COPIES OF l_{∞} IN KÖTHE SPACES OF VECTOR VALUED FUNCTIONS

BY

Giovanni Emmanuele¹

Let (S, Σ, μ) be a σ -finite complete measure space and X be a Banach space. Recently the following result has appeared

THEOREM 1 [7]. Let $1 \le p < \infty$. Then l_{∞} embeds into $L^p(\mu, X)$ if and only if it embeds into X.

The purpose of this note is to extend Theorem 1 to a more general class of vector-valued functions; namely, Köthe spaces E(X) of vector-valued functions. Specifically, we show that l_{∞} embeds into E(X) if and only if it embeds into either E or X. We recall that $L^p(\mu, X)$ spaces as well as Orlicz or Musielak-Orlicz spaces of vector-valued functions are special cases of Köthe spaces.

Before giving our result, we need some definitions and results. Let $\mathscr{M}(S) = \mathscr{M}$ be the space of Σ -measurable real valued functions with functions equal μ -almost everywhere identified. A Köthe space E [6] is a Banach subspace of \mathscr{M} consisting of locally integrable functions such that (i) if $|u| \leq |v| \mu$, a.e., with $u \in \mathscr{M}$, $v \in E$ then $u \in E$ and $||u||_E \leq ||v||_E$, (ii) for each $A \in \Sigma$, $\mu(A) < \infty$, the characteristic function χ_A of A is in E. Köthe spaces are Banach lattices if we put $u \geq 0$ when $u(s) \geq 0$ μ . a.e. Furthermore, Köthe spaces are σ -complete Banach lattices. The following theorems will be utilized in the sequel.

THEOREM 2 [5]. Given a Köthe space E, there exists an increasing sequence (S_n) in Σ with $\mu(S_n) < \infty$ and $\mu(S \setminus \bigcup_{n \in N} S_n) = 0$ for which the following chain of continuous inclusions holds:

$$L^{\infty}(S_n) \subset E(S_n) \subset L^1(S_n).$$

Received August 17, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46E30; Secondary 46E40, 46B25.

¹Work performed under the auspices of G.N.A.F.A. of C.N.R. and partially supported by M.U.R.S.T. of Italy.

We recall that a Banach lattice has an *order continuous norm* if, for every downward directed net $\{x_{\alpha}\}$ with $\inf_{\alpha} \{x_{\alpha}\} = 0$, $\lim_{\alpha} ||x_{\alpha}|| = 0$.

THEOREM 3 [6, p. 7]. Let E be a σ -complete Banach lattice not containing l_{∞} . Then E has an order continuous norm.

In this paper, we consider, for a real Banach space X, the family of all strongly measurable functions $F \colon S \to X$ (identifying functions which are μ .a.e. equal) such that $\|f(\cdot)\|_X \in E$, where E is a Köthe space. Such a space, denoted by E(X), is a Banach space under the norm $\|f\|_{E(X)} = \|\|f(\cdot)\|_X\|_E$. We need something more.

THEOREM 4 [8]. Let $T: l_{\infty} \to F$, F a Banach space, be an operator with $T(e_n) \to 0$. Then there is an infinite subset M of N with $T_{|I^{\infty}(M)}$ an isomorphism.

A (bounded) subset H of a Banach space F is *limited* if for any w^* -null sequence $(x_n^*) \subset F^*$ one has

$$\lim_{n} \sup_{H} |x_n^*(x)| = 0.$$

The following result can be found in [3] and [9].

THEOREM 5 [3], [9]. Let (x_n) be a copy of the unit vector basis of c_0 in a Banach space F. If (x_n) is not limited, then a subsequence $(x_{k(n)})$ of (x_n) spans a complemented copy of c_0 inside F.

THEOREM 6 [2]. If H is a limited subset of a Banach space F, then

$$\lim_{k} \sup_{H} \|T_k(x)\|_{Z} = 0$$

for every sequence (T_k) of operators from F into an arbitrary Banach space Z such that $\lim_k ||T_k(x)||_Z = 0$ for all $x \in F$.

