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ON BANACH SPACES WITH THE GELFAND-
PHILLIPS PROPERTY, III

By G. EMMANUELE

Abstract.- We present some results showing that the Gelfand-Phillips property lifts
from Banach spaces E and F to spaces of linear, bounded operators and to certain tensor

products of Banach spaces.

1. Introduction

Let E be a Banach space. A (bounded) subset A of E is called limited if, for every

*

*) in the dual space E*, we have z}(x) — 0 uniformly for z in

weak™ null sequence (z
A. If all limited subsets of E are relatively (norm) compact, then E is said to have the
Gelfand-Phillips property (see [8]) or to be a Gelfand-Phillips space (sometimes we shall
write E € (GP) for short). It is well known (see [25] for instance and its References)
that Banach spaces with Schur property, separably complemented Banach spaces, Banach
spaces with weak™ sequentially compact dual balls, dual Banach spaces with the Weak
Radon-Nikodym Property are Gelfand-Phillips spaces. Furthermore, [, doesn’t possess
this property usually inherited by closed subspaces, so that no space containing [, can
have it. In recent years a lot of papers have been devoted to the study of this family of
Banach spaces and, mainly, to the question of the construction of new Gelfand-Phillips
spaces from old ones (see [8], [9], [14], [21], [25] and References therein). The present
note, which can be seen as a continuation of [9], is concerned with this question, too.
More precisely, we shall prove that if E, F are special spaces in (GP) then L(E,F) € (GP)

(L(E,F) = Banach space of linear, bounded operators from E into F) as well as special

tensor products of E and F do.



2. The Gelfand-Phillips property for spaces of operators

As far as we know, no results about the Gelfand-Phillips property in L(E,F) exist unless
L(E,F) = K(E,F) (K(E,F) = Banach space of compact operators from E into F) that is a
Gelfand-Phillips space if and only if E* and F are ([8]); this situation can be justified from
the fact that in a lot of cases the hypothesis L(E,F) # K(E,F) implies that ¢y embeds into
K(E,F) and then [, embeds into L(E,F).

Theorem 1.-Let E, F be two Banach spaces satisfying one of the following conditions
1) co embeds into either F' or E*
2) F is a complemented subspace of a Banach space Z having an unconditional Schauder
decomposition (Zy,) such that L(E, Z,) = K(E, Z,) for alln € N
3) E is a Ly space and F a £ space
4) E =C|0,1] and F has cotype 2
5) E is weakly compactly generated, F' is a subspace of a space G with a shrinking uncon-
ditional basis and E* or F* has the bounded approximation property
7) E has an unconditional finite dimensional expansion of the identity.
If L(E,F) # K(E,F) then L(E, F) cannot have the Gelfand-Phillips property.

Proof. - Under the assumption L(E,F) # K(E,F), results in [10], [12], [15], [17] imply that
¢o embeds into K(E,F) and [, embeds into L(E,F). Since the Gelfand-Phillips property is

inherited by closed subspaces and [, doesn’t have this property, we are done.

So, in particular, if E and F are ”classical” Banach spaces, then L(E,F') has the Gelfand-
Phillips property if and only if L(E,F) = K(E,F) and E* and F have it.

So, if one wants to get a new result on the Gelfand-Phillips property in L(E,F) (under
the assumption L(E,F) # K(E,F)), he has to assume that ¢y doesn’t embed into K(E,F).
As far as we know, there are just two examples of pairs E, F such that E*, F € (GP),
L(E,F) # K(E,F) and ¢y doesn’t embed into K(E,F); one ([12]) is obtained by taking E =
F =X, X a Z-space with Schur property constructed in [2] by Bourgain and Delbaen.
For this space we have the following result

Theorem 2. - Let E* € (GP) and F have the Schur property. Then L(E,F) € (GP).



Proof. - In order to prove that L(E,F) € (GP) it is enough to show that any w-null,
limited sequence (A,) C L(E,F) is norm null ([9]). We assume by contradiction that there
is a limited sequence (A,,) such that A,, — 0 and || A,|| = 1foralln € N . Let us consider
y* € F* and the operator A — A*(y*) from L(E,F) into E*; it is clear that A* (y*) — 0
and (A} (y*)) is limited and so || A% (y*) || — 0. So we have

[An () (y")| < A5 (5] — 0

from which it follows that A, (x,) — 0. Since F has Schur property, || A,(x,) || — 0 a

contradiction. We are done.

Corollary 3. - Let E* have the Schur property and F** € (GP). Then L(E, F) € (GP).
Proof. - The mapping T — T* maps L(E,F) onto a closed subspace of L(F*,E*), that
has the Gelfand-Phillips property by virtue of Theorem 2.

