embeds into K(E,F) and l∞ embeds into L(E,F). Since the Gelfand-Phillips property is

inherited by closed subspaces and l∞ doesn’t have this property, we are done.

So, in particular, if E and F are ”classical” Banach spaces, then L(E,F) has the Gelfand-

Phillips property if and only if L(E,F) = K(E,F) and E∗ and F have it.

So, if one wants to get a new result on the Gelfand-Phillips property in L(E,F) (under

the assumption L(E,F) 6= K(E,F)), he has to assume that c0 doesn’t embed into K(E,F).

As far as we know, there are just two examples of pairs E, F such that E∗, F ∈ (GP),

L(E,F) 6= K(E,F) and c0 doesn’t embed into K(E,F); one ([12]) is obtained by taking E =

F = X, X a L∞-space with Schur property constructed in [2] by Bourgain and Delbaen.

For this space we have the following result

Theorem 2. - Let E∗ ∈ (GP ) and F have the Schur property. Then L(E, F ) ∈ (GP ).



Proof. - In order to prove that L(E,F) ∈ (GP) it is enough to show that any w-null,

limited sequence (An) ⊂ L(E,F) is norm null ([9]). We assume by contradiction that there

is a limited sequence (An) such that An
w−→ 0 and ‖ An‖ = 1 for all n ∈ N . Let us consider

y∗ ∈ F∗ and the operator A → A∗(y∗) from L(E,F) into E∗; it is clear that A∗n(y∗) w−→ 0

and (A∗n(y∗)) is limited and so ‖ A∗n(y∗) ‖ → 0. So we have

|An(xn)(y∗)| ≤ ‖A∗n(y∗)‖ → 0

from which it follows that An(xn) w−→ 0. Since F has Schur property, ‖ An(xn) ‖ → 0 a

contradiction. We are done.

Corollary 3. - Let E∗ have the Schur property and F ∗∗ ∈ (GP ). Then L(E,F ) ∈ (GP ).

Proof. - The mapping T → T∗ maps L(E,F) onto a closed subspace of L(F∗,E∗), that

has the Gelfand-Phillips property by virtue of Theorem 2.

As we have already said the interest in Theorem 2 is due to the fact it is the first result

we know about the Gelfand-Phillips property in L(E,F), under L(E,F) 6= K(E,F). Actually,

we can say more. There are a lot of results concerning isomorphic properties of Banach

spaces in L(E,F) (see [1], [5], [6], [13], [19], [21] and References therein) when L(E,F) =

K(E,F) but, as far as we know, this is the first time that an isomorphic property is shown

to lift from E∗ and F to L(E,F), when L(E,F) 6= K(E,F).

We also remark that among those isomorphic properties that, up to now, are known

to pass from E∗ and F to K(E,F) under the assumption L(E,F) = K(E,F) there is the

Radon-Nikodym Property ([1], [5], [22]). Sometimes that assumption is even necessary as

results in [5] and [10] prove. However we know that at least in one case K(E,F) has the

Radon-Nikodym Property even if L(E,F) 6= K(E,F). Let us assume E = F = Y, where

Y is the L∞-space with the Radon-Nikodym Property such that Y∗ is isomorphic to l1

constructed in [2]. It is clear that L(E,F) 6= K(E,F) = E∗⊗ε F. But E∗ = Y∗ is isomorphic

to l1 and so E∗⊗ε F is isomorphic to l1⊗ε F = K(c0,F) a space that has the Radon-Nikodym

Property if and only if F has the same property, as obtained by Diestel and Morrison in

[5]. If we take E = F = Y, we get the second example of a pair such that E∗, F ∈ (GP),

L(E,F) 6= K(E,F) and c0 6↪→ K(E,F). We do not know if L(Y,Y) ∈ (GP).



The next result is about the space of p-nuclear operators from E into F equipped with

the p-nuclear norm (see [6]).

Theorem 4. - Let E∗ have the Radon-Nikodym Property and F be separably comple-

mented. Then Np(E,F ) ∈ (GP ), 1 ≤ p < ∞.

Proof. - Let (Tn) be a w-null, limited sequence in Np(E,F). For each n, m ∈ N (and T0

= θ) choose x∗n,m,j,k ∈ E∗, yn,m,j,k ∈F such that

‖Tn − Tm‖ = inf
j





( ∞∑

k=1

‖x∗n,m,j,k‖p

)1/p

sup
‖y∗‖≤1

( ∞∑

k=1

‖y∗(yn,m,j,k)‖p′
)1/p′





and

(Tn − Tm)(•) =
∞∑

k=1

x∗n,m,j,k(•) yn,m,j,k for all j ∈ N .

