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1. Introduction

Let $I$ $=[0,1]$ and $X$ be a closed, convex subset of a Banach space
$E$ . Assume that $f:I¥times X¥rightarrow E$ is a function verifying the following
Caratheodory assumptions
(C1) the functions $t¥rightarrow f(t, x)$ are strongly measurable, for any $x¥in X$,

(C2) the functions $x$ $¥rightarrow f(t, x)$ are continuous, for almost all $t¥in I$,
and consider the following Cauchy problem

(CP) $¥left¥{¥begin{array}{l}x^{¥prime}=f(t,¥mathrm{x})¥¥¥mathrm{x}(0)=x_{0}¥end{array}¥right.$

where $x_{0}¥in X$ .

In order to get a solution of (CP) essentially two methods have been used,
so far: the first one uses fixed point theorems to be applied to suitable
operators connected with $f$ and the second one uses the existence of suitable
(and with good properties) approximate solutions, $¥mathrm{i}.¥mathrm{e}.$ , sequences of (usually

equicontinuous absolutely continuous $¥mathrm{a}.¥mathrm{e}$ . derivable) functions $¥mathrm{x}_{n}$ : $J¥rightarrow E$ , $J$ a
suitable subinterval of /, such that

$¥lim_{n}||x_{n}^{¥prime}(t)-f(t, x_{n}(t))||=0$
$¥mathrm{a}$ . $¥mathrm{e}$ . on $J$ ;

In such a case one has only to consider conditions forcing a subsequence of
$¥{¥mathrm{x}_{n}¥}$ to converge.

In this paper we are interested just in constructing a sequence of
approximate solutions. There are several kinds of such a sequence; for

$¥mathrm{o}$

instance, if $ X¥neq¥emptyset$, Peano-Tonelli approximations work quite well to have a
solution of (CP) under reasonable hypotheses on $f$ (see [4], p. 113; [15], [21]);

$¥mathrm{o}$

but if $ X=¥emptyset$ , they are useless (because the construction cannot be performed in
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such a case) and then the Euler-Cauchy approximations (see [4] or [12]) have
been used by several authors very successfully; but their construction requires
the assumption $‘‘ f$ is continuous”.

Our main advance here is the following: the continuity hypothesis about $f$

can be relaxed in special cases (for instance, when $X$ is separable) assuming only
that $f$ satisfies (C1) and (C2), in closed, convex subsets $X$ of $E$ (even if $ X=¥emptyset$);
we underline that Caratheodory assumptions are more natural than continuity
hypotheses for (CP) and that in many occurrences of applications of (CP) to
other problems (like P. D. E.’s or integro-differential equations, see [4], [17],

[22] $)$ the involved function $f$ is not defined in balls, but just in subsets with
empty interior. However, we are able to construct Euler-Cauchy approxim-
ations for (CP), at least in some special case; as far as we know, this is the first
attempt in this direction.

We have also to say that Schechter ([18]) constructed different kinds of
approximate solutions under (C1) and (C2), quite recently; but he also needs an
assumption like (9) below (more restrictive than (9)) whereas we don’t use it in
our construction.

As a consequence of our main result we present two (partial) improvements
of results due to von Harten-Monch ([9]) and Song ([19]), about the existence
of a solution to (CP) and to Deimling ([4], p. 114) about the existence of a
unique solution; in this last case we are able to eliminate an assumption of
uniform continuity about $f$ that is quite restrictive in infinite dimensional
Banach spaces. At the end of the note the cited result from [4] will be further

$¥mathrm{o}$

generalized (when $ X¥neq¥emptyset$ as in [4]), but in a more strict class of Banach spaces,
always dispensing with the uniform continuity of $f$. These last two results will
be easy consequences of theorems concerning perturbed Cauchy problems,
improving theorems by Hu Shou Chuan ([10]) and Martin ([12]).