As we have already said the interest in Theorem 2 is due to the fact it is the first result
we know about the Gelfand-Phillips property in L(E,F), under L(E,F) # K(E,F). Actually,
we can say more. There are a lot of results concerning isomorphic properties of Banach
spaces in L(E,F) (see [1], [5], [6], [13], [19], [21] and References therein) when L(E.,F) =
K(E,F) but, as far as we know, this is the first time that an isomorphic property is shown
to lift from E* and F to L(E,F), when L(E,F) # K(E,F).

We also remark that among those isomorphic properties that, up to now, are known
to pass from E* and F to K(E,F) under the assumption L(E,F) = K(E,F) there is the
Radon-Nikodym Property ([1], [5], [22]). Sometimes that assumption is even necessary as
results in [5] and [10] prove. However we know that at least in one case K(E,F) has the
Radon-Nikodym Property even if L(E,F) # K(E,F). Let us assume E = F = Y, where
Y is the Z,.-space with the Radon-Nikodym Property such that Y* is isomorphic to [y
constructed in [2]. It is clear that L(E,F) # K(E,F) = E*®, F. But E* = Y* is isomorphic
to l; and so E*®, F is isomorphic to I;®. F = K(cg,F) a space that has the Radon-Nikodym
Property if and only if F has the same property, as obtained by Diestel and Morrison in
[5]. If we take E = F =Y, we get the second example of a pair such that E*, F € (GP),
L(E,F) # K(E,F) and ¢y ¥ K(E,F). We do not know if L(Y,Y) € (GP).



The next result is about the space of p-nuclear operators from E into F equipped with

the p-nuclear norm (see [6]).

Theorem 4. - Let E* have the Radon-Nikodym Property and F' be separably comple-
mented. Then N,(E,F) € (GP),1 <p < oc.
Proof. - Let (T,,) be a w-null, limited sequence in N, (E,F). For each n,m € N (and T

= @) choose z mojk € B Un,m jk €F such that

oo 1/p o0 1/p'
1T — Tl = H]lf (Z ||$7*1,m,j,k||p> sup (Z ly* (yn,m,j:k)”p >
k=1 k=1

ly*ll<1

and
(T = T )(®) =D @i 5(®) Ynim.jik forall j €N .
k=1

Consider Fy separable and complemented in F such that Fy contains each yy m jk;
N, (E,Fy) is a closed, complemented subspace of N,(E,F) containing (T,,) that is w-null
and limited in it, too. So it is enough to show that ||7,|| — 0 in N,(E,Fy). Now, let
us put W = spﬁ(mi}ymd’k) and take Eg separable, closed subspace of E such that W C
E§. The restriction map R from N, (E,F¢) into N, (Eo,Fo) maps T,, into a w-null limited
sequence of N, (E,Fp). Since E* has the Radon-Nikodym property, Ej is separable and so
N, (Eo,Fo) is a separable space; hence N, (Eo,Fo) € (GP) and ||RT;,|| — 0. The choice of
Ey also implies that R is an isometry on T,,, so that ||7),|| — 0 in N,(E,Fy). We are done.

2. The Gelfand-Phillips property for special tensor products

In this section we present some results concerning the Gelfand-Phillips property in
certain tensor products of Banach spaces. Two of these results are concerned with the
projective tensor product of Banach spaces (we refer to [6] for this well-known definition),

whereas the other theorems use different tensor norms introduced in [23] and [18].

Theorem 5. - Let E, F' be two separably complemented Banach spaces. Then E @, F
has the Gelfand-Phillips property.



Proof. - Let (z,,) be a limited subset of E®@,F. For all n € N, there is (25,n),cN such

fﬁ;”) z} @y Obviously (2h,n),cN 18 a limited

that limy, ||z, — 2 || = 0 where 2p,, =)
subset of E®,F, too.

Since E and F are separably complemented we can choose two separable subspaces Eg
of E and Fy of F such that Eg D {z' : i = 1,2,...,p(h,n);h,n € N}, Fo D {y : i =
1,2,...,p(h,n);h,n e N} and P, : E — Ey, P, : F' — Fy are projections. For each zj, 5, we

have two norms: ||z5.,|/o the norm of 2y, as element of Eg®, Fy and ||z, »||x the norm of

zh.n as element of E®, F; it is easy to show that there are My, My > 0 such that
th,n - Zk,me S Mleh,n - Zk,m”O S M2th,n - zk,m”w for all h,?’b, k7m eN

(use the fact that (X ®, Y)* = L(X,Y™), for arbitrary Banach spaces X and Y).