Consider F0 separable and complemented in F such that F0 contains each yn,m,j,k;

Np(E,F0) is a closed, complemented subspace of Np(E,F) containing (Tn) that is w-null

and limited in it, too. So it is enough to show that ‖Tn‖ → 0 in Np(E,F0). Now, let

us put W = span(x∗n,m,j,k) and take E0 separable, closed subspace of E such that W ⊂
E∗0. The restriction map R from Np(E,F0) into Np(E0,F0) maps Tn into a w-null limited

sequence of Np(E0,F0). Since E∗ has the Radon-Nikodym property, E∗0 is separable and so

Np(E0,F0) is a separable space; hence Np(E0,F0) ∈ (GP) and ‖RTn‖ → 0. The choice of

E0 also implies that R is an isometry on Tn, so that ‖Tn‖ → 0 in Np(E,F0). We are done.

2. The Gelfand-Phillips property for special tensor products

In this section we present some results concerning the Gelfand-Phillips property in

certain tensor products of Banach spaces. Two of these results are concerned with the

projective tensor product of Banach spaces (we refer to [6] for this well-known definition),

whereas the other theorems use different tensor norms introduced in [23] and [18].

Theorem 5. - Let E,F be two separably complemented Banach spaces. Then E ⊗π F

has the Gelfand-Phillips property.



Proof. - Let (xn) be a limited subset of E⊗πF. For all n ∈ N , there is (zh,n)h∈N such

that limh ‖zh,n−xn‖ = 0 where zh,n =
∑p(h,n)

i=1 xn
i ⊗ yn

i . Obviously (zh,n)h∈N is a limited

subset of E⊗πF, too.

Since E and F are separably complemented we can choose two separable subspaces E0

of E and F0 of F such that E0 ⊇ {xn
i : i = 1, 2, ..., p(h, n); h, n ∈ N }, F0 ⊇ {yn

i : i =

1, 2, ..., p(h, n); h, n ∈ N } and P1 : E → E0, P2 : F → F0 are projections. For each zh,n we

have two norms: ‖zh,n‖0 the norm of zh,n as element of E0⊗π F0 and ‖zh,n‖π the norm of

zh,n as element of E⊗π F; it is easy to show that there are M1,M2 > 0 such that

‖zh,n − zk,m‖π ≤ M1‖zh,n − zk,m‖0 ≤ M2‖zh,n − zk,m‖π for all h, n, k, m ∈ N

(use the fact that (X ⊗π Y )∗ = L(X,Y ∗), for arbitrary Banach spaces X and Y).

Furthermore, the operator P1 ⊗ P2 maps E ⊗π F into E0 ⊗π F0 in such a way that

(P1⊗P2)(zh,n) = zh,n for all h, n ∈ N ; this means that (zh,n)h,n∈N is limited in E0⊗π F0

a (separable and hence a) Gelfand-Phillips space. This means that (zh,n)h,n∈N is limited

in E0 ⊗π F0 and so, thanks to the above inequalities about ‖ • ‖0, even in E ⊗π F . This

implies that (xn) is relatively compact in E ⊗π F . We are done.

In the paper [23] P. Saphar introduced certain tensor norms dp, 1 < p < ∞, such that

(E ⊗dp F )∗ ={ absolutely p′-summing operators T:E → F∗ equipped with the absolutely

summing norm}, 1/p + 1/p′ = 1. Using the same proof of Theorem 5 we are able to show

that following result

Theorem 6. - Let E, F be separably complemented Banach spaces. Then E ⊗dp F ∈
(GP).

Theorem 7. - Let E, F contain no copy of l1. Let us assume E∗ has both the Radon-

Nikodym Property and the metric approximation property. Then E∗ ⊗π F ∗ ∈ (GP).

Proof. - Under our assumptions E ⊗π F does not contain l1 (see [22]) and so (E ⊗ε

F )∗ has the Weak Radon-Nikodym property and it is a Gelfand-Phillips space (see [25]).

Furthermore, E∗ ⊗π F ∗ is a closed subspace of (E ⊗ε F )∗ ([16]) and so it inherites the

Gelfand-Phillips property. We are done.