We are now ready to prove our result. Using general principles, we are able to embed E(X) "locally" into a suitable $L^1(\mu, X)$ -space; then we can use Mendoza's theorem to reach our goal.

THEOREM 7. l_{∞} embeds into E(X) if and only if it embeds into either E or X.

Proof. We need to show the "only if" part. Let us assume l_{∞} does not embed into E. We show that l_{∞} must embed into X. First of all, we prove it

is possible to suppose $\mu(S) < \infty$. Let j denote the isomorphism of l_{∞} onto a closed subspace of E(X). We observe that $(j(e_n))$ is a limited sequence, otherwise by virtue of Theorem 5 we should have a copy of c_0 contained in $j(l_{\infty})$ and complemented in E(X); this would give the existence of a projection of l_{∞} onto c_0 ; a contradiction, because such a projection would be weakly compact [1, p. 150]. Now, let (S_n) be the sequence of elements of Σ considered in Theorem 2. For all $k \in \mathbb{N}$, we consider $E(S_k, X)$, the Köthe space of vector valued functions defined on S_k . It is clear that $E(S_k, X)$ can be isometrically embedded into E(X) (identifying it with $\{f\chi_{s_k}: f \in E(X)\}$); hence we assume that $E(S_k, X)$ is a closed subspace of E(X). It is very simple to see that the linear operator P_k : $E(X) \to E(S_k, X)$ defined by $P_k(f) = f\chi_{s_k}$ is continuous and that $\|P_k(f) - f\|_{E(X)} \to 0$, for all $f \in E(X)$, because, thanks to Theorem 3, E is an order continuous Banach lattice.

Now, recall the following well known result: If T_k are operators from l_∞ converging in the strong operator topology to T and no T_k preserves a copy of l_∞ , then T does not preserve a copy of l_∞ . (The proof of this result can be easily obtained using some facts contained in [1], Chapters I and VI; see, for instance, the proof of Corollary 5 on p. 150 of [1].) Since (P_k) converges in the strong operator topology to the identity on E(X) and l_∞ embeds into E(X), one of the operators P_k must preserve a copy of l_∞ . So there is $k^* \in \mathbb{N}$ such that $E(S_{k^*}, X)$ contains a copy of l^∞ . Since $\mu(S_{k^*}) < \infty$, our claim is proved. So let us assume $\mu(S) < \infty$ in the sequel.

Let $f \in E(X)$. f is strongly measurable and $u(\cdot) = \|f(\cdot)\|_X$ is in E; by virtue of Theorem 2, $u \in L^1(S)$ and this gives that $f \in L^1(S, X)$. Furthermore, the inclusion j_1 : $E(X) \to L^1(S, X)$ is continuous. Indeed, if $f \in E(X)$, $\overline{u}(\cdot) = \|f(\cdot)\|_X \in E$; by virtue of Theorem 2 there is $c_2 > 0$ such that $\|u\|_{L^1(S)} \le c_2 \|u\|_E$ for all $u \in E$ and, applying this last inequality to \overline{u} , we get $\|f\|_{L^1(S,X)} \le c_2 \|f\|_{E(X)}$ for all $f \in E(X)$. The existence of this continuous embedding, Theorem 4 and Mendoza's theorem 1 imply that $\lim_n \|j(e_n)\|_{L^1(S,X)} = 0$. Now, we need to show that

(1)
$$\lim_{\mu(A)\to 0} \sup_{n} \|j(e_n)\chi_A\|_{E(X)} = 0.$$

If (1) were false, we could find a sequence $(A_k) \subset \Sigma$, $\mu(A_k) < 1/2^k$, and a subsequence $(j(e_{n(k)}))$ of $j(e_n)$ such that

