JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 120, 557-560 (1986)

Existence of Solutions of Ordinary Differential Equations Involving Dissipative and Compact Operators in Gelfand-Phillips Spaces*

G. Emmanuele

Department of Mathematics, University of Catania, 95125 Catania, Italy

Submitted by V. Lakshmikantham

Received May 15, 1985

Let E be a Banach space and X be a closed, convex subset of E. If I = [0, a), a > 0, is a real interval, we consider two functions A, B from $I \times X$ into E and the Cauchy problem

$$\dot{x}(t) = A(t, x(t)) + B(t, x(t)),$$

 $x(0) = x_0,$
(CP)

where $x_0 \in X$.

The same problem with A satisfying dissipativeness conditions and B having a compact range was considered by R. H. Martin [3, 4] and E. Schecter [5, 6]. Main purpose of this note is to show that the presence in E of a property invariant under isomorphisms, the so called Gelfand-Phillips property, allows us to relaxe the compactness assumption on B considered in all of the above cited works; we underline that we have no interest in constructing approximate solutions for (CP), but only in proving that the Gelfand-Phillips property has some consequence in the study of (CP); this motivates the following assumptions

(a) there are a subinterval I^* of I, a real sequence (ε_n) converging to zero, a sequence of absolutely continuous functions (x_n) , defined on I^* with values into X, such that $||\dot{x}_n(t) - A(t, x_n(t)) - B(t, x_n(t))|| \le \varepsilon_n$ for all $t \in I^*$, $n \in N$.

^{*} Work performed under the auspices of G.N.A.F.A. of C.N.R. and partially supported by M.P.I. of Italy.

This happens, for example, if X is a closed ball of E centered at x_0 (under assumption (d)); for other cases, we refer the reader to [4].

(b) *E* is a Gelfand–Phillips space, i.e., a Banach space such that any of its limited sets are relatively compact (we recall that a subset X of E is said limited iff for any sequence $(x_n^*) \subset E^*$ converging weak* to zero we have $\lim_n \sup_{x \in X} |\langle x_n^*, x \rangle| = 0$).

For several examples of Gelfand-Phillips spaces we refer the reader to the papers [1, 2].

Concerning the function B we make the following hypothesis which is more general than compactness of the range.

(c) B(t, X) is relatively compact, for almost any $t \in I$.

Moreover, in all of the paper we assume that A, B verify the following assumptions of Carathéodory type

(d) A, B are measurable in $t \in I$, for any $x \in X$ and strongly-weakly continuous in x, for almost every $t \in I$; there exist two functions α , $\beta \in L^1(I)$ such that $||A(t, x)|| \leq \alpha(t)$, $||B(t, x)|| \leq \beta(t)$ for all $(t, x) \in I \times X$.

Now, we show a fundamental lemma which clarifies the roles of the Gelfand-Phillips property and assumption (c):

LEMMA. Let (a), (b), (c), (d) hold. If we put $y_n(t) = \int_0^t B(s, x_n(s)) ds$, for all $t \in I^*$, then the sequence (y_n) has a uniformly converging subsequence.

Proof. Let $\rho > 0$ be. Since $\beta \in L^1(I)$ there is $\sigma > 0$ such that for any Lebesgue measurable set J^0 , $m(J^0) < \sigma$, one has $\int_{J^0} \beta(s) \, ds < \rho/2$. Let J be the set of null measure such that B(t, X) is relatively compact for any $t \in I^* - J$ (from c).

Now, we consider a sequence (x_n^*) in E^* converging weak* to zero; we can suppose that $||x_n^*|| \leq 1$, for the sake of brevity. For any $t \in I^* - J$ we have that the sequence $(\langle x_n^*, B(t, x_n(t)) \rangle)$ converges to zero by the compactness of B(t, X); Egoroff's Theorem says that there exists a Lebesgue measurable set $J^*, J^* \subset I^* - J, m(J^*) < \sigma$, for which $\langle x_n^*, B(t, x_n(t)) \rangle \to 0$ uniformly on $I^* - (J \cup J^*)$. Hence, for any $n \in N$ and $t \in I^*$, we have

$$|\langle x_n^*, y_n(t)\rangle| \leq \int_{I^* - (J \cup J^*)} |\langle x_n^*, B(s, x_n(s))\rangle| \, ds + \rho/2;$$

if *n* is sufficiently large, we have $|\langle x_n^*, y_n(t) \rangle| < \rho$. Arbitrariness of (x_n^*) in E^* implies that $(y_n(t))$ is a limited set in *E*, for any $t \in T^*$; the Gelfand-Phillips property of *E* gives its relative compactness. Since the sequence (y_n) is bounded and equicontinuous easily, Ascoli—Arzelà Theorem concludes our proof.

Once we have shown the lemma which assures the existence of a uniformly converging subsequence of (y_n) , the main result follows easily with the same techniques employed by Martin in [3] (see also [4]). To obtain it we need to use comparison functions ω : $I^* \times [0, \infty) \rightarrow [0, \infty)$, with $\omega(t, 0) = 0$ for all $t \in I^*$, satisfying the assumption

(e) ω is continuous and the unique absolutely continuous function ψ from I* into $[0, \infty)$ such that $\dot{\psi}(t) = \omega(t, \psi(t)), \psi(0) = 0$, is the identically null function.

Now we are ready to state our theorem.

THEOREM. Let (a), (b), (c), (d), (e) hold. We consider the other assumptions:

(h₁) $||A(t, x) - A(t, y)|| \le \omega(t, ||x - y||)$ for all $(t, x), (t, y) \in I^* \times X$,

(h₂) E^* is uniformly convex and $\langle x - y, A(t, x) - A(t, y) \rangle_{-} \leq \omega(t, ||x - y||) ||x - y||$ for all $(t, x), (t, y) \in I \times X$ (for definition of $\langle \cdot, \cdot \rangle_{-}$ we refer to [4]),

 (h_3) X is open, A is uniformly continuous in $I^* \times X$ and A verifies an assumption of dissipative type as in h_2).

Then, any one of the conditions (h_1) , (h_2) , (h_3) (with conditions (a)–(e)) implies the existence of an absolutely continuous solution of (CP).

Proof. Our theorem will be proved if we can extract a uniformly converging subsequence (x_{n_k}) from (x_n) ; indeed, its limit point will be an absolutely continuous solution of (CP) (with a standard proof) under our assumptions. This extraction will be made using the same techniques of the theorem of [3] in the case $(C5)_2$, $(C5)_3$, $(C5)_4$ as already remarked; we only observe that if (h_2) is verified, then E is reflexive and so it is a Gelfand-Phillips space. The proof is complete.

When (h_2) is verified, our result is strictly more general than the corresponding result of Martin [3]; when (h_1) , (h_3) are satisfied, our results are more general than those of [3] in the case of Gelfand-Phillips spaces, but we observe that those of [3] hold in general Banach spaces: however, our theorem is more applicable than Martin's result in a situation considered in [3]; indeed, Martin furnished an example of an integro-differential equations which is not solvable using his theorem in the case $E = L^1([0, 1])$; since $L^1([0, 1])$ is a Gelfand-Phillips space, we can apply our result with a more general *B* than that considered in [3], if we assume hypotheses which assure that *A* is uniformly continuous and dissipative (use h_3)) or *A* satisfies an assumption of Lipschitzian type (use (h_1)). Also, we observe that the present theorem is different from the results obtained,

G. EMMANUELE

with different techniques, by Schechter; indeed, he always assumes compactness of the range of B (an assumption more restrictive than our hypothesis (c)), but his theorems can be used in general Banach spaces.

References

- 1. J. BOURGAIN AND J. DIESTEL, Limited operators and strict cosingularity, *Math. Nachr.* 119 (1984), 55–58.
- 2. J. DIESTEL AND J. J. UHL, JR., Progress in vector measures, 1977–1983, *in* "Measure Theory and its Applications," Lecture Notes in Math., Vol. 1033, Springer-Verlag, Berlin, 1983.
- 3. R. H. MARTIN, Remarks on ordinary differential equations involving dissipative and compact operators, J. London Math. Soc. (2) 10 (1975), 61-65.
- 4. R. H. MARTIN, "Non Linear Operators and Differential Equations in Banach Spaces," Wiley, New York, 1976.
- 5. E. SCHECHTER, Evolution generated by continuous dissipative plus compact operators, *Bull. London Math. Soc.* 13 (1981), 303-308.
- 6. E. SCHECHTER, Evolution generated by semilinear dissipative plus compact operators, unpublished manuscript.