
Global Progress in Dynamically Interleaved
Multiparty Sessions

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-

Ciancaglini

Dipartimento di Informatica, Università di Torino

and

Nobuko Yoshida

Department of Computing, Imperial College London

1. INTRODUCTION

Widespread use of message-based communication for developing network applications to
combine numerous distributed services has provoked urgentinterest in structuring series of
interactions to specify and implement program communication-safe software. The actual
development of such applications still leaves to the programmer much of the responsibility
in guaranteeing that communication will evolve as agreed byall the involved distributed
peers. Multiparty session type disciplineproposed in [Honda et al. 2008] offers a type-
theoretic framework to validate a message-exchange among concurrently running multiple
peers in the distributed environment, generalising the existing binary session types [Honda
1993; Honda et al. 1998]; interaction sequences are abstracted as a global type signa-
ture, which precisely declares how multiple peers communicate and synchronise with each
other.

The multiparty sessions aim to retain the powerful dynamic features from the original bi-
nary sessions, incorporating features such as recursion and choice of interactions. Among
features,session delegationis a key operation which permits to rely on other parties for
completing specific tasks transparently in a type safe manner. When this mechanism is
extended to multiparty interactions engaged in two or more specifications simultaneously,
further complex interactions can be modelled. Each multiparty session following a distinct
global type can be dynamicallyinterleavedby other sessions at runtime either implicitly
via communications belonging to different sessions or explicitly via session delegation.

Previous work on multiparty session types [Honda et al. 2008] has provided a limited
progress property ensured only within a single session, ignoring this dynamic nature. More
precisely, although the previous system assures that the multiple participants respect the
protocol, by checking the types of exchanged messages and the order of communications
in a single session, it cannot guarantee aglobal progress, i.e, that a protocol which merges

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · L. Bettini et al.

several global scenarios will not get stuck in the middle of asession. This limitation pro-
hibits to ensure a successful termination of a transaction,making the framework practically
inapplicable to a large size of dynamically reconfigured conversations.

This paper develops, besides a more traditionalcommunicationtype system (§ 3), a
novel staticinteraction type system (§ 5) for global progress in dynamically interleaved
multiparty, asynchronous sessions. High-level session processes equipped with global sig-
natures are translated into low-level processes which haveexplicit senders and receivers.
Type-soundness of low-level processes is guaranteed against the local, compositional com-
munication type system.

The new calculus for multiparty sessions offers three technical merits without sacrificing
the original simplicity and expressivity in [Honda et al. 2008]. First it avoids the overhead
of global linearity-check in [Honda et al. 2008]; secondly it provides a more liberal policy
in the use of variables, both in delegation and in recursive definitions; finally it implicitly
provides each participant of a service with a runtime channel indexed by its role with which
he can communicate with all the other participants, permitting also broadcast in a natural
way. The use of indexed channels, moreover, permits to definea light-weight interaction
type system for global progress.

The interaction type system automatically infers causalities of channels for the low level
processes, ensuring the entire protocol, starting from thehigh-level processes which con-
sist of multiple sessions, does not get stuck at intermediate sessions also in the presence of
implicit and explicit session interleaving.

2. SYNTAX AND OPERATIONAL SEMANTICS

Merging Two Conversations: Three-Buyer Protocol. We introduce our calculus through
an example, the three-buyer protocol, extending the two-buyer protocol from [Honda et al.
2008], which includes the new features, session-multicasting and dynamically merging of
two conversations. The overall scenario, involving a Seller (S), Alice (A), Bob (B) and
Carol (C), proceeds as follows.

(1) Alice sends a book title to Seller, then Seller sends backa quote to Alice and Bob.
Then Alice tells Bob how much she can contribute.

(2) If the price is within Bob’s budget, Bob notifies both Seller and Alice he accepts, then
sends his address, and Seller sends back the delivery date.

(3) If the price exceeds the budget, Bob asks Carol to collaborate together by establishing a
new session. Then Bob sends how much Carol must pay, thendelegatesthe remaining
interactions with Alice and Seller to Carol.

(4) If the rest of the price is within Carol’s budget, Carol accepts the quote and notifies
Alice, Bob and Seller, and continues the rest of the protocolwith Seller and Alice
transparently,as if she were Bob. Otherwise she notifies Alice, Bob and Seller to quit
the protocol.

Then multiparty session programming consists of two steps:specifying the intended com-
munication protocols using global types, and implementingthese protocols using pro-
cesses. The specifications of the three-buyer protocol are given as two separated global
types: one isGa among Alice, Bob and Seller and the other isGb between Bob and Carol.
We write principals with legible symbols though they will actually be coded by numbers:
in Ga we haveS = 3, A = 1 andB = 2, while inGb we haveB = 2, C = 1.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Global Progress in Dynamically Interleaved Multiparty Sessions · 3

Ga = Gb =

1. A −→ S : 〈string〉.
2. S −→ {A,B} : 〈int〉.
3. A −→ B : 〈int〉.
4. B −→ {S,A} : {ok :B−→ S : 〈string〉.
5. S−→ B : 〈date〉;end

6. quit : end}

1. B −→ C : 〈int〉.
2. B −→ C : 〈T〉.
3. C −→ B : {ok : end, quit : end}.

T =
⊕({S,A},

{ok :!〈S,string〉;?〈S,date〉;end,
quit : end})

The types give a global view of the two conversations, directly abstracting the scenario
given by the diagram. InGa, line 1 denotesA sends a string value toS. Line 2 saysS
multicasts the same integer value toA andB and line 3 says thatA sends an integer toB.
In lines 4-6B sends eitherok or quit to S andA. In the first caseB sends a string toS and
receives a date fromS, in the second case there are no further communications.

Line 2 inGb represents the delegation of the capability specified by theaction typeT of
channels (formally defined later) fromB to C (note thatS andA in T concern the session
ona).

We now give the code, associated toGa andGb, for S, A, B andC in a “user” syntax
formally defined in the following section:

S = ā[3](y3).y3?(title);y3!〈quote〉;y3&{ok : y3?(address);y3!〈date〉;0, quit : 0}

A = a[1](y1).y1!〈"Title"〉;y1?(quote);y1!〈quotediv 2〉;y1&{ok : 0, quit : 0}

B = a[2](y2).y2?(quote);y2?(contrib);
if (quote - contrib< 100) then y2⊕ok;y2!〈"Address"〉;y2?(date);0
else b̄[2](z2).z2!〈quote - contrib -99〉;z2!〈〈y2〉〉;z2&{ok : 0, quit : 0}

C = b[1](z1).z1?(x);z1?((t));
if (x < 100) then z1⊕ok; t ⊕ok; t!〈"Address"〉; t?(date);0
else z1⊕quit; t ⊕quit;0

Session namea establishes the session corresponding toGa. S initiates a session involv-
ing three bodies as third participant by ¯a[3](y3): A andB participate as first and second
participants bya[1](y1) anda[2](y2), respectively. ThenS, A andB communicate using
the channelsy3, y1 andy2, respectively. Each channelyp can be seen as a port connecting
participantp with all other ones; the receivers of the data sent onyp are specified by the
global type (this information will be included in the runtime code). The first line ofGa is
implemented by the input and output actionsy3?(title) andy1!〈"Title"〉. The last line of
Gb is implemented by the branching and selection actionsz2&{ok : 0, quit : 0} andz1⊕ok,
z1⊕quit.

In B, if the quote minusA’s contribution exceeds 100e (i.e.,quote - contrib≥ 100), an-
other session betweenB andC is established dynamically through shared nameb. The del-
egation is performed by passing the channely2 from B to C (actionsz2!〈〈y2〉〉 andz1?((t))),
and so the rest of the session is carried out byC with S andA. We can further enrich this
protocol with recursive-branching behaviours in interleaved sessions (for example,C can
repeatedly negotiate the quote withS as if she wereB). What we want to guarantee by static
type-checking is that the whole conversation between the four parties preserves progress
as if it were a single conversation.

Syntax for Multiparty Sessions. The syntax for processes initially written by the user,
calleduser-defined processes, is based on [Honda et al. 2008]. We start from the follow-

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · L. Bettini et al.

P ::= ū[n](y).P Multicast Request
| u[p](y).P Accept
| y!〈e〉;P Value sending
| y?(x);P Value reception
| y!〈〈z〉〉;P Session delegation
| y?((z));P Session reception
| y⊕ l ;P Selection
| y&{li : Pi}i∈I Branching

u ::= x | a Identifier
v ::= a | true | false Value

| if e then P else Q Conditional
| P | Q Parallel
| 0 Inaction
| (νa)P Hiding
| def D in P Recursion
| X〈e,y〉 Process call

e ::= v | x
| eand e′ | not e . . . Expression

D ::= X(x,y) = P Declaration

Table I. Syntax for user-defined processes

ing sets:service names, ranged over bya,b, . . . (representing public names of endpoints),
value variables, ranged over byx,x′, . . . , identifiers , i.e., service names and variables,
ranged over byu,w, . . . , channel variables, ranged over byy,z,t . . . , labels, ranged over
by l , l ′, . . . (functioning like method names or labels in labelled records); process vari-
ables, ranged over byX,Y, . . . (used for representing recursive behaviour). Thenprocesses,
ranged over byP,Q. . . , andexpressions, ranged over bye,e′, . . . , are given by the grammar
in Table I.

For the primitives for session initiation, ¯u[n](y).P initiates a new session through an
identifier u (which represents a shared interaction point) with the other multiple partici-
pants, each of shapeu[p](y).Qp where 1≤ p≤ n−1. The (bound) variabley is the channel
used to do the communications. We callp, q,... (ranging over natural numbers) thepar-
ticipantsof a session. Session communications (communications thattake place inside an
established session) are performed using the next three pairs of primitives: the sending and
receiving of a value; the session delegation and reception (where the former delegates to
the latter the capability to participate in a session by passing a channel associated with the
session); and the selection and branching (where the formerchooses one of the branches
offered by the latter). The rest of the syntax is standard from [Honda et al. 1998].

Global Types. A global type, ranged over byG,G′, .. describes the whole conversation
scenario of a multiparty session as a type signature. Its grammar is given below:

Global G ::= p→ Π : 〈U〉.G′ Exchange U ::= S | T
| p→ Π : {l i : Gi}i∈I Sorts S ::= bool | . . . | G
| µt.G | t | end

We simplify the syntax in [Honda et al. 2008] by eliminating channels and parallel com-
positions, while preserving the original expressivity (see§ 6).

The global typep → Π : 〈U〉.G′ says that participantp multicasts a message of type
U to participantspk (k ∈ Π) and then interactions described inG′ take place.Exchange
types U,U ′, ... consist ofsortstypesS,S′, . . . for values (either base types or global types),
andaction typesT,T ′, . . . for channels (discussed in§3). Typep → Π : {l i : Gi}i∈I says
participantp multicasts one of the labelsl i to participantspk (k ∈ Π). If l j is sent, inter-
actions described inG j take place. Typeµt.G is a recursive type, assuming type variables
(t, t′, . . .) are guarded in the standard way, i.e., type variables only appear under some pre-
fix. We take anequi-recursiveview of recursive types, not distinguishing betweenµt.G
and its unfoldingG{µt.G/t} [Pierce 2002] (§21.8). We assume thatG in the grammar of
sorts is closed, i.e., without free type variables. Typeend represents the termination of the

ACM Journal Name, Vol. V, No. N, Month 20YY.

Global Progress in Dynamically Interleaved Multiparty Sessions · 5

P ::= c!〈Π,e〉;P Value sending
| c?(p,x);P Value reception
| c!〈〈p,c′〉〉;P Session delegation
| c?((q,y));P Session reception

| c⊕〈Π, l〉;P Selection
| c&(p,{li : Pi}i∈I) Branching
| (νs)P Hiding session
| s : h Named queue
| ...

c ::= y | s[p] Channel
m ::= (q,Π,v) | (q,p,s[p′]) | (q,Π, l) Message in transit
h ::= m· h | � Queue

Table II. Runtime syntax: the other syntactic forms are as inTable I

session. We often writep→ p′ for p→{p′}.

Runtime Syntax. User defined processes equipped with global types are executed through
a translation into runtime processes. The runtime syntax (Table II) differs from the syn-
tax of Table I since the input/output operations (includingthe delegation ones) specify the
sender and the receiver, respectively. Thus,c!〈Π,e〉 sends a value to all the participants
in Π; accordingly,c?(p,x) denotes the intention of receiving a value from the partici-
pantp. The same holds for delegation/reception (but the receiveris only one) and selec-
tion/branching.

We call s[p] a channel with role: it represents the channel of the participantp in the
sessions. We usec to range over variables and channels with roles. As in [Hondaet al.
2008], in order to model TCP-like asynchronous communications (message order preser-
vation and sender-non-blocking), we use the queues of messages in a session, denoted by
h; a message in a queue can be a value message,(q,Π,v), indicating that the valuev was
sent by the participantq and the recipients are all the participants inΠ; a channel mes-
sage (delegation),(q,p′,s[p]), indicating thatq delegates top′ the role ofp on the session
s (represented by the channel with roles[p]); and a label message,(q,Π, l) (similar to a
value message). The empty queue is denoted by�. With some abuse of notation we will
write h·m to denote thatm is the last element included inh andm·h to denote thatm is the
head ofh. By s : h we denote the queueh of the sessions. In (νs)P all occurrences ofs[p]
and the queuesare bound. Queues and channels with role are generated by theoperational
semantics (described later).

We present the translation of Bob (B) in the three-buyer protocol with the runtime syn-
tax: the only difference is that all input/output operations specify also the sender and the
receiver, respectively.

