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Let (S, E, x) be a r-finite complete measure space and X be a Banach
space. Recently the following result has appeared

THEOREM 1 [71.
if it embeds into X.

Let 1 < p < . Then 1 embeds into LP(Iz, X) if and only

The purpose of this note is to extend Theorem 1 to a more general class of
vector-valued functions; namely, K6the spaces E(X)of vector-valued func-
tions. Specifically, we show that l embeds into E(X) if and only if it embeds
into either E or X. We recall that LP(tz, X) spaces as well as Orlicz or
Musielak-Orlicz spaces of vector-valued functions are special cases of K6the
spaces.

Before giving our result, we need some definitions and results. Let
/(S) / be the space of E-measurable real valued functions with func-
tions equal -almost everywhere identified. A K6the space E [6] is a Banach
subspace of ’ consisting of locally integrable functions such that (i) if
[u[ _< v[ /z. a.e., with u /, v E then u E and [[ulle -< Ilvlle, (ii) for
each A E,/z(A) < o% the characteristic function X of A is in E. K6the
spaces are Banach lattices if we put u >_ 0 when u(s) >_ 0 Iz. a.e. Further-
more, K6the spaces are r-complete Banach lattices. The following theorems
will be utilized in the sequel.

THEOREM 2 [5]. Given a K6the space E, there exists an increasing sequence
(Sn) in with I(Sn) < and I(S \ [.J n NS) 0 for which the following
chain of continuous inclusions holds"

L=( S,) c E( S) L’(
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We recall that a Banach lattice has an order continuous norm if, for every
downward directed net {x} with inf.{x.} O, limllxll O.

THEOREM 3 [6, p. 7]. Let E be a tr-complete Banach lattice not containing
l. Then E has an order continuous norm.

In this paper, we consider, for a real Banach space X, the family of all
strongly measurable functions F: S- X (identifying functions which are
/z.a.e. equal) such that Ilf(’)llx E, where E is a K6the space. Such a space,
denoted by E(X), is a Banach space under the norm Ilflle(x) IIf(’)llxllE.
We need something more.

THEOREM 4 [8]. Let T: l - F, F a Banach space, be an operator with
T(en) - O. Then there is an infinite subset M of N with TIt=(M) an isomor-
phism.

A (bounded) subset H of a Banach space F is limited if for any w*-null
sequence (x*) c F* one has

lim sup x,, (x)l 0.
n H

The following result can be found in [3] and [9].

THEOREM 5 [3],[9]. Let (Xn) be a copy of the unit vector basis of co in a
Banach space F. If (xn) is not limited, then a subsequence (Xkn)) of (X)
spans a complemented copy of co inside F.

THEOREM 6 [2]. IfH is a limited subset of a Banach space F, then

lim sup x)llz o
k H

for every sequence (Tk) of operators from F into an arbitrary Banach space Z
such that limkllTk(x)llz 0 for all x F.

We are now ready to prove our result. Using general principles, we are
able to embed E(X)"locally" into a suitable LI(, X)-space; then we can
use Mendoza’s theorem to reach our goal.

THEOREM 7.
or X.

embeds into E(X) if and only if it embeds into either E

Proof We need to show the "only if" part. Let us assume l= does not
embed into E. We show that l= must embed into X. First of all, we prove it



COPIES OF l= 295

is possible to suppose/x(S) < o. Let j denote the isomorphism of loo onto a
closed subspace of E(X). We observe that (j(e,,)) is a limited sequence,
otherwise by virtue of Theorem 5 we should have a copy of co contained in
j(l=) and complemented in E(X); this would give the existence of a projec-
tion of loo onto Co; a contradiction, because such a projection would be
weakly compact [1, p. 150]. Now, let (Sn) be the sequence of elements of
considered in Theorem 2. For all k N, we consider E(S,, X), the K6the
space of vector valued functions defined on S. It is clear that E(Sk, X) can
be isometrically embedded into E(X) (identifying it with {fXs,: f E(X)});
hence we assume that E(Sk, X) is a closed subspace of E(X). It is very
simple to see that the linear operator Pk: E(X) E(S,,X) defined by
P:(f ) fxsk is continuous and that [[Pk(f ) --file(x) - 0, for all f E(X),
because, thanks to Theorem 3, E is an order continuous Banach lattice.
Now, recall the following well known result: If T are operators from

converging in the strong operator topology to T and no Tg preserves a copy
of lo, then T does not preserve a copy of lo. (The proof of this result can be
easily obtained using some facts contained in [1], Chapters I and VI; see, for
instance, the proof of Corollary 5 on p. 150 of [1].) Since (P) converges in
the strong operator topology to the identity on E(X) and l embeds into
E(X), one of the operators P must preserve a copy of lo. So there is
k* N such that E(S,, X) contains a copy of . Since /x(S,) < , our
claim is proved. So let us assume/x(S) < in the sequel.

Let f E(X). f is strongly measurable and u(’) []f(’)[[x is in E; by
virtue of Theorem 2, u LI(S) and this gives that f LI(S, X). Further-
more, the inclusion j: E(X) L(S, X) is continuous. Indeed, if f E(X),
(’) [[f(’)[[x E; by virtue of Theorem 2 there is c2 > 0 such that
[[U[[LI(S) C2[[U[[ E for all u E and, applying this last inequality to , we get
[[f[[i(s,x) <_ c2[[f[[e(x for all f E(X). The existence of this continuous
embedding, Theorem 4 and Mendoza’s theorem 1 imply that
limn[[j(en)[[Il(s,x) 0. Now, we need to show that

lim suPIIj(e,,)XAIIF(X)__ o.
/x(A)- 0 n

If (1)were false, we could find a sequence (A) c E, tx(A) < 1/2, and a
subsequence (j(en())) of j(e,,) such that

(2) inf J(en()) XA, I[e(X) > 0.
k

Now, let Bh I,.J=hAk It is clear that Bh DAh, Bh D Bh+ and IJ,(Bh) .--) O.
Let f E(X). This means that u(.) Ilf(’)llx E. We have that {UXBh} is a
downward directed sequence in E with infh{UXBh} uX [hNB O, because
X ChNBh is surely equal to zero everywhere outside of f’l hNBh, a set of
measure zero. Since E is an order continuous Banach lattice, limhllUXBhllF
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0. Since U(S)XBh(S)> U(S)XAh(S) on S and E is a K6the space, we have
limh llUXAhlle 0. NOW observe that

hence limhllfxAhlle(x)= O. This means that the operators Th: E(X)- E(X)
defined by Th(f) fxAh verify the limit relation

limll Thfllx 0
h

for all f E(X). On the other hand, (j(en)) is limited and so, by virtue of
Theorem 6, we get

lim sup IIJ(en)xAll,x) o,
k n

a fact that contradiets (2). Hence (1) is true.
This means that {llj(en)llx} is equi-integrable in E [4, pp. 135-136]. Now,

let us recall the following well known result" If E is an order continuous
K6the space and {xn} is a sequence which is equi-integrable in E and

limnllXnllL1 0, then limnllxnl[ E 0 (for a proof, use also the existence of a
continuous embedding of L(S) into E). From this result it follows that
limnllj(en)llE(x 0, a contradiction that finishes our proof.

COROLLARY. E(X) is an order continuous Banach lattice if and only if E
and X are, prouided X is a r-complete Banach lattice.

The author would like to thank the referee and W.B. Johnson for some
suggestions simplifying the proof of Theorem 7.
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