Furthermore, the operator P, ® P, maps F ®, F into Fy ®, Fy in such a way that
(P1 ® Py)(2h,n) = 2nn for all h,n € N ; this means that <Zhvn)h,n€N is limited in Ey ®, Fp
a (separable and hence a) Gelfand-Phillips space. This means that (z,n)), ,cN 1S limited
in By ®, Fy and so, thanks to the above inequalities about || e ||g, even in E' ®, F. This
implies that (x,,) is relatively compact in F ®, F'. We are done.

In the paper [23] P. Saphar introduced certain tensor norms dp,1 < p < oo, such that
(E ®q, I')* ={ absolutely p’-summing operators T:E — F* equipped with the absolutely
summing norm}, 1/p+ 1/p’ = 1. Using the same proof of Theorem 5 we are able to show

that following result

Theorem 6. - Let E, F be separably complemented Banach spaces. Then E ®q, F' €
(GP).

Theorem 7. - Let E, F contain no copy of l1. Let us assume E* has both the Radon-
Nikodym Property and the metric approximation property. Then E* @, F* € (GP).

Proof. - Under our assumptions £ ®, F' does not contain l; (see [22]) and so (E ®.
F)* has the Weak Radon-Nikodym property and it is a Gelfand-Phillips space (see [25]).
Furthermore, E* ®, F* is a closed subspace of (E ®. F')* ([16]) and so it inherites the

Gelfand-Phillips property. We are done.



Remark 1. - Theorem 7 actually shows that E* ®. F* has the so called (DPrcP),
considered in [13].
Now, let us consider a different tensor norm introduced by Levin in [18]. If E is a Banach

lattice and F a Banach space, for z = le x; ®y;, Levin put

p
Zl‘i <YY" >

ng(z) = inf {||u||E fu >
i=1

Yt e BN flyt] < 1}~

He denoted by E ® F the completion of (E ® F, ng).
We have the following result

Theorem 8. - Let E be o-complete. Then E® F € (GP), provided E, F € (GP).

Proof. - Since E € (GP), E cannot contain [, and so it is an order continuous Banach
lattice ([20]). Let (x,) be a limited sequence in E @ F; for all n € N, choose a sequence
(zh")neN in E ® F such that ng(z, — zp,) — 0 as h — oco. But zp, = Zfihi’n) er ®
y, for all h,n € N. Let Eg be a band containing the subspace spanned by {el' : i =
1,2,...,p(h,n),h,n € N }; it is known (][20]) that Eq can be chosen complemented in E;
furthermore, Eg is an order continuous Banach lattice with a weak unit and the projection
P:E e, Ey is a positive operator. It is clear that (z,) C Eq® F, a closed subspace of
E ® F ([18]). Now we show it is possible to define a projection Q: E @ F e, Eq ® F.
For z=3" j2;,®y, € E®F we put Q(2) = >.7_, P(x;) ® y;. It will be enough to show

that Q is continuous, because it is clear that Q is linear and Q restricted to Eq® F is the

identity. From Lemma 5 in [18] it follows that, under our hypothesis,

p
in <yz7y* >

sup
ly=lI<1 i=1
exists in E and that
P
ng(z) =1 sup xi < yi,y* >
ly*[I<1 i=1 E

We have, for y* € F*, [|y*| <1,

P P P

> P(w:) <yiyt > <P D @i <yiyt > <|P| sup > m<yny' >

i=1 i=1 vli=tli=1




and so
p

ZP(%) <yi,y" >
i=1

p
sz‘ <yny >
i=1

< |P| sup
ly*l1<1

sup
ly*1<1

Since |P| is a linear, bounded operator ([24]) we get easily
ne(Q(2)) < 1P [Inge(2) z€EQF

Now, we can extend Q to all of Eq® F by continuity, so obtaining the required projection.
We also recall that Eg is isometrically isomorphic to a Kothe space E; on a probability
space and that Eg®F is isometrically isomorphic to the Kothe space E; (F) of vector valued
functions ([3]). Now, it is enough to apply a recent result in [14] showing that E;(F) €
(GP). We are done.

The author wishes to thank Prof. Hensgen for pointing out a mistake in a first proof of

Theorem 8.

Remark 2. - The same procedure of "locally embedding” of E @ F into a Kothe space
of vector valued functions can be used to show the following facts

(i) E ® F contains I, iff either E or F does (use [11])

(ii) E ® F contains cq iff either E or F does (use [7])
(iii) E ® F contains I, iff either E or F does (use [16])
(iv) E ® F has The Radon-Nikodym Property iff E and F have it (use [4]).
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