B = a[2](y2).y2?(3,quote);y2?(1,contrib);
if (quote - contrib< 100) then y2⊕〈{1,3},ok〉;y2!〈{3},"Address"〉;y2?(3,date);0
else b̄[2](z2).z2!〈{1},quote - contrib -99〉;z2!〈〈1,y2〉〉;z2&(1,{ok : 0, quit : 0}).

It should be clear from this example that starting from a global type and user-defined pro-
cesses respecting the global type it is possible to add sender and receivers to each com-
munication obtaining in this way processes written in the runtime syntax. We callpurea
process which does not contain message queues.

Operational Semantics. Table III shows the rules of the process reduction relation
P−→ P′. Rule [Link] describes the initiation of a new session amongn participants that
synchronise over the service namea. The last participant ¯a[n](yn).Pn, distinguished by the
overbar on the service name, specifies the numbern of participants. For this reason we call
it the initiator of the session. Obviously each session must have a unique initiator. After

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · L. Bettini et al.

a[1](y1).P1 | ... | ā[n](yn).Pn −→ (νs)(P1{s[1]/y1} | ... | Pn{s[n]/yn} | s : �) [Link]

s[p]!〈Π,e〉;P | s : h−→ P | s : h· (p,Π,v) (e↓v) [Send]

s[p]!〈〈q,s′[p′]〉〉;P | s : h−→ P | s : h· (p,q,s′[p′]) [Deleg]

s[p]⊕〈Π, l〉;P | s : h−→ P | s : h· (p,Π, l) [Label]

s[p j]?(q,x);P | s : (q,Π,v) ·h −→ P{v/x} | s : (q,Π\ j ,v) ·h (j ∈ Π) [Recv]

s[p]?((q,y));P | s : (q,p,s′[p′]) ·h−→ P{s′[p′]/y} | s : h [Srec]

s[p j]&(q,{l i : Pi}i∈I) | s : (q,Π, l i0) ·h−→ Pi0 | s : (q,Π\ j , l i0) ·h
(j ∈ Π) (i0 ∈ I) [Branch]

if e then P else Q−→ P (e↓ true) if e then P else Q−→ Q (e↓ false) [If-T, If-F]

def X(x,y) = P in (X〈e,s[p]〉 | Q) −→ def X(x,y) = P in (P{v/x}{s[p]/y} | Q) (e↓ v) [Def]

P−→ P′ ⇒ (νr)P−→ (νr)P′ P−→ P′ ⇒ P | Q−→ P′ | Q [Scop,Par]

P−→ P′ ⇒ def D in P−→ def D in P′ [Defin]

P≡ P′ andP′ −→ Q′ andQ≡ Q′ ⇒ P−→ Q [Str]

Table III. Reduction rules

the connection, the participants will share the private session names, and the queue asso-
ciated tos, which is initialized as empty. The variablesyp in each participantp will then be
replaced with the corresponding channel with role,s[p]. The output rules [Send], [Deleg]
and [Label] push values, channels and labels, respectively, into the queue of the sessions
(in rule [Send],e↓ v denotes the evaluation of the expressione to the valuev). The rules
[Recv], [Srec] and [Branch] perform the corresponding complementary operations. Note
that these operations check that the sender matches, and also that the message is actually
meant for the receiver (in particular, for [Recv], we need toremove the receiving partic-
ipant from the set of the receivers in order to avoid reading the same message more than
once).

Processes are considered modulo structural equivalence, denoted by≡ (Table IV); be-
sides the standard rules [Milner 1999], we have a rule for rearranging messages when the
senders or the receivers are not the same, and also splittinga message for multiple recip-
ients and the rules for garbage-collecting messages that have already been read by all the
intended recipients. We use−→∗ and 6−→ with the expected meanings.

We conclude this section by showing some reduction steps using the example of the
three buyer protocol of Section 2; we will consider a simplified version of the example
(i.e., the Buyer3 always selects theok label, without theif . . . then . . . else . . .) and we
will concentrate on the part involving delegation. Thus, weassume that the seller and the
first two buyers have already established a connection (the session name issa) and that the
Buyer2 is about to establish a connection with Buyer3; the first line represents the server
that is waiting to conclude the transaction with participant 2. We give some reduction
steps in Table V. In the computation, Buyer3 plays the role ofBuyer2 (participant 2 in the
sessionsa) transparently to the seller.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Global Progress in Dynamically Interleaved Multiparty Sessions · 7

P | 0 ≡ P P | Q≡ Q | P (P | Q) | R≡ P | (Q | R)

(νr)P | Q≡ (νr)(P | Q) if r /∈ fn(Q)

(νrr ′)P≡ (νr ′r)P (νr)0 ≡ 0 def D in 0 ≡ 0

def D in (νr)P≡ (νr)def D in P if r /∈ fn(D)

(def D in P) | Q≡ def D in (P | Q) if dpv(D)∩ fpv(Q) = /0

def D in (def D′ in P) ≡ def D and D′ in P if dpv(D)∩dpv(D′) = /0

s : (q, /0,v) ·h ≡ s : h s: (q, /0, l) ·h ≡ s : h

s : (q,Π,z) · (q′ ,Π′,z′) ·h≡ s : (q′,Π′,z′) · (q,Π,z) ·h
if Π∩Π′ = /0 orq 6= q′

s : (q,Π,z) ·h≡ s : (q,Π′,z) · (q,Π′′,z) ·h
whereΠ = Π′ ∪Π′′ andΠ′ ∩Π′′ = /0

Table IV. Structural equivalence (r ranges overa, sandz ranges overv, s[p] andl .)

(νsa)(sa[3]⊲ (2,{ok : sa[3]?(2,address);sa[3]!〈{2},date〉;0, quit : 0}) |
b[1](z1).z1!〈{2},quote - contrib -99〉;z2!〈〈2,sa[2]〉〉; . . .) |
b̄[2](z2).z2?(1,x);z2?((1,t));z2 ⊳ ({1},ok); t ⊳ ({1,3},ok); t!〈{3}, . . .〉; t?(3,date)

−→ by using [Link] (and the structural congruence for scope extrusion)

(νsasb)(. . .as above. . . | sb[1]!〈{2},quote - contrib -99〉;sb[1]!〈〈2,sa[2]〉〉; . . . |
sb[2]?(1,x);sb[2]?((1,t));sb[2]⊳ ({1},ok); t ⊳ ({1,3},ok); t!〈{3}, . . .〉; t?(3,date))

−→∗ by using [Send] and [Recv] the result ofquote - contrib -99 is communicated

(νsasb)(. . .as above. . . | sb[1]!〈〈2,sa[2]〉〉;sb[1]⊲ (2,{ok : 0, quit : 0}) |
sb[2]?((1,t));sb[2]⊳ ({1},ok); t ⊳ ({1,3},ok); t!〈{3}, . . .〉; t?(3,date))

−→∗ by using [Deleg] and [Srec]

(νsasb)(. . .as above. . . | sb[1]⊲ (2,{ok : 0, quit : 0}) |
sb[2]⊳ ({1},ok);sa[2]⊳ ({1,3},ok);sa[2]!〈{1}, . . .〉;sa[2]?(3,date))

−→∗ by using [Label] and [Branch]

(νsasb)(sa[3]⊲ (2,{ok : sa[3]?(2,address);sa[3]!〈{2},date〉;0, quit : 0}) | 0 |
sa[2]⊳ ({1,3},ok);sa[2]!〈{3}, . . .〉;sa[2]?(3,date))

Table V. Example of reduction

3. COMMUNICATION TYPE SYSTEM

The previous section defines the syntax and the global types.This section introduces the
communication type system, by which we can check type soundness of the communica-
tions which take place inside single sessions.

Types and Typing Rules for Pure Runtime Processes. We first define the local types of
pure processes, calledaction types. While global types represent the whole protocol, action

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · L. Bettini et al.

types correspond to the communication actions, representing sessions from the view-points
of single participants.

Action T ::= !〈Π,U〉;T send
| ?(p,U);T receive
| ⊕〈Π,{l i : Ti}i∈I 〉 selection
| &(p,{l i : Ti}i∈I) branching

| µt.T recursive
| t variable
| end end

Thesend type!〈Π,U〉;T expresses the sending to allpk for k∈ Π of a value or of a chan-
nel of typeU , followed by the communications ofT. Theselection type⊕〈Π,{l i : Ti}i∈I 〉
represents the transmission to allpk for k ∈ Π of a labell i chosen in the set{l i | i ∈ I}
followed by the communications described byTi . Thereceiveandbranchingare dual and
only need one sender. Other types are standard.

The relation between action and global types is formalised by the notion of projection
as in [Honda et al. 2008]. Theprojection of G ontoq (G ↾ q) is defined by induction onG:

(p→ Π : 〈U〉.G′) ↾ q =

!〈Π,U〉;(G′ ↾ q) if q = p,

?(p,U);(G′ ↾ q) if q = pk for somek∈ Π,

G′ ↾ q otherwise.
(p→ Π : {l i : Gi}i∈I) ↾ q =

⊕(Π,{l i : Gi ↾ q}i∈I) if q = p

&(p,{l i : Gi ↾ q}i∈I) if q = pk for somek∈ Π
G1 ↾ q if q 6= p,q 6= pk∀k∈ Π and

Gi ↾ q = G j ↾ q for all i, j ∈ I .
(µt.G) ↾ q = µt.(G ↾ q) t ↾ q= t end ↾ q = end.

As an example, we list two of the projections of the global typesGa andGb of the three-
buyer protocol:
Ga ↾ 3 = ?〈1, string〉; !〈{1,2}, int〉;&(2,{ok :?〈2, string〉; !〈{2},date〉;end,quit : end})
Gb ↾ 1 = ?〈2, int〉;?〈2,T〉;⊕〈{2},{ok : end,quit : end}〉

whereT = ⊕〈{1,3},{ok :!〈{3}, string〉;?〈3,date〉;end, quit : end}〉.
The typing judgements for expressions and pure processes are of the shape:

Γ ⊢ e : SandΓ ⊢ P⊲ ∆
whereΓ is thestandard environmentwhich associates variables to sort types, service names
to global types and process variables to pairs of sort types and action types;∆ is thesession
environmentwhich associates channels to action types. Formally we define:

Γ ::= /0 | Γ,u : S| Γ,X : S T and∆ ::= /0 | ∆,c : T

assuming that we can writeΓ,u : S only if u does not occur inΓ, briefly u 6∈ dom(Γ)
(dom(Γ) denotes the domain ofΓ, i.e., the set of identifiers which occur inΓ). We use the
same convention forX : S T and∆.

Table VI presents the typing rules for pure processes. Rule⌊MCAST⌋ permits to type
a service initiator identified byu, if the type ofy is then-th projection of the global type
G of u and the number of participants inG (denoted by pn(G)) is n. Rule⌊MACC⌋ per-
mits to type thep-th participant identified byu, which uses the channely, if the type of
y is thep-th projection of the global typeG of u. The successive six rules associate the
input/output processes to the input/output types in the expected way. Note that, according
to our notational convention on environments, in rule⌊DELEG⌋ the channel which is sent
cannot appear in the session environment of the premise, i.e., c′ 6∈ dom(∆)∪ {c}. Rule
⌊CONC⌋ permits to put in parallel two processes only if their sessions environments have

ACM Journal Name, Vol. V, No. N, Month 20YY.

Global Progress in Dynamically Interleaved Multiparty Sessions · 9

Γ,u : S⊢ u : S ⌊NAME⌋ Γ ⊢ true,false : bool
Γ ⊢ ei : bool

Γ ⊢ e1 and e2 : bool
⌊BOOL⌋,⌊AND⌋

Γ ⊢ u : 〈G〉 Γ ⊢ P⊲∆,y : G ↾ 1 pn(G) ≤ n
⌊MCAST⌋

Γ ⊢ ū[n](y).P⊲∆

Γ ⊢ u : 〈G〉 Γ ⊢ P⊲∆,y : G ↾ p
⌊MACC⌋

Γ ⊢ u[p](y).P⊲∆

Γ ⊢ e : S Γ ⊢ P⊲∆,c : T
⌊SEND⌋

Γ ⊢ c!〈Π,e〉;P⊲∆,c : !〈Π,S〉;T

Γ,x : S⊢ P⊲∆,c : T
⌊RCV⌋

Γ ⊢ c?(q,x);P⊲∆,c :?(q,S);T

Γ ⊢ P⊲∆,c : T
⌊DELEG⌋

Γ ⊢ c!〈〈p,c′〉〉;P⊲∆,c : !〈p,T ′〉;T,c′ : T ′

Γ ⊢ P⊲∆,c : T,y : T ′

⌊SREC⌋
Γ ⊢ c?((q,y));P⊲∆,c :?(q,T ′);T

Γ ⊢ P⊲∆,c : Tj j ∈ I
⌊SEL⌋

Γ ⊢ c⊕〈Π, l j 〉;P⊲∆,c : ⊕〈Π,{li : Ti}i∈I 〉

Γ ⊢ Pi ⊲∆,c : Ti ∀i ∈ I
⌊BRANCH⌋

Γ ⊢ c&(p,{li : Pi}i∈I)⊲∆,c : &(p,{li : Ti}i∈I)

Γ ⊢ P⊲∆ Γ ⊢ Q⊲∆′ dom(∆)∩dom(∆′) = /0
⌊CONC⌋

Γ ⊢ P | Q⊲∆∪∆′

Γ ⊢ e : bool Γ ⊢ P⊲∆ Γ ⊢ Q⊲∆
⌊IF⌋

Γ ⊢ if e then P else Q⊲∆

∆ end only
⌊INACT⌋

Γ ⊢ 0⊲∆

Γ,a : 〈G〉 ⊢ P⊲∆
⌊NRES⌋

Γ ⊢ (νa)P⊲∆

Γ ⊢ e : S ∆ end only
⌊VAR⌋

Γ,X : S T⊢ X〈e,c〉⊲∆,c : T

Γ,X : S T,x : S⊢ P⊲y : T Γ,X : S T⊢ Q⊲∆
⌊DEF⌋

Γ ⊢ def X(x,y) = P in Q⊲∆

Table VI. Typing rules for pure processes

disjoint domains. For example we can derive:
⊢ t ⊕〈{1,3},ok〉; t!〈{3},"Address"〉; t?(3,date);0 ⊲ {t : T}

whereT = ⊕〈{1,3},{ok :!({3}, string);?〈3,date〉;end, quit : end}〉.
In the typing of the example of the three-buyer protocol the types of the channelsy3 andz1

are the third projection ofGa and the first projection ofGb, respectively. By applying rule
⌊MCAST⌋ we can then derivea : Ga ⊢ S⊲ /0. Similarly by applying rule⌊MACC⌋ we can
deriveb : Gb ⊢ C⊲ /0.