(2)
$$\inf_{k} \|j(e_{n(k)})\chi_{A_{k}}\|_{E(X)} > 0.$$

Now, let $B_h = \bigcup_{k=h}^{\infty} A_k$. It is clear that $B_h \supset A_h$, $B_h \supset B_{h+1}$ and $\mu(B_h) \to 0$. Let $f \in E(X)$. This means that $u(\cdot) = \|f(\cdot)\|_X \in E$. We have that $\{u\chi_{B_h}\}$ is a downward directed sequence in E with $\inf_h \{u\chi_{B_h}\} = u\chi_{\bigcap_{h \in \mathbb{N}} B_h} = 0$, because $\chi_{\bigcap_{h \in \mathbb{N}} B_h}$ is surely equal to zero everywhere outside of $\bigcap_{h \in \mathbb{N}} B_h$, a set of measure zero. Since E is an order continuous Banach lattice, $\lim_h \|u\chi_{B_h}\|_E = 0$

0. Since $u(s)\chi_{B_h}(s)\geq u(s)\chi_{A_h}(s)$ on S and E is a Köthe space, we have $\lim_h\|u\chi_{A_h}\|_E=0$. Now observe that

$$u(\cdot)\chi_{A_h}(\cdot) = \|f(\cdot)\chi_{A_h}(\cdot)\|_X;$$

hence $\lim_h \|f\chi_{A_h}\|_{E(X)} = 0$. This means that the operators $T_h: E(X) \to E(X)$ defined by $T_h(f) = f\chi_{A_h}$ verify the limit relation

$$\lim_{h} ||T_h f||_{E(X)} = 0$$

for all $f \in E(X)$. On the other hand, $(j(e_n))$ is limited and so, by virtue of Theorem 6, we get

$$\lim_{k} \sup_{n} \left\| j(e_n) \chi_{A_k} \right\|_{E(X)} = 0,$$

a fact that contradicts (2). Hence (1) is true.

This means that $\{\|j(e_n)\|_X\}$ is equi-integrable in E [4, pp. 135–136]. Now, let us recall the following well known result: If E is an order continuous Köthe space and $\{x_n\}$ is a sequence which is equi-integrable in E and $\lim_n \|x_n\|_{L^1} = 0$, then $\lim_n \|x_n\|_E = 0$ (for a proof, use also the existence of a continuous embedding of $L^{\infty}(S)$ into E). From this result it follows that $\lim_n \|j(e_n)\|_{E(X)} = 0$, a contradiction that finishes our proof.

COROLLARY. E(X) is an order continuous Banach lattice if and only if E and X are, provided X is a σ -complete Banach lattice.

The author would like to thank the referee and W.B. Johnson for some suggestions simplifying the proof of Theorem 7.

REFERENCES

- J. DIESTEL and J.J. UHL, JR., Vector Measures, Math, Surveys, vol. 15, Amer. Math. Soc., Providence, R.I., 1977.
- 2. L. Drewnowski and G. Emmanuele, On Banach spaces with the Gelfand-Phillips property, II, Rend. Circ. Mat. Palermo, vol. 38 (1989), pp. 377–391.
- 3. G. Emmanuelle, On Banach spaces containing complemented copies of c_0 , Extracta Math., vol. 3 (1988), pp. 98–100.
- W.B. JOHNSON, B. MAUREY, G. SCHECHTMAN and L. TZAFRIRI, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc., No. 217, 1979.
- A. Kaminska and B. Turett, Rotundity in Köthe spaces of vector-valued functions, Canad. J. Math., vol. 41 (1989), pp. 659-675.
- L. LINDENSTRAUSS and L. TZAFRIRI, Classical Banach Spaces II, Function Spaces, Springer-Verlag, New York, 1979.
- 7. J. Mendoza, Copies of l_{∞} in $L^p(\mu, X)$, Proc. Amer. Math. Soc., vol. 109 (1990), pp. 125–127.
- 8. H.P. ROSENTHAL, On relatively disjoint families of measures, with some application to Banach space theory, Studia Math., vol. 37 (1970), pp. 13–36.
- 9. T. Schlumprecht, Limited sets in Banach spaces, Ph.D. Dissertation, Münich, 1987.

University of Catania Catania, Italy