Remark 1. - Theorem 7 actually shows that E∗ ⊗ε F ∗ has the so called (DPrcP),

considered in [13].

Now, let us consider a different tensor norm introduced by Levin in [18]. If E is a Banach

lattice and F a Banach space, for z =
∑p

i=1 xi ⊗ yi, Levin put

nE(z) = inf

{
‖u‖E : u ≥

∣∣∣∣∣
p∑

i=1

xi < yi, y
∗ >

∣∣∣∣∣ : y∗ ∈ F ∗, ‖y∗‖ ≤ 1

}
.

He denoted by E ⊗̃ F the completion of (E ⊗ F, nE).

We have the following result

Theorem 8. - Let E be σ-complete. Then E ⊗̃ F ∈ (GP), provided E, F ∈ (GP).

Proof. - Since E ∈ (GP), E cannot contain l∞ and so it is an order continuous Banach

lattice ([20]). Let (xn) be a limited sequence in E ⊗̃ F; for all n ∈ N , choose a sequence

(zhn)n∈N in E ⊗ F such that nE(xn − zhn) → 0 as h → ∞. But zhn =
∑p(h,n)

i=1 en
i ⊗

yn
i , for all h, n ∈ N . Let E0 be a band containing the subspace spanned by {en

i : i =

1, 2, ..., p(h, n), h, n ∈ N }; it is known ([20]) that E0 can be chosen complemented in E;

furthermore, E0 is an order continuous Banach lattice with a weak unit and the projection

P:E
onto−−−−→ E0 is a positive operator. It is clear that (xn) ⊂ E0⊗̃ F, a closed subspace of

E ⊗̃ F ([18]). Now we show it is possible to define a projection Q: E ⊗̃ F
onto−−−−→ E0 ⊗̃ F.

For z =
∑p

i=1 xi ⊗ yi ∈ E ⊗ F we put Q(z) =
∑p

i=1 P (xi)⊗ yi. It will be enough to show

that Q is continuous, because it is clear that Q is linear and Q restricted to E0⊗ F is the

identity. From Lemma 5 in [18] it follows that, under our hypothesis,

sup
‖y∗‖≤1

∣∣∣∣∣
p∑

i=1

xi < yi, y
∗ >

∣∣∣∣∣

exists in E and that

nE(z) =

∥∥∥∥∥ sup
‖y∗‖≤1

∣∣∣∣∣
p∑

i=1

xi < yi, y
∗ >

∣∣∣∣∣

∥∥∥∥∥
E

.

We have, for y∗ ∈ F ∗, ‖y∗‖ ≤ 1,

∣∣∣∣∣
p∑

i=1

P (xi) < yi, y
∗ >

∣∣∣∣∣ ≤ |P |
∣∣∣∣∣

p∑

i=1

xi < yi, y
∗ >

∣∣∣∣∣ ≤ |P | sup
‖y∗‖≤1

∣∣∣∣∣
p∑

i=1

xi < yi, y
∗ >

∣∣∣∣∣



and so

sup
‖y∗‖≤1

∣∣∣∣∣
p∑

i=1

P (xi) < yi, y
∗ >

∣∣∣∣∣ ≤ |P | sup
‖y∗‖≤1

∣∣∣∣∣
p∑

i=1

xi < yi, y
∗ >

∣∣∣∣∣ .

Since |P | is a linear, bounded operator ([24]) we get easily

nE(Q(z)) ≤ ‖ |P | ‖nE(z) z ∈ E ⊗ F.

Now, we can extend Q to all of E0⊗̃ F by continuity, so obtaining the required projection.

We also recall that E0 is isometrically isomorphic to a Köthe space E1 on a probability

space and that E0⊗̃F is isometrically isomorphic to the Köthe space E1(F) of vector valued

functions ([3]). Now, it is enough to apply a recent result in [14] showing that E1(F) ∈
(GP). We are done.

The author wishes to thank Prof. Hensgen for pointing out a mistake in a first proof of

Theorem 8.

Remark 2. - The same procedure of ”locally embedding” of E ⊗̃ F into a Köthe space

of vector valued functions can be used to show the following facts

(i) E ⊗̃ F contains l∞ iff either E or F does (use [11])

(ii) E ⊗̃ F contains c0 iff either E or F does (use [7])

(iii) E ⊗̃ F contains l1 iff either E or F does (use [16])

(iv) E ⊗̃ F has The Radon-Nikodym Property iff E and F have it (use [4]).
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