Types and Typing Rules for Runtime Processes. We now extend the communication
type system to processes containing queues.

Message T ::= !〈Π,U〉 message send
| ⊕〈Π, l〉 message selection
| T;T′ message sequence

Generalised T ::= T action
| T message
| T;T continuation

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · L. Bettini et al.

⌊QINIT⌋
Γ ⊢{s} s : �⊲ /0

Γ ⊢{s} s : h⊲∆ Γ ⊢ v : S
⌊QSEND⌋

Γ ⊢{s} s : h· (q,Π,v)⊲∆;{s[q] : !〈Π,S〉}

Γ ⊢{s} s : h⊲∆
⌊QDELEG⌋

Γ ⊢{s} s : h· (q,p,s′[p′])⊲∆,s′[p′] : T ′;{s[q] : !〈p,T ′〉}

Γ ⊢{s} s : h⊲∆
⌊QSEL⌋

Γ ⊢{s} s : h· (q,Π, l)⊲∆;{s[q] : ⊕〈Π, l〉}

Table VII. Typing rules for queues

Γ ⊢ P⊲∆
⌊GINIT⌋

Γ ⊢ /0 P⊲∆

Γ ⊢Σ P⊲∆ ∆′end only
⌊WEAK⌋

Γ ⊢Σ P⊲∆∗∆′

Γ ⊢Σ P⊲∆ Γ ⊢Σ′ Q⊲∆′ Σ∩Σ′ = /0
⌊GPAR⌋

Γ ⊢Σ∪Σ′ P | Q⊲∆∗∆′

Γ ⊢Σ P⊲∆ co(∆,s)
⌊GSRES⌋

Γ ⊢Σ\s (νs)P⊲∆\s

Γ,a : 〈G〉 ⊢Σ P⊲∆
⌊GNRES⌋

Γ ⊢Σ (νa)P⊲∆

Γ,X : S T,x : S⊢ P⊲{y : T} Γ,X : S T⊢Σ Q⊲∆
⌊GDEF⌋

Γ ⊢Σ def X(x,y) = P in Q⊲∆

Table VIII. Typing rules for processes

Message typesare the types for queues: they represent the messages contained in the
queues. Themessage send type!〈Π,U〉 expresses the communication to allpk for k ∈ Π
of a value or of a channel of typeU . Themessage selection type⊕〈Π, l〉 represents the
communication to allpk for k∈ Π of the labell andT;T′ represents sequencing of message
types. For example⊕〈{1,3},ok〉 is the message type for the message(2,{1,3},ok). A
generalised typeis either an action type, or a message type, or a message type followed
by an action type. TypeT;T represents the continuation of the typeT associated to a
queue with the typeT associated to a pure process. An example of generalised typeis
⊕〈{1,3},ok〉; !〈{3}, string〉;?〈3,date〉;end.

We start by defining the typing rules for single queues, in which the turnstile⊢ is deco-
rated with{s} (wheres is the session name of the current queue) and the session environ-
ments are mappings from channels to message types. The emptyqueue has empty session
environment. Each message adds an output type to the currenttype of the channel which
has the role of the message sender (Table VII lists the typingrules for queues).

In order to type pure processes in parallel with queues, we need to use generalised types
in session environments and further typing rules. Table VIII lists the typing rules for pro-
cesses containing queues. The judgementΓ ⊢Σ P⊲ ∆ means thatP contains the queues
whose session names are inΣ. Rule⌊GINIT⌋ promotes the typing of a pure process to the
typing of an arbitrary process, since a pure process does notcontain queues. When two
arbitrary processes are put in parallel (rule⌊GPAR⌋) we need to require that each session

ACM Journal Name, Vol. V, No. N, Month 20YY.

Global Progress in Dynamically Interleaved Multiparty Sessions · 11

name is associated to at most one queue (conditionΣ∩Σ′ = /0). In composing the two
session environments we want to put in sequence a message type and an action type for the
same channel with role. For this reason we define the composition ∗ between local types
as:

T ∗T′ =

T;T′ if T is a message type,
T′;T if T′ is a message type,
⊥ otherwise

where⊥ represents failure of typing. We extend∗ to session environments as expected:
∆∗∆′ = ∆\dom(∆′)∪∆′\dom(∆)∪{c : T ∗T′ | c : T ∈ ∆ & c : T′ ∈ ∆′}.

Note that∗ is commutative, i.e.,∆∗∆′ = ∆′ ∗∆. Also if we can derive message types only
for channels with roles, we consider the channel variables in the definition of∗ for session
environments since we want to get for example{y : end} ∗ {y : end} = ⊥. An example of
derivable judgement is:
⊢{s} P | s : (3,{1,2},ok)⊲ {s[3] : ⊕〈{1,2},ok〉; !〈{1}, string〉;?〈1,date〉;end}

whereP = s[3]!〈{1},"Address"〉;s[3]?(1,date);0.

More on Communication Type System

Definition 3.1. Theprojection of the generalised local type T ontoq, denoted byT ↾ q,
is defined by:

(!〈Π,U〉;T ′) ↾ q =

{

!U ;T ′ ↾ q if q = pk for somek∈ Π,

T ′ ↾ q otherwise.

(?(Π,U);T ′) ↾ q =

{

?U ;T ′ ↾ q if q = pk for somek∈ Π,

T ′ ↾ q otherwise.

(⊕〈Π,{l i : Ti}i∈I 〉) ↾ q =

⊕{l i : Ti ↾ q}i∈I if q = pk for somek∈ Π,

T1 ↾ q if q 6= pk ∀k∈ Π and

Ti ↾ q = Tj ↾ q

for all i, j ∈ I .

(&(p,{l i : Ti}i∈I)) ↾ q =

&{l i : Ti ↾ q}i∈I if q = p,

T1 ↾ q if q 6= p

∀k∈ Π and

Ti ↾ q = Tj ↾ q

for all i, j ∈ I .

(⊕〈Π, l〉;T ′) ↾ q =

{

⊕l ;T ′ ↾ q if q = pk for somek∈ Π,

T ′ ↾ q otherwise.

(µt.T) ↾ q = µt.(T ↾ q) t ↾ q = t end ↾ q = end

Definition 3.2. Theduality relationbetween projections of generalised local types is
the minimal symmetric relation which satisfies:

end ⊲⊳ end t ⊲⊳ t T ⊲⊳ T ′ =⇒ µt.T ⊲⊳ µt.T ′ & !U ;T ⊲⊳ ?U ;T ′

∀i ∈ I Ti ⊲⊳ T ′
i =⇒ ⊕{l i : Ti}i∈I ⊲⊳ &{l i : T ′

i }i∈I

∃i ∈ I l = l i & T ⊲⊳ Ti =⇒ ⊕l ;T ⊲⊳ &{l i : Ti}i∈I

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · L. Bettini et al.

Definition 3.3. A session environment∆ is coherent for the session s(notationco(∆,s))
if s[p] : T ∈∆ andT ↾ q 6= end imply s[q] : T ′ ∈∆ andT ↾ q ⊲⊳ T ′ ↾ p. A session environment
∆ is coherentif it is coherent for all sessions which occur in it.

Subject Reduction. Since session environments represent the forthcoming communi-
cations, by reducing processes session environments can change. This can be formalised
as in [Honda et al. 2008] by introducing the notion of reduction of session environments,
whose rules are:
—{s[p] : !〈Π,U〉; T,s[p j] :?(p,U);T ′} ⇒ {s[p] : !〈Π\ j ,U〉; T,s[p j] : T ′} if j ∈ Π
—{s[p] : T;⊕〈Π,{l i : Ti}i∈I 〉} ⇒ {s[p] : T;⊕〈Π, l i〉;Ti}

—{s[p] : ⊕〈Π, l〉;T,s[p j] : &(p,{l i : Ti}i∈I)} ⇒ {s[p] : ⊕〈Π\ j , l〉;T,s[p j] : Ti}
if j ∈ Π andl = l i

—{s[p] : !〈 /0,U〉; T} ⇒ {s[p] : T} {s[p] : ⊕〈 /0, l〉;T} ⇒ {s[p] : T}

—∆∪∆′′ ⇒ ∆′∪∆′′ if ∆ ⇒ ∆′.

The first rule corresponds to the reception of a value or channel by the participantp j , the
second rule corresponds to the choice of the labell i and the third rule corresponds to the
reception of the labell by the participantp j . The fourth and the fifth rules garbage collect
read messages.

Using the above notion we can state type preservation under reduction as follows:

THEOREM 3.4 TYPE PRESERVATION. If Γ ⊢Σ P⊲ ∆ and P−→∗ P′, thenΓ ⊢Σ P′ ⊲ ∆′

for some∆′ such that∆ ⇒∗ ∆′.

Note that the communication safety [Honda et al. 2008, Theorem 5.5] is a corollary of this
theorem. Thus the user-defined processes with the global types can safely communicate
since their runtime translation is typable by the communication type system.

4. FROM USER SYNTAX TO RUNTIME SYNTAX VIA TYPES

Given a user processP and the set of global types associated to the service identifiers which
occur free or bound inP we can add the sender and the receivers to each communication,
by getting in this way a process in the runtime syntax. We define two mappings with
domain the set of user processes: the first one (denote by⌊G † u⌋) depends on a global
typeG and on a service identifieru, while the second one (denote by⌊T ‡ y⌋) depends
on an action typeT and on a channel variabley. The mapping⌊G † u⌋ (Table IX) calls
the other mapping with the appropriate projection and channel variable when it is applied
to a session initiation on the identifieru, and leaves the process unchanged otherwise. The

⌊G † u⌋(ū[n](y).P) = ū[n](y).⌊G ↾ 1 ‡ y⌋(P)
⌊G † u⌋(u[p](y).P) = u[p](y).⌊G ↾ p ‡ y⌋(P)
⌊G † u⌋(pref;P) = pref;⌊G † u⌋(P) u 6∈ pref

⌊G † u⌋(if e then P else Q) = if e then ⌊G † u⌋(P) else ⌊G † u⌋(Q)
⌊G † u⌋(P | Q) = ⌊G † u⌋(P) | ⌊G † u⌋(Q)
⌊G † u⌋(0) = 0
⌊G † u⌋((νa)P) = (νa)⌊G † u⌋(P)
⌊G † u⌋(def X(x y) = P in Q) = def X(x y) = ⌊G † u⌋(P) in ⌊G † u⌋(Q)
⌊G † u⌋(X〈e y〉) = X〈e y〉

wherepref is any session initialization or communication command.

Table IX. Application of a global type and a service identifier to a user process.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Global Progress in Dynamically Interleaved Multiparty Sessions · 13

⌊ !〈Π,S〉;T ‡ y⌋(y!〈e〉;P) = y!〈Π,e〉;⌊T ‡ y⌋(P)
⌊?(p,S);T ‡ y⌋(y?(x);P) = y?(p,x);⌊T ‡ y⌋(P)
⌊ !〈Π,T ′〉;T ‡ y⌋(y!〈〈y′〉〉;P) = y!〈〈Π,y′〉〉;⌊T ‡ y⌋(P)
⌊T ‡ y⌋(y′!〈〈y〉〉;P) = y′!〈〈y〉〉;P
⌊?(p,T ′);T ‡ y⌋(y?((y′));P) = y?((p,y′));⌊T ‡ y⌋(⌊T′ ‡ y′⌋(P))
⌊⊕〈Π,{li : Ti}i∈I 〉 ‡ y⌋(y⊕ l j ;P) = y⊕〈p, l j 〉;⌊Tj ‡ y⌋(P) j ∈ I
⌊&(p,{li : Ti}i∈I) ‡ y⌋(y&{li : Pi}i∈I) = y&(p,{li : ⌊T ‡ y⌋(Pi)}i∈I)
⌊T ‡ y⌋(pref;P) = pref;⌊T ‡ y⌋(P) y 6∈ pref

⌊T ‡ y⌋(if e then P else Q) = if e then ⌊T ‡ y⌋(P) else ⌊T ‡ y⌋(Q)
⌊T ‡ y⌋(P | Q) = ⌊T ‡ y⌋(P) | Q y 6∈ Q
⌊T ‡ y⌋(P | Q) = P | ⌊T ‡ y⌋(Q) y 6∈ P
⌊end ‡ y⌋(0) = 0
⌊T ‡ y⌋((νa)P) = (νa)⌊T ‡ y⌋(P)
⌊T ‡ y⌋(def X(x y′) = P in Q) = def X(x y′) = ⌊T ′ ‡ y′⌋(P) in ⌊T ‡ y⌋(Q)

whereT ′ = ⌊T ♮ y ♮ X⌋(Q)
⌊T ‡ y⌋(X〈e y′〉) = X〈e y′〉

Table X. Application of a local type and a channel variable toa user process.