2. The main result

This section is devoted to present the result about existence of approximate
solutions for (CP). We need the well known definitions of locally finite
partition of unity and Dugundji system, for which we refer to [1]. We shall
also use the following result of existence of approximate solutions in the case $f$

continuous, that can be found in [4] and [12]; we enunciate it as a lemma.

Lemma 1. Let $LX$, $E$, $x_{0}$ , $f$ be as in the Introduction. Consider $r>0$, $B$

$=B(x_{0}, r)=¥{x¥in E, ||x-x_{0}||¥leqq r¥}$, $X_{r}=X¥cap B$. Assume that $f:I¥times X_{r}¥rightarrow E$ is
continuous and bounded by, say, $b$ . Moreover, we suppose that

(1) $¥lim_{h¥rightarrow 0^{+}}h^{-1}d(x+hf(t, x), X_{r})=0$ for $t¥in I$ , $x¥in X_{r}$ .
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Let now $¥delta<¥min¥{1, r/b¥}$ be. Take $¥epsilon_{0}>0$ such that $(b+¥epsilon_{0})¥delta¥leqq r$ and
consider a sequence of positive numbers $¥{¥epsilon_{n}¥}$ with $¥epsilon_{n}<¥epsilon_{0}$ and $¥epsilon_{n}¥rightarrow 0$. Then, for
each $n¥in N$, there is an absolutely continuous function $x_{n}$ : $J=[0, ¥delta]¥rightarrow X$ having $a$

derivative almost everywhere and such that

(2) $||x_{n}(t^{¥prime})-x_{n}(t^{¥prime¥prime})||¥leqq(b+¥epsilon_{0})|t^{¥prime}-t^{¥prime¥prime}|$ for $n¥in N$, $t^{¥prime}$ , $t^{¥prime¥prime}¥in J$

(3) $||x_{¥acute{n}}(t)-f(t, x_{n}(t))||¥leqq¥epsilon_{n}$ for $¥mathrm{a}.¥mathrm{e}$ . $t¥in J$ .

Now we are ready to prove our first result.

Theorem 1. Let $LX$, $E$, $x_{0}$ , $f$ be as in the Introduction. Assume that
a) the functions $t¥rightarrow f(t, x)$ are strongly measurable, for all $x¥in X$

b) the functions $x¥rightarrow f(t, x)$ are continuous, for almost all $t¥in I$

c) $f$ is bounded by, say, $b$ .

If $r$ and $X_{r}$ are like in Lemma 1, assume (1) is verified, too. Taking $¥epsilon_{0}$ and $J$

as in Lemma 1, the conclusion of that Lemma is true if we change (3) with the
following

$(3’)$ $¥lim_{n}||x_{¥acute{n}}(t)-f(t, x_{n}(t))||=0$ $a.e$ . in $J$

provided $f$ verifies the Scorza-Dragoni assumption
(SD) for each $¥eta>0$ there is a closed subset $I_{¥eta}$ of I such that $ m(I¥backslash I_{¥eta})<¥eta$ and

$f|_{I_{¥eta}¥times X}$ is continuous.

Proof. By virtue of (SD), given $k¥in N$ there is a closed subset $I_{k}$ of I such
that $m(I¥backslash I_{k})<1/k$ and $f|_{I_{k}¥times X}$ is continuous. Of course I and $I_{k}$ verify the well-
known assumptions implying the existence of a Dugundji system $¥{U_{s}, t_{s}¥}_{s¥in S}$ for
$I¥backslash I_{k}$ and of a locally finite partition of the unity $¥{b_{s}¥}_{s¥in S}$ inscribed into $¥{U_{s}¥}_{s¥in S}$

(see [1]). We define a new function $f_{k}$ : $I¥times X¥rightarrow E$ by putting

$f_{k}(t, x)=¥left¥{f¥Sigma b_{s}(t)f(t_{s},x)(t,x)¥right.$ $tt¥in I_{k}¥not¥in I_{k},’ xx¥in X¥in X$

.

Of course $f_{k}$ is an extension of $f|_{I_{k}¥times X}$ and it is bounded by, again, $b$ and
continuous. We shall show that

(4) $¥lim_{h¥rightarrow 0^{+}}h^{-1}d(x+hf_{k}(t, x), X_{r})=0$ for $t¥in I$, $x¥in X_{r}$ .

Indeed, if $(t, x)¥in I_{k}¥times X(4)$ follows from the definition of $f_{k}$ and (1). Let
$t¥not¥subset I_{k}$, $x¥in X$ be. For a finite number of $s¥in S$ we have

$f_{k}(t, x)=¥sum b_{s}(t)f(t_{s}, x)$ .

Let $¥sigma>0$ be. There is $¥rho>0$ such that if $ 0<h<¥rho$ we have
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$ h^{-1}d(x+hf(t_{s}, x), X_{r})<¥sigma$ .

So we obtain a finite number of elements $y_{s}¥in X_{r}$ such that

(5) $ h^{-1}||(x+hf(t_{s}, x))-y_{s}||<¥sigma$ with $ 0<h<¥rho$ .

By using the convexity of $X_{r}$ we obtain $z=¥sum b_{s}(t)y_{s}¥in X_{r}$ . Then we have,
by virtue of (5),

$h^{-1}||(x+hf(t_{s}, x))-Z||$

$¥leqq¥sum b_{s}(t)(h^{-1}||(x+hf(t_{s}, x))-y_{s}||)<¥sigma$ with $ 0<h<¥rho$ .

So (4) is true. We can apply Lemma 1 to $f_{k}$ , for each $k¥in N$, and we obtain
an absolutely continuous function $x_{k}$ : $J¥rightarrow X$ , derivable almost everywhere,
verifying (2) and (3) (in (3) read $f_{k}$ instead of $f$). For $k¥in N$, we have

$¥int_{J}||¥mathrm{x}_{k}^{¥prime}(t)-f(t, x_{k}(t))||dt$

$¥leqq¥int_{J}||x_{k}^{¥prime}(t)-f_{k}(t, ¥chi_{k}(t))||dt+¥int_{J}||f_{k}(t, x_{k}(t))-f(t_{X_{k}},(t))||dt$

$¥leqq m(J)¥epsilon_{k}+¥int_{J¥backslash I_{¥mathrm{k}}}||f_{k}(t, x_{k}(t))-f(t, x_{k}(t))||dt$

$¥leqq m(J)¥epsilon_{k}+m(J¥backslash I_{k})2b$ .

As $ k¥rightarrow¥infty$ , the last member tends to zero. Hence we obtain

(6) $¥lim_{k}||x_{k}^{¥prime}(¥cdot)-f(¥cdot, ¥mathrm{x}_{k}(¥cdot))||_{L^{1}}=0$ .

It is well known that (6) implies the existence of a subsequence of $¥{x_{k}¥}$

verifying our thesis. The proof is over. $¥blacksquare$

In Theorem 1 we have used the assumption (SD). Now we present two
cases in which it is verified.

(SD1) Let $LE$ be as in the Introduction. Assume $X$ is a separable metric
space and $f:I¥times X$ $¥rightarrow E$ verifies (a) and (b) of Theorem 1. Then (SD) is verified.

The proof of this can be found in [16].

(SD2) Let $LX$, $E$ be as in the Introduction. Assume $X$ is closed and
convex, $f:I¥times X¥rightarrow E$ verifies (a) and (b) of Theorem 1. Suppose again that there
are two functions $L$ from I into $E$ and $H$ from $X$ into $R$ such that

(7) $L¥in L^{1}(I, E)$ and $H$ is bounded on bounded sets
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(8) $||f(t^{¥prime}, x)$ $-f(t^{¥prime¥prime}, x)||¥leqq||L(t^{¥prime})-L(t^{¥prime¥prime})|||H(x)|(1+||f(t^{¥prime}, x)||)$ $t^{¥prime}$ , $t^{¥prime¥prime}¥in I$, $x¥in X$ .

Then (SD) is verified.
We omit the simple proof which relies on an application of Lusin Theorem

([6]) to $L$. The assumption (8) was successfully already considered by a
number of authors mainly in the study of nonlinear evolution equations in
Banach spaces (see [3], [8], [11], [14]).

3. Some applications to existence results for (CP)

In section 2 we defined approximate solutions of Euler-Cauchy type for
(CP) under Caratheodory assumptions in closed, convex sets $X$ (with $ X=¥emptyset$,

too). The availability of these approximations allows us to improve two
existence results for (CP) due to von $¥mathrm{H}¥mathrm{a}¥mathrm{r}¥mathrm{t}¥mathrm{e}¥mathrm{n}- ¥mathrm{M}¥ddot{¥mathrm{o}}¥ddot{¥mathrm{n}}¥mathrm{c}¥mathrm{h}$ $([9])$ (see, also Song [19])
and Deimling ([4]); those authors proved their theorems using the existing (at
that time) sequences of approximations: for this reason in [9] it was assumed $‘‘ f$

$¥mathrm{o}$

continuous” and in [19] $‘‘ f$ Caratheodory, but $X=¥emptyset’$ ’ ; further, in [4] Deimling
was forced to assume that $f$ is uniformly continuous with respect to the second
variable, by the nature of the Peano-Tonelli approximations he used. Our
main gain here seems to be the following: we can assume $‘‘ f$ Caratheodory with

$¥mathrm{o}$

$X$ closed and convex,, but even when $X=¥emptyset’’$, so dispensing with the
$¥mathrm{o}$

nonemptiness of $X$ and with uniform continuity; but, we recall this is possible
not in as general as possible case: we have to assume that $X$ is separable.

First of all we apply Theorem 1 to the results due to von Harten and
Monch ([9]) and Song ([19]). We observe that the proof of von Harten-
Monch result works with any kind of approximants as Peano-Tonelli
approximants or Euler-Cauchy approximants (and for this reason we shall only
state our result without proof); so whereas they were forced to assume $f$

continuous, in order to use the Euler-Cauchy approximants constructed by
Martin (see [4] or [12]) just when $f$ is continuous, Song ([19]) improved their
results assuming Caratheodory assumptions but with $ X¥neq¥emptyset$, in such a way that
Peano-Tonelli approximants could be used. Now, thanks to our main
construction we can restate the above quoted theorems as it follows ($¥alpha$ will
denote the Kuratowski measure of non compactness and $¥beta$ the Hausdorff
measure of non compactness, [4] $)$

Theorem 2. Let /, $X$, $E$, $x_{0}$ , $f$ be as in Theorem 1. Further, assume that
for each bounded subset $¥mathrm{Y}$ of $X$ we have $¥beta(f(t, ¥mathrm{Y}))¥leqq¥omega(t, ¥beta(¥mathrm{Y}))$ [resp. $a(f(t, ¥mathrm{Y}))$

$¥leqq¥omega(t, ¥alpha(¥mathrm{Y}))]$ if $E$ is weakly compactly generated space [resp. if $E$ is a general
Banach space] and $¥omega$ from $I¥times R^{+}$ into $R^{+}$ verifies Caratheodory assumptions
and is such that the only non negative absolutely continuous function $u:I$ $¥rightarrow R^{+}$
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for which $u(0)=0$, $u^{¥prime}(t)¥leqq¥omega(t, u(t))$ [resp. $u^{¥prime}(t)¥leqq 2¥omega(t,$ $u(t))$] is $u(t)=0$ on $I$ .

Then (CP) has a solution on a suitable subinterval $J$ of $L$

Observe that if $E$ is a separable Banach space our result is strictly more
general than those ones in [9] and [19].

The second application is a (partial) improvement of Theorem 8.1 of
$¥mathrm{o}$

[4]. That theorem, obtained in general Banach spaces with $ X¥neq¥emptyset$, uses
Peano-Tonelli approximants under Caratheodory hypotheses; we already said
that this forces the author to assume that $f$ is uniformly continuous with respect
to $x$ , quite a restrictive requirement in infinite dimensional Banach spaces.
Using our construction we are now able to dispense and with the nonemptiness
of $X$ and with uniform continuity (not in general Banach spaces, but at least in
separable ones). If $¥{x_{n}¥}$ is like in Theorem 1, we denote by $Z$ the (bounded)
subset $¥{x_{n}(t):t¥in I, n¥in N¥}$ of $X$.

Theorem 3. Let $LX$, $E$, $x_{0}$ , $f$ be as in Theorem 1. Assume that $f$ satisfies
the following assumption of dissipative type

(9) $¥langle f(t, x) -f(t, y), x-y¥rangle¥_¥leqq¥omega(t, ||x-y||)||x-y||$ for $t¥in I$ , $x$ , $y¥in Z$

where $¥omega$ is a uniqueness function as in Theorem 2 (we refer to [4] for the
definition of $¥langle ¥cdot, ¥cdot¥rangle¥_)$. Then (CP) has a unique solution on a suitable subinterval
$J$ of $L$

Theorem 3 is an easy consequence of the following more general result
about perturbed Cauchy problems (take $B=0$ in Theorem 4).

Theorem 4. $Let$ /, $X$, $E$, $x_{0},f$ be as in Theorem 1. Assume that$f=A+B$
where $A:I¥times X¥rightarrow E$ , $B:I¥times X¥rightarrow E$ verify (C1), (C2) and the following other
hypothesis

(10) there exist two functions $¥varphi_{A}$ , $¥varphi_{B}¥in L^{1}(I, R)$ such that $||A(t, x)||¥leqq¥varphi_{A}(t)$,
$||B(t, x)||¥leqq¥varphi_{B}(t)$ for $¥mathrm{a}$ . $t¥in I$ and all $x¥in X$ .

Assume that $A$ verifies an assumption like (9) of Theorem 3 and that

(11) $B(t, ¥mathrm{Z})$ is relatively compact, for almost all $t¥in I$

(12) for each $¥epsilon>0$ there is $a$ (closed) subset $I_{¥epsilon}$ of $I$ , $ m(I¥backslash I_{¥epsilon})<¥epsilon$ such that $B|_{I_{¥epsilon}¥times Z}$

is uniformly continuous.
Then the perturbed Cauchy problem

(PCP) $¥left¥{¥begin{array}{l}¥mathrm{x}^{¥prime}=A(t,x)+B(t,x)¥¥x(0)=¥chi_{0}¥end{array}¥right.$

has a solution on J.



Existence of Approximate Solutions for O. D. E’s 349

Proof. Put $f_{k}(¥cdot)=B(¥cdot, x_{k}(¥cdot))$, $k¥in N$. First of all we shall prove that for
all $p¥in N$ there is a sequence $¥{f_{k}^{p}¥}$ of $¥{f_{k}¥}$ such that

(13) $f_{k}^{p+1}$ is a subsequence of $¥{f_{k}^{p}¥}$

(14) $¥int_{J}||f_{n}^{p}(t)-f_{m}^{p}(t)||dt<1/p$ for all $n$ , $m¥in N$.

Assume $¥{f_{k}^{p}¥}$ has already been found. We shall show how to get
$¥{f_{k}^{p+1}¥}$ . We recall that $||f_{k}(t)||¥leqq¥varphi_{B}(t)$ for all $k¥in N$, $t¥mathrm{a}.¥mathrm{e}$ . in $J$ . Fix 1/(3(p

$+1))$ and consider $¥epsilon>0$ such that $¥int_{A}¥varphi_{B}(t)dt<(1/3(p+1))$ if $ m(A)<¥epsilon$ . By

(12) there is a closed $I_{¥epsilon}$ , $ m(I¥backslash I_{¥epsilon})<¥epsilon$ such that $B|_{I_{¥epsilon}¥times Z}$ is uniformly continuous.
Hence $¥{f_{k}^{p}|_{I_{¥epsilon}}¥}$ is a sequence of equicontinuous functions for which $¥{f_{k}^{p}(t)¥}$ is
relatively compact in $E$ . The Ascoli-Arzela Theorem implies that there is a
subsequence $¥{f_{k}^{p+1}¥}$ of $¥{f_{k}^{p}¥}$ which is a Cauchy sequence in $C(I_{¥epsilon}, E)$ . So for $n$,

$m$ sufficiently large we may assume that $||f_{n}^{p+1}|_{I_{¥epsilon}}-f_{m}^{p+1}|_{I_{¥epsilon}}||_{C(I_{¥epsilon},E)}<1/(3(p$

$+1))$. From the above reasoning we have

$¥int_{J}||f_{n}^{p+1}(t)-f_{m}^{p+1}(t)||dt$

$=¥int_{J¥backslash I_{¥epsilon}}||f_{n}^{p+1}(t)-f_{m}^{p+1}(t)||dt+¥int_{J¥mathrm{n}I_{¥epsilon}}||f_{n}^{p+1}(t)-f_{m}^{p+1}(t)||dt$

$¥leqq 2¥int_{J¥backslash I_{¥epsilon}}¥varphi_{B}(t)dt+m(J¥cap I_{¥epsilon})||f_{n}^{p+1}|_{I_{¥epsilon}}-f_{m}^{p+1}|_{I_{¥epsilon}}||_{C(I_{¥epsilon},E)}$

$<1/(p+1)$.

Of course $¥{f_{k}^{k}¥}$ is a subsequence of $¥{f_{k}¥}$ which is a Cauchy sequence in
$L^{1}(J, E)$. Without loss of generality we can suppose that $¥{f_{k}¥}$ is Cauchy in
$L^{1}(J, E)$ . Put now $p_{nm}(t)=||x_{n}(t)-x_{m}(t)||$ , $n$, $m¥in N$, $t¥in J$ . By well known
properties of $¥langle ¥cdot, ¥cdot¥rangle¥_$ we have, for $n$, $m¥in N$, $t¥in J¥backslash J_{0}$ , $m(J_{0})=0$ where $ J_{0}=J_{1}¥cup$

$J_{2}¥cup J_{3}¥cup J_{4}¥cup J_{5}$ , being $J_{1}=$ { $t¥in J$ : (C1) is true on $J/J_{1}$ }, $J_{2}=¥{t¥in J$ : (C2) is true
on $J¥backslash J_{2}$ }, $J_{3}=$ { $t¥in J:||A$ ( $t$ , $x$) $||¥leqq¥varphi_{A}(t)$, $||B(t,$ $x)||¥leqq¥varphi_{B}(t)$ are true on $J¥backslash J_{3}$ }, $J_{4}$

$=$ { $t¥in J:(9)$ and (11) are true on $J¥backslash J_{4}$ }, $J_{5}=¥{¥mathrm{t}¥mathrm{e}¥mathrm{J}$ : exists for each $n$,
$m¥in N¥}$

$ p_{nm}^{¥prime}(t)p_{mn}¥leqq¥langle¥chi_{n}^{¥prime}(t)-¥chi_{m}^{¥prime}(t), x_{n}(t)-x_{m}(t)¥rangle¥_$

$¥leqq¥langle A(t, x_{n}(t))-A(t, x_{m}(t)), x_{n}(t)-x_{m}(t)¥rangle¥_$

$+p_{nm}(t)¥{||B(t, x_{n}(t))-B(t, x_{m}(t))||+||h_{n}(t)||+||h_{m}(t)||¥}$

where $h_{k}(t)=x_{k}^{¥prime}(t)-[A(t, x_{k}(t))+B(t, x_{k}(t))]$ , $k¥in N$, $t¥mathrm{a}.¥mathrm{e}$ . in $J$ . Of course
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$||h_{k}||_{L^{1}}¥rightarrow 0$ . If $T>¥max_{n,m,t}|p_{nm}(t)|$ we have

$p_{nm}^{¥prime}(t)p_{nm}(t)¥leqq¥omega(t, p_{nm}(t))p_{nm}(t)+T(||f_{n}(t)-f_{m}(t)||+||h_{n}(t)||+||h_{m}(t)||)$,

$n$, $m¥in N$, $t¥in J¥backslash J_{0}$ .

From now on we can proceed as in our paper [7] to obtain that at least a
subsequence of $¥{X_{k}¥}$ must converge in $C(J, E)$. Of course the limit will be a
solution for (CP). We are done. $¥blacksquare$

Remark 1. Assumption (12) could seem too restrictive. However it
allows quite a bad behaviour of $B$ , in special cases. For instance, assume $E$ is a
reflexive and separable Banach space and $X$ is a convex subset of $E$ (or, more
generally, $X$ is weakly closed). Also suppose $B$ verifies (11), (C1) and the
following
(C2)’ the functions $x¥rightarrow B(t, x)$ are weakly-weakly sequentially continuous for

almost all $t¥in I$,
a hypothesis used by several authors before ([2], [5], [13], [20]).

It is very easy to prove that (11) and (C2)’ alike imply that
(C2)’’ the functions $x¥rightarrow B(t, x)$ are weakly-strongly sequentially continuous on

$¥overline{Z}^{¥omega}$ (the weak closure of $Z$ ), for almost all $t¥in I$ .
Now, we note that $Z$ is a bounded subset and hence $¥overline{Z}^{¥omega}$ with the weak

topology actually is a compact metric space (we denote by $d$ the induced
metric). If we consider $B$ as a function defined in $I¥times(¥overline{Z}^{¥omega}, d)$ with values into
$(E, ||¥cdot||)$ , we can apply the main result of [16] to prove that for each $¥epsilon>0$ there
is a (closed) subset $I_{¥epsilon}$ of $I$ , $ m(I¥backslash I_{¥epsilon})<¥epsilon$ , such that $B$ restricted to $I_{¥epsilon}¥times(¥overline{Z}^{¥omega}, d)$ is
continuous; since $I_{¥epsilon}¥times(¥overline{Z}^{¥omega}, d)$ is a compact space, then $B$ restricted to it has to
be uniformly continuous; this easily implies (12).

Observe that we could only assume $E$ reflexive, without separability
assumption, because of the following remark: $Z$ is contained in a separable
closed subspace $¥mathrm{Y}$ of $E$, hence we could apply our ideas to this last space $¥mathrm{Y}$ that
is reflexive and separable.

Remark 2. The proof of Theorem 1 shows that the assumptions (9), (11),
(12) are to be used just in order to look for a subsequence of $¥{x_{n}¥}$ converging;
actually we don’t need them in the construction of $¥{x_{n}¥}$ . For this reason we
assumed them only involving $Z$ and not all of $X$ ; this fact is useful, sometime,
as we see from Remark 1, where we didn’t suppose $X$ bounded in order to have
(11), because it involves only $Z$ that is, already, bounded by construction. We
also observe that (12) implies that, for almost all $t¥in I$, the functions $x¥rightarrow B(t, x)$

have to be uniformly continuous just on $Z$, not on the all of $X$ . Observe that
Theorem 4 improves results by Hu Shou Chuan ([10]) and Martin ([12]) about
the same kind of (PCP).
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4. Another result about (PCP) (not using Theorem 1)

In this section, we want to state another result concerning (PCP) in the
$¥mathrm{o}$

case of $ X¥neq¥emptyset$ ; in this case, we can use a different kind of approximate
solutions, the so-called Peano-Tonelli approximants defined by

$0¥leqq t¥leqq¥frac{a}{n}$

(15) $x_{n}(t)=¥{^{X_{0}}x_{0}+¥int_{0}^{t}f(s,$

$¥mathrm{x}_{n}(s-¥frac{a}{n}))ds$ $¥frac{a}{n}¥leqq t¥leqq a$

when $f=A+B$ verifies Caratheodory hypotheses (see [4]).

Theorem 5. Let $LXo’ E$, $A$ , $B$ be as in Theorem 4. Assume $E^{*}is$ uniformly
convex. Consider $x_{0}¥in X$ and a ball $B(x_{0}, r)¥subset X$. Suppose there are two

functions $¥varphi_{A}$ , $¥varphi_{B}¥in L^{1}(I, R)$ such that $||A(t, x)||¥leqq¥varphi_{A}(t)$ , $||B(t, x)||¥leqq¥varphi_{B}(t)$, $t¥in I$ ,

$x¥in X$ . Let $J=[0, a]$ be, where $a<1$ and $¥int_{0}^{a}¥varphi(s)ds¥leqq r$, $¥varphi=¥varphi_{A}+¥varphi_{B}$. Define
a sequence $¥{x_{n}¥}$ like in (15) and assume that $A$ , $B$ verify (C1) and (C2). If (9),
(11), (12) of Theorem 4 are true, then (PCP) has a solution on $J$ .

Proof. We can proceed as in Theorem 4 to show that the sequence
$¥{B(¥cdot, x_{n}(¥cdot))¥}$ is relatively compact in $L^{1}(J, E)$, so we can assume (by passing to
a subsequence if necessary) it is a Cauchy sequence.

Hence, with the same notation of Theorem 4 we have

$p_{nm}(t)p_{nm}^{¥prime}(t)¥leqq¥langle A(t,$ $x_{n}$ ( $t$ $-¥frac{a}{n}$ )$)-A(t$, $x_{m}(t$ $-¥frac{a}{m}))$ , $x_{n}(t)-x_{m}(t)¥rangle_{-}$

$+p_{nm}(t)¥{||B(t, x_{n}(t))-B(t, x_{m}(t))||+||h_{n}(t)||+||h_{m}(t)||¥}$ .

Since $¥langle ., . ¥rangle¥_$ is uniformly continuous on bounded subsets of $E¥times E$ (see
[4] $)$ for $¥epsilon>0$ and $n$ , $m$ sufficiently large, we have

$p_{nm}(t)p_{nm}^{¥prime}(t)$

$¥leqq¥langle A$ ( $t$ , $x_{n}(t-¥frac{a}{n}))-A(t,$ $x_{m}(t$ $-¥frac{a}{m}))$ , $x_{n}(t$ $-¥frac{a}{n})-x_{m}(t-¥frac{a}{m})¥rangle_{-}$

$+¥epsilon+p_{nm}(t)¥{||B(t, x_{n}(t))-B(t, x_{m}(t))||+||h_{n}(t)||+||h_{m}(t)||¥}$

$¥leqq¥omega_{A}$ ( $t$ , $||x_{n}(t-¥frac{a}{n})-x_{m}(t-¥frac{a}{m})||$ ) $||x_{n}(t-¥frac{a}{n})-¥mathrm{x}_{m}(t-¥frac{a}{m})||$

$+¥epsilon+p_{nm}(t)¥{||B(t, x_{n}(t))-B(t, x_{m}))||+||h_{n}(t)||+||h_{m}(t)||¥}$ ;
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again using the uniform continuity of $u¥rightarrow¥omega_{A}(t, u)u$ on bounded sets we get, for
$n$, $m$ sufficiently large,

$ p_{nm}(t)p_{nm}^{¥prime}(t)¥leqq¥omega_{A}(t, p_{nm}(t))p_{nm}(t)+2¥epsilon$

$+p_{nm}(t)¥{||B(t, x_{n}(t))-B(t, x_{m}(t))||+||h_{n}(t)||+||h_{m}(t)||¥}$ .

Now it easy to see that $¥{x_{n}¥}$ admits a converging subsequence, using the
arbitrariness of $¥epsilon$ and the same proof of the result in [7]. So our proof is
complete. $¥blacksquare$

In the case of $B=0$ we generalize partially a previous result by Deimling
([4], p. 114) by dispensing with the uniform continuity assumed in [4].
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