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In the main result of this note we show that for certain Banach spaces E and F 
the e-tensor product E@~F inherits the Gelfand-Phillips property from E and 
F. In particular we obtain conditions under which spaces of vector valued 
continuous functions have the Gelfand-Phillips property. 

1. Introduction 

Let E be a Banach space. A bounded set B e E  is called a limited set if for 
every a(E', E)-null sequence (x',),~ N in E' one has lim sup I(x',, x)l  =0, E is said 

n x ~ B  

to have the Gelfand-Phillips property if every limited set in E is relatively 
compact. Banach spaces having the Gelfand-Phillips property are, for example, 
separable Banach spaces, reflexive Banach spaces and spaces C(K), where K is 
both compact  and sequentially compact  ([2], [4, p. 238]). It is easy to see that 
the Gelfand-Phillips property is inherited by closed subspaces. 

Unexplained notation can be found in [9]. We will now introduce some 
basic facts concerning e-tensor products. Most of them can be found in [9, 
IV.2] and [5, pp. 223]. Let E and F be Banach spaces. The e-tensor product 
E| and the e-norm II'll~ on E| is defined as in [9, IV.2.1]. The com- 
pletion of E| endowed with the e-norm is denoted by E@~F (in the 
notation of [5, pp. 223] this is the same as E@F). Let E 1 and F 1 be Banach 
spaces, T~Y(E, E1) (=cont inuous  linear operators from E into El) and 
S ~ ( F ,  F1). Then T| E@~F~EI@~F 1 is the continuous linear extension of 
the operator from E| into E 1 |  1 defined by 

~i| ~ (T~)| 
1 Ni<--n 1 <=i<=n 

By ext (UE,) resp. ext (UF,) we denote the set of extreme points of the closed 
unit ball of E' resp. F'. An easy calculation shows that for x~E@~F we have 

[Ixll~=sup {[(x, ~'@r/')l: ~ 'eext (U~,), t/ 'eext (ue,)}. (1) 
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If G is a closed subspace of E, then G@,F is a closed subspace of E@~F. If in 
addition G is complemented in E (i.e. if there exists a continuous linear 
projection P on E with PE=G), then G@~F is complemented in E@~F. 

2. The Gelfand-Phillips Property in Certain ~-tensor Products 

Let (E, 3-) be a topological vector space. A set C_c E is called conditionally J -  
compact if each sequence in C contains a subsequence which is a J--Cauchy 
sequence. 

2.1 Theorem. Let E and F be Banach spaces. We assume that E has the Gelfand- 
Phillips property and ext (UF,) is conditionally a(F', F)-compact. Then G, =E~)~F 
has the Gelfand-Phillips property. 

Proof. We suppose that G does not have the Gelfand-Phillips property, i.e., 
there exists a limited set B c G which is not relatively compact. So we can find a 
sequence (x,),~ in B which has no convergent subsequence. Without loss of 
generality we may assume that (x,),~ is a o-(G, G')-Cauchy sequence ([2]) and 
there exists 6 > 0  such that ]lx,-x,+~q[~>5 for each n~N. Thus by (1) we can 
find ~;Eext(U~,) and rf,~ext(UF, ) such that [(x,-xn__>~',| Since 
ext (UF,) is conditionally a(F', F)-compact, there exists a subsequence (t/',~)k~ of 

,) ' |  , , (q, , ~  which is a(F; F)-convergent to t / ' ~ f '  Then ({,~ 01,~-tl ))k~ is a norm- 
bounded a(G',E| sequence and thus a a(G', G)-null sequence. For 

{ i |174 we define S( ~, ~i |  ~ ( t / ' , th)  {i~E. In this way S 
l <=i <n  l <~i <--n l <=i <--_n 

defines a continuous linear operator from E| into E. The continuous linear 
extension of S to G will be denoted by T. Let us mention that for every ( '~E '  
we have ~'o T =  3' |  Since continuous linear operators map limited sets into 
limited sets and the difference of two limited sets is limited ([2]), we obtain 
that {Z(Xnk--Xnk+l): k ~ N } c E  is limited, hence relatively compact. Since 
(x.-x.,~+l)k~ ~ is a a(G,G')-null sequence it follows that (T(x.--x.~+i))k~ ~ 
converges in norm to zero. Hence there is ko~N such that 

](Y(x,,~-x.~+l), ~'.~)1<6/2 for all k>k  o. 

Then for each k >  k o we have 

= t(x.~ -x.~+ 1. g'.~| [(T(x.~ -x.~+ 1), ~'.~)1 
> 6 - 6/2 = 6/2. 

Therefore the set {x~-x,~+l:  keN} c_B-B  is not limited. On the other hand 
B - B  is a limited set ([2]). So we have a contradiction. [] 

Obviously, ext (Ur,) is conditionally a(F', F)-compact if the Banach space F 
has a or(F; F)-sequentially compact dual unit ball. Examples of Banach spaces 
of this type are separable Banach spaces, reflexive Banach spaces, weakly 
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compactly generated Banach spaces ([4, XIII, Thin. 4]), the duals of separable 
Banach spaces not containing 11 ([4, XIII, Thm. 10]), Banach spaces whose 
dual space does not contain 11 ([4, p. 226]), Banach spaces with an equivalent 
smooth norm ([4, p. 239]) and weak Asplund spaces (I-4, p. 239]). 

Since the spaces E ( ~ F  and F@~E are isomorphic ([9, p. 237]), E@~F has 
the Gelfand-Phillips property if and only if F@~E has the Gelfand-Phillips 
property. For F = ~  the Banach spaces E@~F and E are isomorphic. If E is a 
space C(K), K compact, and F an arbitrary Banach space, then E@~F is 
isomorphic to the Banach space C(K, F) of F-valued continuous functions on 
K ([9, IV.2, Example1]). Furthermore ext(Uc~K),)={+_~x:x~K } where 
6xeC(K)' is defined by (6~,f):=f(x),  f~C(K). Thus from Theorem 2.1 we 
obtain: 

2.2 Corollary. Let K be a compact Hausdorff space and F be a Banach space. 

(i) If  ext(UF, ) is conditionally a(F', F)-compact, then F has the Gelfand- 
Phillips property. 

(ii) I f  K is sequentially compact, then C(K) has the Gelfand-Phillips proper- 
ty ([4, p. 238]). 

(iii) If  C(K) has the GelJand-Phillips property and ext(Uv, ) is conditionally 
a(F, F)-compact, then C(K, F) has the Gelfand-Phillips property. 

(iv) I f  K is sequentially compact and F has the Gelfand-Phillips property, 
then C(K, F) has the GeIfand-Phillips property. 

Let E be a Banach space. We denote by co(E) the Banach space of all 
sequences in E converging to zero ([9, IV.2, Example2]) and by l~(E) the 
Banach space of all summable sequences in E ([-9, p. 241]). Then co(E ) resp. 
ll(E ) is isomorphic to Co@~E resp. l l (~E  ([-9, IV.2, Examples 2 and 4]). 

2.3 Corollary. Let E be a Banach space with the Gelfand-Phillips property. Then 
co(E ) and ll (E) also have the Gelfand-Phillips property. 

It is easy to see that a Banach space E has the Gelfand-Phillips property if 
and only if each countable limited set in E is relatively compact. Recall that a 
Banach space F is said to have the separable complementation property if every 
separable subspace Y of F is contained in a closed, separable, complemented 
subspace of F. 

2.4 Corollary. Let E be a Banach space with the GelJand-Phillips property and F 
be a Banach space with the separable complementation property. Then E@~F has 
the GeIfand-Phillips property. I f  in addition E is isomorphic to a space C(K), K 
compact, then C(K, F) also has the Gelfand-Phillips property. 

Proof Let BcE@~F be a countable limited set. Then there exists a closed 
separable subspace Y of F such that BcE@~ Y. Without loss of generality we 
can assume that Y is complemented in F. Then E@~Y is a complemented 
subspace of E@~F. From this we obtain that B is a limited subset of E@~ Y. By 
Theorem 2.1 E| has the Gelfand-Phillips property. Hence B is relatively 
compact in E ( ~  Y and, consequently, in E(~F.  The last assertion follows from 
the fact that C(K)(~F and C(K, F) are isomorphic. [] 
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B a n a c h  spaces which  have  the  sepa rab le  c o m p l e m e n t a t i o n  p r o p e r t y  are, for 
example ,  weak ly  c o m p a c t l y  g en e ra t ed  B a n a c h  spaces ([-3, p. 149]), spaces co(I ) 
a n d  spaces Lp(X, Z,/1), 1 < p <  oo a n d  (X, Z, #) a n  a r b i t r a r y  m e a s u r e  space  ([7, 
1.b.8] a n d  [8, L e m m a  1.2]). C o n s e q u e n t l y ,  if E has  the  G e l f a n d - P h i l l i p s  p rope r -  
ty, t h e n  for a n  a r b i t r a r y  m e a s u r e  space (X, Z,/~) the  space Lp(X, Z, #)@~E, 
l < p <  0% has the  G e l f a n d - P h i l l i p s  p roper ty .  By [5, p. 224, Th in .  5] this gen-  
eralizes T h e o r e m  1 a n d  2 of [6].  

References 

1. Beauzamy, B.: Introduction to Banach spaces and their geometry. North-Holland Mathematics 
Studies 68, 1982 

2. Bourgain, J., Diestel, J.: Limited operators and strict cosingularity. Math. Nachr. 119, 55-58 
(1984) 

3. Diestel, J.: Geometry of Banach spaces selected topics. Lecture Notes in Math. 485. Berlin 
Heidelberg New York: Springer 1975 

4. Diestel, J.: Sequences and series in Banach spaces. Graduate Texts in Mathematics 92. Berlin 
Heidelberg New York: Springer 1984 

5, Diestel, J., Uhl, J.J., Jr.: Vector measures. Mathematical Surveys No. 15, American Math. Soc., 
1977 

6, Emmanuele, G.: Gelfand-Phillips property in a Banach space of vector valued measures. To 
appear in Math. Nachr. 

7. Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces II, function spaces. Ergebnisse der Mathe- 
matik und ihrer Grenzgebiete 97. Berlin Heidelberg New York: Springer 1979 

8. Meyer-Nieberg, P.: Zur schwachen Kompaktheit in Banachverb~inden. Math. Z. 134, 303 315 
(1973) 

9. Schaefer, H.H.: Banach lattices and positive operators. Die Grundlehren der mathematischen 
Wissenschaften in Einzeldarstellungen 215. Berlin Heidelberg New York: Springer 1979 

Received July 11, 1985 

Added in proof. Meanwhile L. Drewnowski has shown that E~F has the Gelfand-Phillips proper- 
ty for each pair of Banach spaces E and F with the Gelfand-Phillips property. 