⌊ !〈Π,S〉;T ♮ y ♮ X⌋(y!〈e〉;P) =⌊T ♮ y ♮ X⌋(P)
⌊?(p,S);T ♮ y ♮ X⌋(y?(x);P) = ⌊T ♮ y ♮ X⌋(P)
⌊ !〈Π,T ′〉;T ♮ y ♮ X⌋(y!〈〈y′〉〉;P) = ⌊T ♮ y ♮ X⌋(P)
⌊?(p,T ′);T ♮ y ♮ X⌋(y?((y′));P) = ⌊T ♮ y ♮ X⌋(P)
⌊⊕〈Π,{li : Ti}i∈I 〉 ♮ y ♮ X⌋(y⊕ l j ;P) = ⌊Tj ♮ y ♮ X⌋(P) j ∈ I
⌊&(p,{li : Ti}i∈I) ♮ y ♮ X⌋(y&{li : Pi}i∈I) = ⌊Tj ♮ y ♮ X⌋(Pj) j ∈ I & X ∈ Pj

⌊T ♮ y ♮ X⌋(pref;P) = ⌊T ♮ y ♮ X⌋(P) y 6∈ pref

⌊T ♮ y ♮ X⌋(if e then P else Q) = ⌊T ♮ y ♮ X⌋(P) X ∈ P
⌊T ♮ y ♮ X⌋(if e then P else Q) = ⌊T ♮ y ♮ X⌋(Q) X ∈ Q
⌊T ♮ y ♮ X⌋(P | Q) = ⌊T ♮ y ♮ X⌋(P) X ∈ P
⌊T ♮ y ♮ X⌋(P | Q) = ⌊T ♮ y ♮ X⌋(Q) X ∈ Q
⌊T ♮ y ♮ X⌋((νa)P) = ⌊T ♮ y ♮ X⌋(P)
⌊T ♮ y ♮ X⌋(def X′(x y′) = P in Q) = ⌊T ♮ y ♮ X⌋(Q) X 6= X′

⌊T ♮ y ♮ X⌋(X〈e y′〉) = T

Table XI. Application of a local type and a channel variable and a process variable to a user process.

mapping⌊T ‡ y⌋ (Table X) adds the sender or the receiver to the communications which
use the channely and it does not affect the other processes. An interesting clause is the
fifth one, in which⌊T ′ ‡ y′⌋ is applied to the body of the channel receptiony′ (T ′ is the
action type ofy′). In the last but one clauseT ′ is the unique type such that⌊T ′ ‡ y⌋(X(e y))
occurs in (the evaluation of)⌊T ‡ y⌋(Q). More precisely we evaluate this type by applying
to Q the mapping⌊T ♮ y ♮ X⌋() defined in Table XI.

In order to get the runtime version of an user processP we need to apply toP the
mapping⌊G † u⌋, for each service identifieru which occurs free or bound inP, whereG is
the global type ofu. Note that whenu is a bound variable we need to apply⌊G † x⌋ only
to the scope ofx.

We say that a closed user processP = C [y1?(x1);Q1] . . . [ym?(xm);Qm] with bound ser-
vice identifiersx1, . . . ,xm and service namesaℓ with ℓ ∈ L is a correct implementation of
the protocols described byG1, . . . ,Gm andG′

ℓ for ℓ ∈ L if we can derive

⌊G′
ℓ † aℓ⌋ℓ∈L(C [y1?(x1);⌊G1 † x1⌋(Q1)] . . . [ym?(xm);⌊Gm † xm⌋(Qm)])⊲ /0

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · L. Bettini et al.

from {aℓ : G′
ℓ | ℓ ∈ L}.

5. PROGRESS

This section studies progress: informally, we say that a process has the progress property
if it can never reach a deadlock state, i.e., if it never reduces to a process which contains
open sessions (this amounts to containing channels with roles) and which is irreducible in
any inactive context (represented by another inactive process running in parallel).

Definition 5.1Progress. A processP has theprogress propertyif P −→∗ P′ implies
that eitherP′ does not contain channels with roles orP′ | Q −→ for someQ such that
P′ | Q is well typed andQ 6−→.

We will give an interaction type system which ensures that the typable processes always
have the progress property.

Let us say that achannel qualifieris either a session name or a channel variable. Letc
be a channel, its channel qualifierℓ(c) is defined by: (1) ifc = y, thenℓ(c) = y; (2) else if
c= s[p], thenℓ(c) = s. Let Λ, ranged over byλ , denote the set of all service names and all
channel qualifiers.

The progress property will be analysed via three finite sets:two setsN and B of
service names and a setR ⊆ Λ∪(Λ×Λ). The setN collects the service names which are
interleaved following the nesting policy. The setB collects the service names which can
be bound. The Cartesian productΛ×Λ, whose elements are denotedλ ≺ λ ′, represents
a transitive relation. The meaning ofλ ≺ λ ′ is that an input action involving a channel
(qualified by)λ or belonging to serviceλ could block a communication action involving
a channel (qualified by)λ ′ or belonging to serviceλ ′. MoreoverR includes all channel
qualifiers and all service names which do not belong toN or B and which occur free in
the current process. This will be useful to easily extendR in the assignment rules, as it will
be pointed out below. We callN nested service set, B bound service setandR channel
relation (even if only a subset of it is, strictly speaking, a relation). Let us give now some
related definitions.

Definition 5.2. LetR ::= /0 | R,λ | R,λ ≺ λ ′.

(1) B∪̄{e} =

{

B∪{a} if e= a is a session name

B otherwise.

(2) R \λ = {λ1 ≺ λ2 | λ1 ≺ λ2 ∈ R & λ1 6= λ & λ2 6= λ}∪{λ ′ | λ ′ ∈ R & λ ′ 6= λ}

(3) R \\λ =

{

R \λ if λ is minimal inR

⊥ otherwise.

(4) R ⊎R ′ = (R ∪R ′)+

(5) pre(ℓ(c),R) = R⊎{ℓ(c)}⊎{ℓ(c) ≺ λ | λ ∈ R & ℓ(c) 6= λ}
whereR+ is the transitive closure of (the relation part of)R andλ is minimal in R if
6 ∃λ ′ ≺ λ ∈ R.
Note, as it easy to prove, that⊎ is associative. A channel relation iswell formedif it is
irreflexive, and does not contain cycles. A channel relationR is channel free(cf(R)) if it
contains only service names.

Tables XII and XIII give the interaction typing rules. The judgements are of the shape:
Θ ⊢ P ◮ R ; N ; B whereΘ is a set ofassumptionsof the shapeX[y] ◮ R ; N ; B

(for recursive definitions) with the variabley representing the channel parameter ofX.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Global Progress in Dynamically Interleaved Multiparty Sessions · 15

Θ ⊢ P ◮ R ; N ; B

{MCAST}
Θ ⊢ ā[n](y).P ◮ R{a/y} ; N ; B

Θ ⊢ P ◮ R ; N ; B

{MACC}
Θ ⊢ a[p](y).P ◮ R{a/y} ; N ; B

Θ ⊢ P ◮ R ; N ; B

{MCASTN}
Θ ⊢ ā[n](y).P ◮ R \\y; N ∪{a} ; B

Θ ⊢ P ◮ R ; N ; B

{MACCN}
Θ ⊢ a[p](y).P ◮ R \\y; N ∪{a} ; B

Θ ⊢ P ◮ R ; N ; B cf(R \\y)
{MCASTB}

Θ ⊢ ū[n](y).P ◮ R \\y; N ; B∪̄{u}

Θ ⊢ P ◮ R ; N ; B cf(R \\y)
{MACCB}

Θ ⊢ u[p](y).P ◮ R \\y; N ; B∪̄{u}

Θ ⊢ P ◮ R ; N ; B

{SEND}
Θ ⊢ c!〈Π,e〉;P ◮ {ℓ(c)}∪R ; N ; B∪̄{e}

Θ ⊢ P ◮ R ; N ; B

{RCV}
Θ ⊢ c?(q,x);P ◮ pre(ℓ(c),R) ; N ; B

Θ ⊢ P ◮ R ; N ; B

{DELEG}
Θ ⊢ c!〈〈p′,c′〉〉;P ◮ {ℓ(c), ℓ(c′), ℓ(c) ≺ ℓ(c′)}⊎R ; N ; B

Θ ⊢ P ◮ R ; N ; B R ⊆ {ℓ(c), y, ℓ(c) ≺ y}
{SREC}

Θ ⊢ c?((q,y));P ◮ {ℓ(c)} ; N ; B

Θ ⊢ P ◮ R ; N ; B

{SEL}
Θ ⊢ c⊕〈Π, l〉;P ◮ {ℓ(c)}∪R ; N ; B

Θ ⊢ Pi ◮ Ri ; Ni ; Bi ∀i ∈ I
{BRANCH}

Θ ⊢ c&(p,{l i : Pi}i∈I) ◮ pre(ℓ(c),
⊎

i∈I

Ri) ;
⋃

i∈I

Ni ;
⋃

i∈I

Bi

Table XII. Interaction typing rules I

We say that a judgementΘ ⊢ P ◮ R ; N ; B is coherentif: (1) R is well formed;
(2) R ∩ (N ∪B) = /0. We assume that the typing rules are applicable if and onlyif the
judgements in the conclusion are coherent.

We will give now an informal account of the interaction typing rules, through a set of
examples. It is understood that all processes introduced inthe examples can be typed with
the communication typing rules given in the previous section.

The crucial point to prove the progress property is to assurethat a process, seen as
a parallel composition of single threaded processes and queues, cannot be blocked in a
configuration in which:

(1) there are no thread ready for a session initialization (i.e., of the form ¯a[n](y).P or
a[p](y).P). Otherwise the process could be reactivated by providing it with the right
partners;

(2) all subprocesses are either non-empty queues or processes waiting to perform an input
action on a channel whose associated queue does not offer an appropriate message.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · L. Bettini et al.

Θ ⊢ P ◮ R ; N ; B Θ ⊢ Q ◮ R
′ ; N

′ ; B
′

{CONC}
Θ ⊢ P | Q ◮ R⊎R

′ ; N ∪N
′ ; B∪B

′

Θ ⊢ P ◮ R ; N ; B a 6∈ R ∪N

{NRES}
Θ ⊢ (νa)P ◮ R ; N ; B \a

{VAR}
Θ,X[y] ◮ R ; N ; B ⊢ X〈e,c〉 ◮ R{ℓ(c)/y} ; N ; B∪̄{e}

Θ,X[y] ◮ R ; N ; B ⊢ P ◮ R ; N ; B Θ,X[y] ◮ R ; N ; B ⊢ Q ◮ R
′ ; N

′ ; B
′

{DEF}
Θ ⊢ def X(x,y) = P in Q ◮ R

′ ; N
′ ; B

′

Θ ⊢ P ◮ R ; N ; B Θ ⊢ Q ◮ R
′ ; N

′ ; B
′

{IF}
Θ ⊢ if e then P else Q ◮ R ⊎R

′ ; N ∪N
′ ; B∪B

′

{INACT}
Θ ⊢ 0 ◮ /0; /0; /0

{QINIT}
Θ ⊢ s : � ◮ /0; /0; /0

Θ ⊢ s : h ◮ R ; /0; B

{QADDVAL }
Θ ⊢ s : h· (q,Π,v) ◮ R ; /0; B∪̄{v}

Θ ⊢ s : h ◮ R ; /0; B

{QADDSESS}
Θ ⊢ s : h· (q,p,s′[p′]) ◮ {s,s′,s≺ s′}⊎R ; /0; B

Θ ⊢ s : h ◮ R ; /0; B

{QSEL}
Θ ⊢ s : h· (q,Π, l) ◮ R ; /0; B

Θ ⊢ P ◮ R ; N ; B

{SRES}
Θ ⊢ (νs)P ◮ R \s; N ; B

Table XIII. Interaction typing rules II

Progress inside a single service is assured by the communication typing rules in§ 3.
This will follow as an immediate corollary of Theorem 5.3. The channel relation is essen-
tially defined to analyse the interactions between services: this is why in the definition of
pre(ℓ(c),R) we put the conditionℓ(c) 6= λ . A basic point is that a loop inR represents
the possibility of a deadlock state. For instance take the processes:

P1 = b[1](y1).ā[2](z2).y1?(2,x);z2!〈1, false〉;0
P2 = b̄[2](y2).a[1](z1).z1?(2,x′);y2!〈1, true〉;0.

In processP1 we have that an input action on serviceb can block an output action on ser-
vicea and this determinesb≺ a. In processP2 the situation is inverted, determininga≺ b.
In P1 | P2 we will then have a loopa≺ b≺ a. In factP1 | P2 reduces to

Q = (νs)(νr) (s[1]?(2,x); r[1]!〈2, false〉;0 | r[2]?(1,x′);s[2]!〈1, true〉;0)

which is stuck. It is easy to see that servicesa andb have the same types, thus we could
changeb in a in P1 andP2 obtainingP′

1 andP′
2 with two instances of servicea and a rela-

tion a≺ a. But alsoP′
1 | P′

2 would reduce toQ. Hence we must forbid also loops on single
service names (i.e., the channel relation cannot be reflexive).

Rule {RCV} asserts that the input action can block all other actions inP, while rule
{SEND} simply addsℓ(c) in R to register the presence of a communication action inP. In
fact output is asynchronous, thus it can be always performed. Rule{DELEG} is similar to
{SEND} but asserts that a use ofℓ(c) must precede a use ofℓ(c′): the relationℓ(c) ≺ ℓ(c′)
needs to be registered since an action blockingℓ(c) also blocksℓ(c′).

ACM Journal Name, Vol. V, No. N, Month 20YY.

Global Progress in Dynamically Interleaved Multiparty Sessions · 17

Three different sets of rules handle service initialisations. In rules{MCAST}-{MACC},
which are liberal on the occurrences of the channely in P, the service namea replacesy in
R. Rules{MCASTN}-{MACCN} can be applied only if the channely associated toa is
minimal inR .This implies that oncea is initialised inP all communication actions on the
channel with role instantiatingy must be performed before any input communication ac-
tion on a different channel inP. The namea is added to the nested service set. Remarkably,
via rules{MCASTN}-{MACCN} we can prove progress when services are nested, gener-
alising the typing strategy of [Coppo et al. 2007]. The rules{MCASTB} and{MACCB}
addu to the bound service set wheneveru is a service name. These rules are much more
restrictive: they require thaty is the only free channel inP and that it is minimal. Thus
no interaction with other channels or services is possible.This safely allowsu to be a
variable (since nothing is known about it before execution except its type) or a restricted
name (since no channel with role can be made inaccessible at runtime by a restriction on
u). Note that rule{NRES} requires thata occurs neither inR nor inN .

The setsN andB include all service names of a processP whose initialisations is
typed with{MCASTN}-{MACCN}, {MCASTB}-{MACCB}, respectively. Note that for a
service name which will replace a variable this is assured bythe (conditional) addition of
e to B in the conclusion of rule{SEND}. The setsN andB are used to assure, via the
coherence conditionR ∩ (N ∪B) = /0, thatall participants to the same service are typed
either by the first two rules or by the remaining four. This is crucial to assure progress.
Take for instance the processesP1 andP2 above. If we type the session initialisation onb
using rule{MACCN} or {MACCB} in P1 and rule{MCAST} in P2 no inconsistency would
be detected. But rule{CONC} does not typeP1 | P2 owing to the coherence condition. In-
stead if we use{MACC} in P1, we detect the loopa≺ b≺ a. Note that we could not use
{MCASTN} or {MCASTB} for b in P2 sincey2 is not minimal.

Rules{MCASTN}-{MACCN} are useful for typing delegation. An example is process
B of the three-buyer protocol, in which the typing of the subprocess

z2!〈{1},quote - contrib -99〉;z2!〈〈1,y2〉〉;z2&(1,{ok : 0, quit : 0})
givesz2 ≺ y2. So by using rule{MCAST} we would get firstb ≺ y2 and then the cycle
y2 ≺ b ≺ y2. Instead using rule{MCASTN} for b we get in the final typing of B either
{a};{b}; /0 or /0;{a,b}; /0 according to we use either{MCAST} or {MCASTN} for a.

Rule{SREC} avoids to create a process where two different roles in the same session
are put in sequence. Following [Yoshida and Vasconcelos 2007] we call this phenomenon
self-delegation. As an example consider the processes

P1 = b[1](z1).a[1](y1).y1!〈〈2,z1〉〉;0
P2 = b̄[2](z2).ā[2](y2).y2?((1,x));x?(2,w);z2!〈1, false〉;0

and note thatP1 | P2 reduces to(νs)(νr)(s[1]?(2,w);s[2]!〈1, false〉;0) which is stuck. Note
thatP1 | P2 is typable by the communication type system butP2 is not typable by the inter-
action type system, since by typingy2?((1,x));x?(2,w);z2!〈1, false〉;0 we gety2 ≺ z2 which
is forbidden by rule{SREC}.

A closed runtime processP is initial if it is typable both in the communication and in
the interaction type systems. The progress property is assured for all computations that are
generated from an initial process.

THEOREM 5.3 PROGRESS. All initial processes have the progress property.

It is easy to verify that the (runtime) version of the three-buyer protocol can be typed in the
interaction type system with{a};{b}; /0 and /0;{a,b}; /0 according to which typing rules we

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · L. Bettini et al.

use for the initialisation actions on the service namea. Therefore we get

COROLLARY 5.4. The three-buyer protocol has the progress property.

5.1 Proof of the Progress Theorem

In the following definitions and proofs we assume that all considered processes are well
typed with the communication type system of Section 3.

LEMMA 5.5. If Θ ⊢ s : h ·m ◮ R ; /0 ; B thenΘ ⊢ s : m·h ◮ R ; /0 ; B.

PROOF. By induction onh.

LEMMA 5.6 SUBSTITUTION LEMMA . Let Θ ⊢ P ◮ R ; N ; B.

(1) Let v 6∈ R. ThenΘ ⊢ P{v/x} ◮ R ; N ; B
′ whereB

′ = B∪̄{v};

(2) Θ ⊢ P{s[p]/y} ◮ R{s/y} ; N ; B.

PROOF. By induction onΘ ⊢ P ◮ R ; N ; B.

(1) By induction onP. The only interesting case is whenv is a service namea, thus,P≡
x̄[n](y).P′ or P≡ x[n](y).P′ and the last applied rules are{MCASTB} or {MACCB},
respectively. Let us considerP≡ x̄[n](y).P′ (the other case is similar). From{MCASTB}
we have thatΘ ⊢ P′ ◮ R ′ ; N ; B such thatcf(R ′ \\y) andR = R ′ \\y. Now,
P{a/x}= ā[n](y).P′. Since, by hypothesis,cf(R ′\\y), thus we can apply{MCASTB},
obtainingΘ ⊢ ā[n](y).P′ ◮ R ; N ; B∪{a}. Note that this judgements is coherent
since by hypothesisa 6∈ R.

(2) Easily follows from the definition ofℓ(c).

THEOREM 5.7 TYPE PRESERVATION UNDEREQUIVALENCE. If P is well typed and
Θ ⊢ P ◮ R ; N ; B and P≡ P′, thenΘ ⊢ P′ ◮ R ; N ; B.

PROOF. Standard induction on≡.

THEOREM 5.8 TYPE PRESERVATION UNDERREDUCTION. If P is well typed andΘ ⊢
P ◮ R ; N ; B and P−→∗ P′, thenΘ ⊢ P′ ◮ R ′ ; N ′ ; B′ for someR ′ ⊆R, N ′ ⊆N

andB′ ⊆ B.

PROOF. By induction on−→ and by cases on the last applied rule.

- [Link]. By hypothesis

Θ ⊢ ā[n](y1).P1 | a[2](y2).P2 | . . . | a[n](yn).Pn ◮ R ; N ; B.

This judgement is obtained by applying rule{CONC} to the subprocesses ¯a[n](yn).Pn,
a[1](y1).P1, . . . ,a[n−1](yn−1).Pn−1. Then we have:
—Θ ⊢ ā[n](yn).Pn ◮ Rn ; Nn ; Bn

—Θ ⊢ a[1](y1).P1 ◮ R1 ; N1 ; B1

—. . .
—Θ ⊢ a[n−1](yn−1).Pn−1 ◮ Rn−1 ; Nn−1 ; Bn−1

whereR =
⊎

1≤i≤nRi and N =
⋃

1≤i≤nNi and B =
⋃

1≤i≤nBi . Point 2. of the
the coherence condition (see page 15) implies that the rules{MCAST}, {MACC}
cannot be used for the same session name with the rules{MCASTN}, {MACCN},
{MCASTB}, {MACCB}.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Global Progress in Dynamically Interleaved Multiparty Sessions · 19

We consider the case in whichPn has been typed with rule{MCASTN} or {MCASTB}
and eachPp (1≤ p≤ n−1) with {MACCN} or {MACCB}.
Then for eachi (1 ≤ i ≤ n) we must haveΘ ⊢ Pi ◮ R ′

i ; N ′
i ; B′

i such thatRi =
R ′

i \\yi, N ′
i ⊆ Ni , B′

i ⊆ Bi (yi is minimal inR ′
i). By Lemma 5.6(2) we have

Θ ⊢ Pi{s[i]/yi} ◮ R
′
i{s/yi} ; N

′
i ; B

′
i .

By using{CONC} (and{QINIT}) we have

Θ ⊢ P1{s[1]/y1}|...|Pn{s[n]/yn}|s : � ◮ R
′ ; N

′ ; B
′

whereR ′ =
⊎

R ′
i{s/yi},N ′ =

⋃

N ′
i andB′ =

⋃

B′
i . Note that this judgement is

coherent sincesmust be minimal inR ′ andR ′∩ (N ′∪B′) = /0.
By using{SRES},

Θ ⊢ (νs)(P1{s[1]/y1}|...|Pn{s[n]/yn}|s : �) ◮ R
′ \ s; N

′ ; B
′

Finally it is easy to see thatR ′ \ s= R (by the minimality of theyi in R ′
i and ofs in

R ′), N ′ ⊆ N andB′ ⊆ B.

- [Send]. By hypothesis,Θ ⊢ s[p]!〈Π,e〉;P | s : h ◮ R ; N ; B, which is obtained by
applying rule{CONC}. Thus,

Θ ⊢ s[p]!〈Π,e〉;P ◮ R1 ; N ; B1 Θ ⊢ s : h ◮ R2 ; /0 ; B2

whereR = R1⊎R2 andB = B1∪B2. The first judgement can only be obtained by
{SEND}, i.e., Θ ⊢ P ◮ R ′

1 ; N ; B′
1 such thatR1 = {s}∪R ′

1 andB1 = B′
1∪̄{v}.

By using rules{QADDVAL } and{CONC} we obtain

Θ ⊢ P | s : h · (p,Π,v) ◮ R
′
1⊎R2 ; N ; B

′
1∪ (B2∪̄{v}).

Now note thatR ′
1⊎R2 ⊆ R andB′

1∪ (B2∪̄{v}) = B.

- [Deleg]. Proceed as in the previous case, thus obtaining

Θ ⊢ s[p]!〈〈q,s′[p′]〉〉;P ◮ R1 ; N ; B1 Θ ⊢ s : h ◮ R2 ; /0 ; B2

whereR = R1⊎R2 andB = B1∪B2. By inverting rule{DELEG} we obtainΘ ⊢
P ◮ R ′

1 ; N ; B1 whereR1 = {s,s′,s≺ s′}⊎R ′
1. By using rules{QADDSESS} and

{CONC} we have

Θ ⊢ P | s : h · (q,p,s′[p′]) ◮ R
′
1⊎{s,s′,s≺ s′}⊎R2 ; N ; B1∪B2.

- [Label]. Similar to [Send] but simpler (using rule{QSEL} instead of{QADDVAL }).

- [Recv]. By hypothesis,Θ ⊢ s[p j]?(q,x);P | s : (q,Π,v) ·h ◮ R ; N ; B. Proceed as
in the case of rule [Send], thus obtaining

Θ ⊢ s[p j]?(q,x);P ◮ R1 ; N ; B1 Θ ⊢ s : (q,Π,v) ·h ◮ R2 ; /0 ; B2

whereR =R1⊎R2 andB = B1∪B2. By inverting rule{RECV} we obtainΘ ⊢P ◮

R ′
1 ; N ; B1 whereR1 = pre(s,R ′

1). By Lemma 5.6(1) we obtainΘ ⊢ P{v/x} ◮

R ′
1 ; N ; B1∪̄{v}. Moreover we haveΘ ⊢ s : h ◮ R2 ; /0 ; B′

2 whereB2 = B′
2∪̄{v}.

Applying {CONC} we get

(1) Θ ⊢ P{v/x} | s : (q,Π\ j,v) ·h ◮ R
′
1⊎R2 ; N ; B1∪̄{v}∪B

′
2.

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · L. Bettini et al.

and note thatR ′
1⊎R2 ⊆ R1⊎R2 andB1∪̄{v}∪B′

2 = B.
If v = a is a service name, thena∈ B2 implies thata 6∈ R1⊎R2 and soa 6∈ R ′

1⊎R2.
Then (1) is coherent.

- [Srec]. By hypothesis,Θ ⊢ s[p]?((q,y));P | s : (q,p,s′[p′]) ·h ◮ R ; N ; B. Proceed-
ing as before,

Θ ⊢ s[p]?((q,y));P ◮ {s} ; N ; B1 Θ ⊢ s : (q,p,s′[p′]) ·h ◮ R2 ; /0 ; B2

whereR = {s}⊎R2 andB = B1∪B2. In particular (inverting rule{SREC}) we have
Θ ⊢ P ◮ R ′

1 ; N ; B1 whereR ′
1 ⊆ {s, y, s≺ y}. Moreover, by{QADDSESS} (and

Lemma 5.5) we have thatΘ ⊢ s : h ◮ R ′
2 ; /0 ; B2 such thatR2 = {s,s′,s≺ s′}⊎R ′

2.
By Lemma 5.6(2), we haveΘ ⊢ P{s′[p′]/y} ◮ R ′′

1 ; N ; B1 whereR ′′
1 ⊆ {s, s′, s≺

s′}. By applying rule{CONC} we obtain

Θ ⊢ P{s′[p′]/y} | s : h ◮ R
′′
1 ⊎R

′
2 ; N ; B1∪B2.

Lastly it is easy to see that this statement is coherent and thatR ′′
1 ⊎R

′
2 ⊆ R.

- [Branch]. By hypothesis,Θ ⊢ s[p j]&(q,{l i : Pi}i∈I) | s : (q,Π, l i0) ·h ◮ R ; N ; B.
By inverting the rules we have
—Θ ⊢ Pi ◮ Ri ; Ni ; Bi ∀i ∈ I
—Θ ⊢ s : (q,Π, l i0) ·h ◮ R ′ ; /0 ; B′

—R = pre(s,
⊎

i∈I Ri)⊎R ′, N =
⋃

i∈I Ni , B =
⋃

i∈I Bi ∪B′.
By applying rule{CONC} to the reduced process we obtain

Θ ⊢ Pi0 | s : (q,Π\ j, l i0) ·h ◮ Ri0 ⊎R
′ ; Ni0 ; Bi0 ∪B

′

and the result follows easily.

- [If-T, If-F]. Straightforward.

- [Def]. Let’s assumeΘ ⊢ def X(x,y) = P in (X〈e,s[p]〉 | Q) ◮ R ; N ; B. Note that by
rule ⌊DEF⌋ y is the only free channel which can occurP. By inspecting the inference
rule, as before, we must have:
(a) Θ′ = Θ,X[y] ◮ R ′ ; N ′ ; B′;
(b) Θ′ ⊢ P ◮ R ′ ; N ′ ; B′;
(c) Θ′ ⊢ X〈e,s[p]〉 ◮ R ′{s/y} ; N ′ ; B′∪̄{e};
(d) Θ′ ⊢ Q ◮ R ′′ ; N ′′ ; B′′;
whereR = R ′{s/y}⊎R ′′,N = N ′∪N ′′,B = B′∪̄{e}∪B′′.
By Lemma 5.6 we haveΘ′ ⊢ P{v/x}{s[p]/y} ◮ R{s/y} ; N ; B′∪̄{v} and then by
rule{CONC} Θ′ ⊢ (P{v/x}{s[p]/y} | Q) ◮ R ; N ; B sincee↓ v impliesB′∪̄{e}=
B′∪̄{v}. By rule{DEF} we concludeΘ ⊢ def X(x,y) = P in (P{v/x}{s[p]/y} | Q) ◮

R ; N ; B.

- [Scop, Pat, Defin, Str]. For the congruence rules the thesisfollows from the induction
hypothesis.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Global Progress in Dynamically Interleaved Multiparty Sessions · 21

LEMMA 5.9. If Γ ⊢Σ P⊲ ∆ andΘ ⊢ P ◮ R ; N ; B, then:
(1) s[p] : T ∈ ∆ and T 6= end imply s∈ R;

(2) s∈ R implies∆(s[p]) 6= end for somep.
PROOF. Standard by induction onP.

LEMMA 5.10. If Θ ⊢ P ◮ R ; N ; B and a 6∈ R ∪N and P≡ ā[n](y).P′ or P ≡
a[p](y).P′, then no channel with role occurs inR.

PROOF. The last applied rule must be{MCASTB} or {MACCB} and then we must
haveΘ ⊢ P′ ◮ R ′ ; N ; B andR = R ′ \\y. Note that the conditioncf(R ′ \\y) prevents
channels with roles to occur inR ′.

In the following definition we useC[] to denote a context with a hole defined in the
standard way.

Definition 5.11Precedence. (1) The channelc precedes c′ in the processP if one of
the following condition holds:
—P = C[c?(q,x);Q] andc′ occurs inQ;
—P = C[c!〈〈p,c′〉〉;Q];
—P = C[c?((q,y));Q] andc′ occurs inQ;
—P = C[c&(q,{l i : Pi}i∈I)] andc′ occurs inPi for somei ∈ I ;
—P = C[s : h · (q,p,s′[p′]) ·h′] andc = s[p] andc′ = s′[p′].

(2) The channelc weakly precedes c′ in the processP if eitherc precedesc′ in P or one of
the following condition holds:
—P = C[c!〈Π,e〉;Q] andc′ occurs inQ;
—P = C[c!〈〈p,c0〉〉;Q] andc′ occurs inQ.

LEMMA 5.12. If Θ ⊢ P ◮ R ; N ; B and s[p] precedes s′[p′] in P and s6= s′, then
s≺ s′ ∈ R.

PROOF. By induction onP.

LEMMA 5.13. Let P be initial and P−→∗ P′.
(1) If s[p] weakly precedes s′[q] in P′, then either s6= s′ or p = q;

(2) If P ≡ P′ | s : h′ · (q,p,s′[p′]) ·h then s′ 6= s.
PROOF. We show both points simultaneously by induction on−→∗. In an initialP there

are no channels with roles. As for the induction step we discuss the more interesting cases.
- Rule [Link] creates a new channel with a unique distinguished role for each parallel
process. Both 1. and 2. follow trivially by the induction hypothesis.
- When the reduction step is obtained by rule [Srec] we must have s : (q,p,s′[p′]) ·h. By
induction hypothesis we must haves 6= s′. By Theorem 5.8 we can derive a channel relation
for the left hand side of the reduction rule [Srec] using the interaction typing rule{SREC}.
Therefores[p] ands′[p′] are the only channels with role inP{s′[p′]/y} and point 1. follows
immediately.
- When the reduction step is obtained by rule [Deleg] note that the session delegation
command must have been typed by rule⌊DELEG⌋. For this reason we gets[p] 6= s′[p′].
Sinces[p] precedess′[p′] in the session delegation command, then by inductions = s′

impliesp = p′. We then concludes 6= s′.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · L. Bettini et al.

Definition 5.14. Define∝ between processes, message queues and local types, as fol-
lows:

c!〈Π,e〉;P ∝ !〈Π,S〉;T c?(q,x);P ∝?(q,S);T
c!〈〈p′,c′〉〉;P ∝ !〈Π,T〉;T c?((q,y));P ∝?(q,T);T

c⊕〈Π, l i〉;P ∝ ⊕〈Π,{l i : Ti}i∈I 〉 c&(q,{l i : Pi}i∈I) ∝ &(p,{l i : Ti}i∈I)
(q,Π,v) ·h ∝ !〈Π,S〉;T (q,p′,s[p]) ·h ∝ !〈Π,T〉;T

(q,Π, l) ·h ∝ ⊕〈Π,{l i : Ti}i∈I 〉 X〈e,c〉 ∝ T
wherei ∈ I .

Definition 5.15. A processP is readyin a processQ if one of the following conditions
holds:
—Q≡ P;

—Q≡ P | R for someR;

—Q≡ (νa)R andP is ready inR, for someR, a;

—Q≡ (νs)R andP is ready inR, for someR, s;

—Q≡ def D in RandP is ready inR, for someR, D.

Definition 5.16. —An input processis a value sending, session delegation or label
selection.

—An output processis a value reception, session reception or label branching.

—The identifieru is thesubjectof ū[n](y).P andu[p](y).P.

—The channelc is the subjectof c!〈Π,e〉;P, c?(q,x);P, c!〈〈p′,c′〉〉;P, c?((q,y));P, c⊕
〈Π, l〉;P andc&(q,{l i : Pi}i∈I).

—An outputtype is a type of the shape !〈Π,U〉;T, ⊕〈Π,{l i : Ti}i∈I 〉, or⊕〈Π, l〉;T.

—An input type is a type of the shape ?(Π,U);T, or &(p,{l i : Ti}i∈I).

LEMMA 5.17. Assume that
—Θ ⊢ P ◮ R ; N ; B;

—R contains service names which are not bigger than channels with roles and less than
at least one channel with role;

—no ready process in P is an output or a conditional or a process call or a session initial-
isation on a variable.

Then P contains one ready session initialisation on a free service name which belongs to
R∪N .

PROOF. If P is a session initialisation on a free service name which belongs toR ∪N

there is nothing to prove. Otherwise the proof is by induction onP.
P cannot be a session initialisation on a free session name which does not belong to

R∪N , since otherwiseR could not contain channels with roles by Lemma 5.10.
P cannot be an input process since otherwise by Lemma 5.12 a channel with role would

be less than all channels with roles which occur inR.
If P≡P1 |P2, thenR = R1⊎R2 andΘ ⊢P1 ◮ R1 ; N1 ; B1 andΘ ⊢P2 ◮ R2 ; N2 ; B2

for someR1,R2, since the last applied rule for derivingΘ ⊢ P ◮ R ; N ; B must be
{CONC}. Note that at least one betweenR1 andR2 must contain session names which are
not bigger than channels with roles and less than at least onechannel with role. Therefore
by induction eitherP1 or P2 contains a ready session initialisation on a free service name
which belongs toR∪N .

ACM Journal Name, Vol. V, No. N, Month 20YY.

Global Progress in Dynamically Interleaved Multiparty Sessions · 23

If P ≡ def X(x,y) = P′ in Q, thenΘ,X[y] ◮ R ′ ; N ′ ; B′ ⊢ Q ◮ R ; N ; B since
the last applied rule for derivingΘ ⊢ P′ ◮ R ′ ; N ′ ; B′ must be{DEF}. Therefore by
inductionQ contains a ready session initialisation on a free service name which belongs to
R∪N .

If P≡ (νa)P′, thenΘ ⊢ P′ ◮ R ; N ; B′ whereB′ = B \a anda 6∈ R ∪N , since
the last applied rule for derivingΘ ⊢ (νa)P ◮ R ; N ; B must be{NRES}. Therefore by
inductionP′ contains a ready session initialisation on a free service name which belongs
to R ∪N .

LEMMA 5.18. Assume that
—Γ ⊢Σ P⊲ ∆;

—Θ ⊢ P ◮ R ; N ; B is proved without using rule{SRES};

—s is minimal inR;

—no s[p] precedes s[q] with p 6= q in P;

—no ready process in P is an output, a conditional, a process call, a session initialisation
on a free channel or on a variable.

Then:
(1) if ∆(s[p]) is an input type then P contains a ready input process Q with subject s[p]

such that Q∝ ∆(s[p]);

(2) if ∆(s[p]) is an output type then P contains the queue s: h and h∝ ∆(s[p]).
PROOF. The proof of both points is by induction onP. Note thatP cannot be a session

initialisation on a bound channel, i.e. we cannot haveP ≡ (νa)Q whereQ is a session
initialisation on the channela, since in that case the channel relation forQ should contain
a≺ sand this is impossible by Lemma 5.10.

(1). If P is an input process, then by Lemmas 5.12 and 5.13 the subject of P must bes[p]:
obviouslyP is ready. Note thatP is a user process and thenΓ ⊢ P⊲ ∆ by Lemma A.2(1).
We getP ∝ ∆(s[p]) by Lemma A.1(8), (10) and (A.1).

If P≡ P1 | P2, then by Lemma A.2(6)Σ = Σ1∪Σ2 and∆ = ∆1∗∆2 andΓ ⊢Σ1 P1⊲∆1 and
Γ⊢Σ2 P2⊲∆2. Since an input type is never a message type we have either∆(s[p]) = ∆1(s[p])
or ∆(s[p]) = ∆2(s[p]). Assume∆(s[p]) = ∆1(s[p]). Moreover, since the last applied rule
must be{CONC}, Θ ⊢ P1 ◮ R1 ; N1 ; B1 andΘ ⊢ P2 ◮ R2 ; N2 ; B2 andR=R1⊎R2.
Note that by Lemma 5.9R1 containss. Moreovers is minimal in R1 sinceR1 ⊆ R.
Therefore by inductionP1 contains a ready input processQ with subjects[p] such that
Q ∝ ∆(s[p]).

If P ≡ def X(x,y) = P′ in Q, then by Lemma A.2(9)Γ,X : S T,x : S⊢ P⊲ y : T and
Γ,X : S T⊢Σ Q⊲ ∆. MoreoverΘ,X[y] ◮ R ′;N ′;B′ ⊢ Q ◮ R ; N ; B, since the last
applied rule for derivingΘ ⊢ P′ ◮ R ′ ; N ′ ; B′ must be{DEF}. Therefore by induction
Q contains a ready input processQ with subjects[p] such thatQ ∝ ∆(s[p]).

If P≡ (νa)P′, then by Lemma A.2(8)Γ,a : 〈G〉 ⊢Σ P′ ⊲ ∆. Moreover, since the last ap-
plied rule for derivingΘ ⊢ (νa)P′ ◮ R ; N ; B must be{NRES}, Θ ⊢ P′ ◮ R ; N ; B′

whereB = B′ \ a and a 6∈ R ∪N . Therefore by inductionP′ contains a ready input
processQ with subjects[p] such thatQ ∝ ∆(s[p]).

(2). If P is a queue, then it must be the queues and the result follows from Lemma A.3.
If P ≡ P1 | P2, then by Lemma A.2(6)Σ = Σ1∪Σ2 and∆ = ∆1 ∗∆2 andΓ ⊢Σ1 P1 ⊲ ∆1

andΓ ⊢Σ2 P2 ⊲ ∆2. We consider the case∆(s[p]) = ∆1(s[p]);∆2(s[p]), the other cases being

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · L. Bettini et al.

similar or simpler. As in the proof of (1) we getR = R1⊎R2 andΘ ⊢P1 ◮ R1 ; N1 ; B1.
Note that by Lemma 5.9(1)R1 contains. Therefore by inductionP1 contains the queues:h
andh ∝ ∆(s[p]).

If P≡ def P1 in P2 or P≡ (νa)P′, the proof proceeds as in the case of (1).

Proof of Theorem 5.3 [Progress].
Let P0 be initial andP0 −→

∗ P.
If P does not contain channels with roles there is nothing to prove.
If a ready sub-process ofP is an output process, thenP is reducible.
If a ready process inP is a conditional, thenP would reduce, sinceP is closed (beingP0

closed) and any closed boolean value is eithertrue or false. Similarly if a ready process of
P is a process call it can be reduced.

No ready process inP is an accept/request on a variable sinceP is closed.
If one ready process inP is an accept/request on a free channela, thena must be in the

domain of the standard environmentΓ used to typeP0 andP. Even if in P there are not
enough partners to apply rule [Link], usingΓ(a) we can build a processQ containing the
missing partners which are necessary in order to apply it toP | Q.

Otherwise letP≡ (ν s̃)Q, where ˜s is the set of all session names which occur inP. By the
Type Preservation Theorems A.6 and 5.8P is well typed both in the communication and in
the interaction type systems. This implies⊢ Q ◮ R ; N ; B for someR, N , B. Let ∆
be the session environment ofQ. Note that by construction we do not use rule{SRES} for
derivingR. All minimals in R cannot be service names names since otherwiseP would
contain one ready initialisation on a free service name by Lemma 5.17. So there must be
a session names which is minimal. By Lemma 5.9(2) and the coherence of∆ there must
bep, q such that∆(s[p]) = T, ∆(s[q]) = T ′ andT ↾ q ⊲⊳ T ′ ↾ p. Without loss of generality
we can assume thatT is an input type andT ′ is an output type. Then Lemma 5.18 implies
thatQ contains a ready input processR such thatR ∝ T and the queues : h with h ∝ T ′.
ThereforeP reduces by rule [Recv].

6. CONCLUSIONS AND RELATED WORK

The programming framework presented in this paper relies onthe concept of global types
that can be seen as the language to describe the model of the distributed communications,
i.e., an abstract high-level view of the protocol that all the participants will have to respect
in order to communicate in a multiparty communication. The programmer will then write
the program to implement this communication protocol; the system will use the global
types (abstract model) and the program (implementation) togenerate a runtime represen-
tation of the program which consists of the input/output operations decorated with explicit
senders and receivers, according to the information provided in the global types. An alter-
native way could be that the programmer directly specifies the senders and the receivers
in the communication operations as our low-level processes; the system could then infer
the global types from the program. Our communication and interaction type systems will
work as before in order to check the correctness and the progress of the program. Thus
the programmer can choose between a top-down and a bottom-upstyle of programming,
while relying on the same properties checked and guaranteedby the system.

We are currently designing and implementing a modelling andspecification language

ACM Journal Name, Vol. V, No. N, Month 20YY.

Global Progress in Dynamically Interleaved Multiparty Sessions · 25

with multiparty session types [scribble] for the standardsof business and financial proto-
cols with our industry collaborators [UNIFI 2002; Web Services Choreography Working
Group]. This consists of three layers: the first layer is a global type which corresponds to
a signature of class models in UML; the second one is for conversation models where sig-
natures and variables for multiple conversations are integrated; and the third layer includes
extensions of the existing languages (such as Java [Hu et al.2008]) which implement con-
versation models. We are currently considering to extend this modelling framework with
our type discipline so that we can specify and ensure progress for executable conversations.

Multiparty sessions. The first papers on multiparty session types are [Bonelli andCom-
pagnoni 2008] and [Honda et al. 2008]. The work [Bonelli and Compagnoni 2008] uses
a distributed calculus where each channel connects a masterend-point and one or more
slave endpoints; instead of global types, they solely use (recursion-free) local types. In
type checking, local types are projected to binary sessions, so that type safety is ensured
using duality, but it loses sequencing information: hence progress in a session interleaved
with other sessions is not guaranteed.

The present calculus is an essential improvement from [Honda et al. 2008]; both pro-
cesses and types in [Honda et al. 2008] share a vector of channels and each communication
uses one of these channels, while our user processes and global types are simpler and user-
friendly without these channels. The global types in [Hondaet al. 2008] have a parallel
composition operator, but its projectability from global to local types limits to disjoint
senders and receivers; hence it does not increase expressivity.

The present calculus is more liberal than the calculus of [Honda et al. 2008] in the use
of declarations, since the definition and the call of recursive processes are obliged to use
the same channel variable in [Honda et al. 2008]. Similarly the delegation in [Honda et al.
2008] requires that the same channel is sent and received forensuring subject reduction,
as analysed in [Yoshida and Vasconcelos 2007]. Our calculussolves this issue by having
channels with roles, as in [Gay and Hole 2005] (see the example at page 17). As a conse-
quence some recursive processes, which are stuck in [Honda et al. 2008], are type-sound
and reducible in our calculus, satisfying the interaction type system.

Different approaches to the description of service-oriented multiparty communications
are taken in [Bravetti and Zavattaro 2007; Bruni et al. 2008]. In [Bravetti and Zavattaro
2007], the global and local views of protocols are describedin two different calculi and
the agreement between these views becomes a bisimulation between processes; [Bruni
et al. 2008] proposes a distributed calculus which providescommunications either inside
sessions or inside locations, modelling merging running sessions. The type-safety and
progress in interleaved sessions are left as an open problemin [Bruni et al. 2008].

Progress. The majority of papers on service-oriented calculi only assure that clients
are never stuck inside asinglesession, see [Acciai and Boreale 2008; Dezani-Ciancaglini
et al. 2008; Honda et al. 2008] for detailed discussions, including comparisons between the
session-based and the traditional behavioural type systems of mobile processes, e.g. [Yoshida
1996; Kobayashi 2006]. We only say here that our interactiontype system is inspired by
deadlock-free typing systems [Kobayashi 1998; 2006; Yoshida 1996]. In [Acciai and Bore-
ale 2008; Dezani-Ciancaglini et al. 2008; Honda et al. 2008], structured session primitives
help to give simpler typing systems for progress.

The first papers considering progress for interleaved sessions required the nesting of
sessions in Java [Dezani-Ciancaglini et al. 2006; Coppo et al. 2007] and SOC [Acciai and

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · L. Bettini et al.

Boreale 2008; Lanese et al. 2007; Bruni and Mezzina 2008]. The present approach signifi-
cantly improves the binary session system for progress in [Dezani-Ciancaglini et al. 2008]
by treating the following points:
(1) asynchrony of the communication with queues, which enhances progress;
(2) a general mechanism of process recursion instead of the limited permanent accepts;
(3) a more liberal treatment of the channels which can be sent; and
(4) the standard semantics for the reception of channels with roles, which permits to get
rid of process sequencing.
None of the previous work had treated progress across interfered, dynamically interleaved
multiparty sessions.

Acknowledgements. We thank Kohei Honda and the Concur reviewers for their com-
ments on an early version of this paper and Gary Brown for his collaboration on an imple-
mentation of multiparty session types.

REFERENCES

ACCIAI , L. AND BOREALE, M. 2008. A Type System for Client Progress in a Service-Oriented Calculus. In
Concurrency, Graphs and Models. LNCS, vol. 5065. Springer, 642–658.

BONELLI , E. AND COMPAGNONI, A. 2008. Multipoint Session Types for a Distributed Calculus. InTGC’07.
LNCS, vol. 4912. Springer, 240–256.

BRAVETTI , M. AND ZAVATTARO , G. 2007. Towards a Unifying Theory for Choreography Conformance and
Contract Compliance. InSoftware Composition. LNCS, vol. 4829. Springer, 34–50.

BRUNI, R., LANESE, I., MELGRATTI, H., AND TUOSTO, E. 2008. Multiparty Sessions in SOC. InCOORDI-
NATION’08. LNCS, vol. 5052. Springer, 67–82.

BRUNI, R. AND MEZZINA , L. G. 2008. A Deadlock Free Type System for a Calculus of Services and Sessions.
http://www.di.unipi.it/ bruni/publications/ListOfDrafts.html.

COPPO, M., DEZANI -CIANCAGLINI , M., AND YOSHIDA, N. 2007. Asynchronous Session Types and Progress
for Object-Oriented Languages. InFMOODS’07. LNCS, vol. 4468. Springer, 1–31.

DEZANI -CIANCAGLINI , M., DE’ L IGUORO, U., AND YOSHIDA, N. 2008. On Progress for Structured Com-
munications. InTGC’07. LNCS, vol. 4912. Springer, 257–275.

DEZANI -CIANCAGLINI , M., MOSTROUS, D., YOSHIDA, N., AND DROSSOPOULOU, S. 2006. Session Types
for Object-Oriented Languages. InECOOP’06. LNCS, vol. 4067. Springer, 328–352.

GAY, S. AND HOLE, M. 2005. Subtyping for Session Types in the Pi-Calculus.Acta Informatica 42,2/3,
191–225.

HONDA, K. 1993. Types for Dyadic Interaction. InCONCUR’93. LNCS, vol. 715. Springer, 509–523.

HONDA, K., VASCONCELOS, V. T., AND KUBO, M. 1998. Language Primitives and Type Disciplines for
Structured Communication-based Programming. InESOP’98. LNCS, vol. 1381. Springer, 22–138.

HONDA, K., YOSHIDA, N., AND CARBONE, M. 2008. Multiparty Asynchronous Session Types. InPOPL’08.
ACM, 273–284.

HU, R., YOSHIDA, N., AND HONDA, K. 2008. Session-Based Distributed Programming in Java. In ECOOP’08.
LNCS. Springer. To appear.

KOBAYASHI , N. 1998. A Partially Deadlock-Free Typed Process Calculus. ACM TOPLAS 20,2, 436–482.

KOBAYASHI , N. 2006. A New Type System for Deadlock-Free Processes. InCONCUR’06. LNCS, vol. 4137.
Springer, 233–247.

LANESE, I., VASCONCELOS, V. T., MARTINS, F., AND RAVARA , A. 2007. Disciplining Orchestration and
Conversation in Service-Oriented Computing. InSEFM’07. IEEE Computer Society Press, 305–314.

M ILNER, R. 1999.Communicating and Mobile Systems: theπ-Calculus. CUP.

PIERCE, B. C. 2002.Types and Programming Languages. MIT Press.

scribble. Scribble Project.www.scribble.org.

UNIFI. 2002. International Organization for Standardization ISO 20022 UNIversal Financial Industry message
scheme.http://www.iso20022.org.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Global Progress in Dynamically Interleaved Multiparty Sessions · 27

WEB SERVICES CHOREOGRAPHYWORKING GROUP. Web Services Choreography Description Language.
http://www.w3.org/2002/ws/chor/.

YOSHIDA, N. 1996. Graph Types for Monadic Mobile Processes. InFSTTCS’96. LNCS, vol. 1180. Springer,
371–386.

YOSHIDA, N. AND VASCONCELOS, V. T. 2007. Language Primitives and Type Disciplines for Structured
Communication-based Programming Revisited. InSecRet’06. ENTCS, vol. 171. Elsevier, 73–93.

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · L. Bettini et al.

A. PROOFS

A.1 Proof of Subject Reduction for the Communication Type System

LEMMA A.1 INVERSION LEMMA FOR PURE PROCESSES. (1) If Γ ⊢ u : S, then u:
S∈ Γ.

(2) If Γ ⊢ true : S, then S= bool.

(3) If Γ ⊢ false : S, then S= bool.

(4) If Γ ⊢ e1 and e2 : S, thenΓ ⊢ e1,e2 : bool,S= bool.

(5) If Γ ⊢ ā[n](y).P⊲ ∆, thenΓ ⊢ a : 〈G〉 andΓ ⊢ P⊲ ∆,y : G ↾ 1 andpn(G) ≤ n.

(6) If Γ ⊢ a[p](y).P⊲ ∆, thenΓ ⊢ a : 〈G〉 andΓ ⊢ P⊲ ∆,y : G ↾ p.

(7) If Γ ⊢ c!〈Π,e〉;P⊲ ∆, then∆ = ∆′,c : !〈Π,S〉;T andΓ ⊢ e : S andΓ ⊢ P⊲ ∆′,c : T.

(8) If Γ ⊢ c?(q,x);P⊲ ∆, then∆ = ∆′,c :?(q,S);T andΓ,x : S⊢ P⊲ ∆′,c : T.

(9) If Γ ⊢ c!〈〈p,c′〉〉;P⊲ ∆, then∆ = ∆′,c : !〈p,T ′〉;T,c′ : T ′ and
Γ ⊢ P⊲ ∆′,c : T.

(10) If Γ ⊢ c?((q,y));P⊲ ∆, then∆ = ∆′,c :?(q,T ′);T andΓ ⊢ P⊲ ∆′,c : T,y : T ′.

(11) If Γ ⊢ c⊕〈Π, l j〉;P⊲ ∆, then∆ = ∆′,c : ⊕〈Π,{l i : Ti}i∈I 〉 and Γ ⊢ P⊲ ∆′,c : Tj and
j ∈ I.

(12) If Γ⊢ c&(p,{l i : Pi}i∈I)⊲∆, then∆ = ∆′,c : &(p,{l i : Ti}i∈I) andΓ⊢Pi ⊲∆′,c : Ti ∀i ∈
I.

(13) If Γ ⊢ P | Q⊲ ∆, then∆ = ∆′ ∪∆′′ and Γ ⊢ P⊲ ∆′ and Γ ⊢ Q⊲ ∆′′ where dom(∆′)∩
dom(∆′′) = /0.

(14) If Γ ⊢ if e then P else Q⊲ ∆, thenΓ ⊢ e : bool andΓ ⊢ P⊲ ∆ andΓ ⊢ Q⊲ ∆.

(15) If Γ ⊢ 0 ⊲ ∆, then∆ end only.

(16) If Γ ⊢ (νa)P⊲ ∆, thenΓ,a : 〈G〉 ⊢ P⊲ ∆.

(17) If Γ,X : S T⊢ X〈e,c〉⊲ ∆, then∆ = ∆′,c : T andΓ ⊢ e : S and∆′ end only.

(18) If Γ ⊢ def X(x,y) = P in Q⊲∆, thenΓ,X : S T,x : S⊢ P⊲{y : T} andΓ,X : S T⊢ Q⊲∆.

LEMMA A.2 INVERSION LEMMA FOR PROCESSES. (1) If Γ ⊢Σ P⊲∆ and P is a pure
process, thenΣ = /0 andΓ ⊢ P⊲ ∆.

(2) If Γ ⊢{s} s : �⊲ ∆, then∆ = end only.

(3) If Γ⊢{s} s: h·(q,Π,v)⊲∆, then∆ = ∆′;{s[q] : !〈Π,S〉} andΓ⊢{s} s: h⊲∆′ andΓ⊢ v : S.

(4) If Γ ⊢{s} s : h · (q,p,s′[p′]) ⊲ ∆, then∆ = ∆′;{s[q] : !〈p,T ′〉} and Γ ⊢{s} s : h⊲ ∆′ and
s′[p′] : T ′ ∈ ∆.

(5) If Γ ⊢{s} s : h · (q,Π, l)⊲ ∆, then∆ = ∆′;{s[q] : ⊕〈Π, l〉} andΓ ⊢{s} s : h⊲ ∆′.

(6) If Γ ⊢Σ P | Q⊲∆, thenΣ = Σ1∪Σ2 and∆ = ∆1∗∆2 andΓ ⊢Σ1 P⊲∆1 andΓ ⊢Σ2 Q⊲∆2.

(7) If Γ ⊢Σ (νs)P⊲ ∆, thenΣ = Σ′ \ s and∆ = ∆′ \ s andco(∆′,s) andΓ ⊢Σ′ P⊲ ∆′.

(8) If Γ ⊢Σ (νa)P⊲ ∆, thenΓ,a : 〈G〉 ⊢Σ P⊲ ∆.

(9) If Γ ⊢Σ def X(x,y) = P in Q⊲∆, thenΓ,X : S T,x : S⊢ P⊲y : T andΓ,X : S T⊢Σ Q⊲∆.

LEMMA A.3. (1) If Γ ⊢{s} s : (q,Π,v) ·h⊲ ∆, then∆ = {s[q] : !〈Π,S〉} ∗∆′ andΓ ⊢{s}
s : h⊲ ∆′ andΓ ⊢ v : S.

(2) If Γ ⊢{s} s : (q,p,s′[p′]) ·h⊲ ∆, then∆ = {s[q] : !〈p,T ′〉} ∗∆′ andΓ ⊢{s} s : h⊲ ∆′ and
s′[p′] : T ′ ∈ ∆.

(3) If Γ ⊢{s} s : (q,Π, l) ·h⊲ ∆, then∆ = {s[q] : ⊕〈Π, l〉} ∗∆′ andΓ ⊢{s} s : h⊲ ∆′.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Global Progress in Dynamically Interleaved Multiparty Sessions · 29

THEOREM A.4 TYPE PRESERVATION UNDEREQUIVALENCE. If Γ ⊢Σ P⊲ ∆ and P≡
P′, thenΓ ⊢Σ P′ ⊲ ∆.

PROOF. By induction on≡. We only consider some interesting cases.

- [P | 0 ≡ P]. First we assumeΓ ⊢Σ P⊲ ∆. By Γ ⊢ /0 0 ⊲ /0 and by applying⌊GPAR⌋ to
these two sequents we obtainΓ ⊢Σ P|0 ⊲ ∆.
For the converse direction assumeΓ ⊢Σ P|0⊲∆. Using A.2(6) we obtain:Γ ⊢Σ′ P⊲∆1,
Γ ⊢Σ′′ 0 ⊲ ∆2 where∆ = ∆1 ∗∆2, Σ = Σ′ ∪Σ′′ andΣ′ ∩Σ′′ = /0. Using A.2(1) we get
Σ′′ = /0, which impliesΣ = Σ′, andΓ ⊢ 0 ⊲ ∆2. Using A.1(15) we get∆2 end only and
we concludeΓ ⊢Σ P⊲ ∆1∗∆2 by applying⌊QWEAK⌋.

- [P | Q ≡ Q | P]. By the symmetry of the rule we have only to show one direction.
SupposeΓ ⊢Σ P | Q⊲ ∆. Using A.2(6) we obtainΓ ⊢Σ′ P⊲ ∆1, Γ ⊢Σ′′ Q⊲ ∆2 where
∆ = ∆1∗∆2, Σ = Σ′∪Σ′′ andΣ′∩Σ′′ = /0. Using⌊GPAR⌋ we getΓ ⊢Σ Q | P⊲∆2∗∆1.
Thanks to the commutativity of∗, we get∆2∗∆1 = ∆ and so we are done.

- [P | (Q | R) ≡ (P | Q) | R]. SupposeΓ ⊢Σ P | (Q | R) ⊲ ∆. Using A.2(6) we obtain
Γ ⊢Σ′ P⊲ ∆1, Γ ⊢Σ′′ Q | R⊲ ∆2 where∆ = ∆1 ∗∆2, Σ = Σ′∪Σ′′ andΣ′∩Σ′′ = /0. Using
A.2(6) we obtainΓ ⊢Σ′′

1
Q⊲∆21, Γ ⊢Σ′′

2
R⊲∆22 where∆2 = ∆21∗∆22, Σ′′ = Σ′′

1∩Σ′′
2 and

Σ′′
1 ∪Σ′′

2 = /0. Using [GPar] we getΓ ⊢Σ′∪Σ′′
1

P | Q⊲ ∆1∗∆21. Using⌊GPAR⌋ again we
getΓ ⊢Σ (P | Q) | R⊲ ∆1 ∗∆21∗∆22 and so we are done by the associativity of∗. The
proof for the other direction is similar.

- [s : (q, /0,v) ·h≡ s : h]. Using A.3(1) we obtainΓ ⊢s (q, /0,v) ·h⊲ ∆, where∆ = {s[q] :
!〈 /0,S〉} ∗∆′ andΓ ⊢{s} s : h⊲ ∆′ andΓ ⊢ v : S. Using the equivalence relation on∆ we
get{s[q] : !〈 /0,S〉} ∗∆′ ≈ ∆′.

LEMMA A.5 SUBSTITUTION LEMMA . (1) If Γ,x : S⊢ P⊲ ∆ and Γ ⊢ v : S, thenΓ ⊢
P{v/x} ⊲ ∆.

(2) If Γ ⊢ P⊲ ∆,y : G ↾ p, thenΓ ⊢ P{s[p]/y} ⊲ ∆,s[p] : G ↾ p.

PROOF. Standard induction onP.

THEOREM A.6 TYPE PRESERVATION UNDERREDUCTION. If Γ ⊢Σ P⊲∆ and P−→∗

P′, thenΓ ⊢Σ P′ ⊲ ∆′ for some∆′ such that∆ ⇒ ∆′. Moreover∆ coherent implies∆′

coherent and∆ closed implies∆′ closed.

PROOF.

- Case [Link]

ā[n](y1).P1 | a[2](y2).P2 | . . . | a[n](yn).Pn −→ (νs)(P1{s[1]/y1}|...|Pn{s[n]/yn}|s : �).

AssumeΓ ⊢Σ ā[n](y1).P1 | a[2](y2).P2 | . . . | a[n](yn).Pn ⊲ ∆, thenΣ = /0 and

Γ ⊢ ā[n](y1).P1 | a[2](y2).P2 | . . . | a[n](yn).Pn ⊲ ∆

by Lemma A.2(1). Using Lemma A.1(13) more times we have

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · L. Bettini et al.

Γ ⊢ ā[n](y1).P1 ⊲ ∆1 (1)

Γ ⊢ a[i](yi).Pi ⊲ ∆i (2≤ i ≤ n) (2)

where∆ =
⋃n

i=1 ∆i . Using Lemma A.1(5) on (1) we have
Γ ⊢ a : 〈G〉

Γ ⊢ P1⊲ ∆1,y1 : G ↾ 1 (3)

and pn(G) ≤ n. Using Lemma A.1(6) on (2) we have
Γ ⊢ a : 〈G〉

Γ ⊢ Pi ⊲ ∆i,yi : G ↾ i (2≤ i ≤ n). (4)

Using Lemma A.5(2) on (3) and (4)
Γ ⊢{s} Pi{s[i]/yi} ⊲ ∆i,s[i] : G ↾ i (1≤ i ≤ n). (5)

Using⌊CONC⌋ more times on (5) we have

Γ ⊢ P1{s[1]/y1}|...|Pn{s[n]/yn} ⊲
n

⋃

i=1

(∆i ,s[i] : G ↾ i). (6)

Note that
n

⋃

i=1

(∆i ,s[i] : G ↾ i) = ∆,s[1] : G ↾ 1, . . . ,s[n] : G ↾ n

Using⌊GINIT⌋, ⌊QINIT⌋ and⌊GPAR⌋ on (6) we have
Γ ⊢{s} P1{s[1]/y1}|...|Pn{s[n]/yn} | s : �⊲ ∆,s[1] : G ↾ 1, . . . ,s[n] : G ↾ n. (7)

Using⌊QSCOPE⌋ on (7) we have
Γ ⊢ /0 (νs)(P1{s[1]/y1}|...|Pn{s[n]/yn} | s : �)⊲ ∆ (8)

since
(∆,s[1] : G ↾ 1, . . . ,s[n] : G ↾ n)\ s= ∆.

- Case [Send]

s[p]!〈Π,e〉;P | s : h−→ P | s : h · (p,Π,v) (e↓ v).

Assume
Γ ⊢Σ s[p]!〈Π,e〉;P | s : h⊲ ∆.

Using Lemma A.2(1) and A.2(6) we haveΣ = {s} and
Γ ⊢ s[p]!〈Π,e〉;P⊲ ∆1 (9)

Γ ⊢{s} s : h⊲ ∆2 (10)

where∆ = ∆2∗∆1. Using A.1(7) on (9) we have
∆1 = ∆′

1,s[p] : !〈Π,S〉;T

Γ ⊢ e : S (11)

Γ ⊢ P⊲ ∆′
1,s[p] : T. (12)

Using⌊QADDVAL ⌋ on (10) and (11) we have
Γ ⊢{s} s : h · (q,Π,v)⊲ ∆2;{s[p] : !〈Π,S〉}. (13)

Using⌊GINIT⌋ on (12) and then⌊GPAR⌋ on (12), (13) we get

ACM Journal Name, Vol. V, No. N, Month 20YY.

Global Progress in Dynamically Interleaved Multiparty Sessions · 31

Γ ⊢{s} P | s : h · (q,Π,v)⊲ (∆2;{s[p] : !〈Π,S〉})∗ (∆′
1,s[p] : T).

Note that
(∆2;{s[p] : !〈Π,S〉})∗ (∆′

1,s[p] : T) ⇒ ∆2 ∗ (∆′
1,s[p] : !〈Π,S〉;T).

- Case [Recv]

s[p j]?(q,x);P | s : (q,Π,v) ·h−→ P{v/x} | s : (q,Π\ j,v) ·h (j ∈ Π).

Assume
Γ ⊢Σ s[p j]?(q,x);P | s : (q,Π,v) ·h⊲ ∆.

By A.2(1) and A.2(6) we haveΣ = /0 and
Γ ⊢ s[p j]?(q,x);P⊲ ∆1 (14)

Γ ⊢{s} s : (q,Π,v) ·h⊲ ∆2 (15)

where
∆ = ∆2∗∆1.

Using Lemma A.1(8) on (14) we have
∆1 = ∆′

1,s[p j] :?(q,S);T

Γ,x : S⊢ P⊲ ∆′
1,s[p j] : T (16)

Thanks to Lemma A.5(1) from (16) we getΓ ⊢ P{v/x} ⊲ ∆′
1,s[p j] : T, which implies by

rule⌊GINIT⌋

Γ ⊢ /0 P{v/x} ⊲ ∆′
1,s[p j] : T. (17)

Using Lemma A.3(1) on (15) we have
∆2 = {s[q] : !〈Π,S〉} ∗∆′

2

Γ ⊢{s} s : h⊲ ∆′
2 (18)

Γ ⊢ v : S.

Applying rule⌊QADDVAL ⌋ on (18) we get
Γ ⊢{s} (q,Π\ j,v) ·h⊲ {s[q] : !〈Π\ j,S〉} ∗∆′

2 (19)

Using rule⌊GPAR⌋ on (17) and (19) we get
Γ ⊢{s} P{v/x} | (q,Π\ j,v) ·h⊲ ({s[q] : !〈Π\ j,S〉} ∗∆′

2)∗ (∆′
1,s[p j] : T).

Note that
({s[q] : !〈Π,S〉} ∗∆′

2)∗ (∆′
1,s[p j] :?(q,S);T) ⇒ ({s[q] : !〈Π\ j,S〉} ∗∆′

2)∗ (∆′
1,s[p j] : T).

- Case [Label]

s[p]⊕〈Π, l〉;P | s : h−→ P | s : h · (p,Π, l)

Assume
Γ ⊢Σ s[p]⊕〈Π, l〉;P | s : h⊲ ∆

Using Lemma A.2(1) and A.2(6) we haveