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Let E be a Banach space and X be a closed, convex subset of E. If 
I= [0, a), a > 0, is a real interval, we consider two functions A, B from 
Ix X into E and the Cauchy problem 

4t) = A(& x(f)) + B(t, x(t)), 

x(0) = so, 
c-1 

where x0 E A’. 
The same problem with A satisfying dissipativeness conditions and B 

having a compact range was considered by R. H. Martin [3,4] and 
E. Schecter [S, 61. Main purpose of this note is to show that the presence 
in E of a property invariant under isomorphisms, the so called 
Gelfand-Phillips property, allows us to relaxe the compactness assumption 
on B considered in all of the above cited works; we underline that we have 
no interest in constructing approximate solutions for (CP), but only in 
proving that the Gelfand-Phillips property has some consequence in the 
study of (CP); this motivates the following assumptions 

(a) there are a subinterval I* of I, a real sequence (E,) converging to 
zero, a sequence of absolutely continuous functions (x,), defined on I* with 
values into X, such that IllJt) - A(t, x,(t)) - B(t, x,(t))11 d E, for all t E I*, 
n E N. 

* Work performed under the auspices of G.N.A.F.A. of C.N.R. and partially supported by 
M.P.I. of Italy. 
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This happens, for example, if X is a closed ball of E centered at x,, (under 
assumption (d)); for other cases, we refer the reader to [4]. 

(b) E is a Gelfand-Phillips space, i.e., a Banach space such that any of 
its limited sets are relatively compact (we recall that a subset X of E is said 
limited tff for any sequence (x,*) c E* converging weak* to zero we have 
lim,wx,, I<x,*,x)l =O). 

For several examples of Gelfand-Phillips spaces we refer the reader to 
the papers [ 1, 21. 

Concerning the function B we make the following hypothesis which is 
more general than compactness of the range. 

(c) B(t, X) is relatively compact, for almost any t E I. 

Moreover, in all of the paper we assume that A, B verify the following 
assumptions of Caratheodory type 

(d) A, B are measurable in t E I, ,for any x E X and stronglyyweakly 
continuous in x, for almost every t E I; there exist two functions CI, fl E L’(Z) 
such that IIA(t,x)ll<cr(t), IIB(t,x)ll<fl(t)for all (t,x)EIxX. 

Now, we show a fundamental lemma which clarifies the roles of the 
Gelfand-Phillips property and assumption (c): 

LEMMA. Let (a), (b), (c), (d) hold. Zf we put y,(t) = j;, B(s, x,(s)) ds, ,fbr 
all t E I*, then the sequence ( y,) has a uniformly converging subsequence. 

Proof Let p > 0 be. Since /?E L’(Z) there is g > 0 such that for any 
Lebesgue measurable set Jo, m(P) < CJ, one has Jp /I(s) ds < p/2. Let J be 
the set of null measure such that B(t, X) is relatively compact for any 
t E I* -J (from c). 

Now, we consider a sequence (x,*) in E* converging weak* to zero; we 
can suppose that Ilx,*II < 1, for the sake of brevity. For any t E I* -J we 
have that the sequence ( (x,*, B( t, x,(t)) ) ) converges to zero by the com- 
pactness of B(t, X); Egoroffs Theorem says that there exists a Lebesgue 
measurable set J*, J* c I* -J, m(J*) < CJ, for which (x,*, B(t, x,,(t))) + 0 
uniformly on I* - (Ju J*). Hence, for any n E N and t E I*, we have 

I (x,*3 Y,(t))1 6 J I <x,*> B(s, x,h))>l ds + p/2; 
I*-(JuJ*) 

if n is sufficiently large, we have 1 (x,*, y,(t))1 < p. Arbitrariness of (x,*) in 
E* implies that (y,(t)) is a limited set in E, for any t E T*; the 
Gelfand-Phillips property of E gives its relative compactness. Since the 
sequence ( y,) is bounded and equicontinuous easily, Ascoli-Arzela 
Theorem concludes our proof. 
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Once we have shown the lemma which assures the existence of a 
uniformly converging subsequence of (y,), the main result follows easily 
with the same techniques employed by Martin in [3] (see also [4]). To 
obtain it we need to use comparison functions w: I* x [0, co) -+ [0, co), 
with o(t, 0) = 0 for all t E I*, satisfying the assumption 

(e) co is continuous and the unique absolutely continuous function $ 
from I* into [0, 00) such that $(t) = o(t, $(t)), $(O) = 0, is the identically 
null function. 

Now we are ready to state our theorem. 

THEOREM. Let (a), (b), (c), (d), (e) hold. We consider the other 
assumptions: 

(h,) IIN& x) - A([, y)II < 46 IL- yll )for all (t, x1, (6 Y) E I* x X 
(h,) E* is unzformly convex and (x - y, A(t, x) - A(t, y)) . < 

w(t, 11x-yll)lix- yllfor all (t,x), (t, y)~IxX(fordefinitionof(.;)~~ we 
refer to [4]), 

(h,) X is open, A is uniformly continuous in I* x X and A verifies an 
assumption of dissipative type as in h2). 

Then, any one of the conditions (h,), (h,), (h3) (with conditions (a))(e)) 
implies the existence of an absolutely continuous solution of (CP). 

Proof Our theorem will be proved if we can extract a uniformly con- 
verging subsequence (x,,) from (x,); indeed, its limit point will be an 
absolutely continuous solution of (CP) (with a standard proof) under our 
assumptions. This extraction will be made using the same techniques of the 
theorem of [3] in the case (C5),, (C5),, (C5), as already remarked; we 
only observe that if (h2) is verified, then E is reflexive and so it is a 
Gelfand-Phillips space. The proof is complete. 

When (h,) is verified, our result is strictly more general than the 
corresponding result of Martin [3]; when (h,), (h3) are satisfied, our 
results are more general than those of [3] in the case of Gelfand-Phillips 
spaces, but we observe that those of [3] hold in general Banach spaces: 
however, our theorem is more applicable than Martin’s result in a situation 
considered in [3]; indeed, Martin furnished an example of an integro-dif- 
ferential equations which is not solvable using his theorem in the case E = 
L’( [0, 11); since L’( [IO, 11) is a Gelfand-Phillips space, we can apply our 
result with a more general B than that considered in [3], if we assume 
hypotheses which assure that A is uniformly continuous and dissipative 
(use h,)) or A satisfies an assumption of Lipschitzian type (use (h,)). Also, 
we observe that the present theorem is different from the results obtained, 
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with different techniques, by Schechter; indeed, he always assumes com- 
pactness of the range of B (an assumption more restrictive than our 
hypothesis (c)), but his theorems can be used in general Banach spaces. 
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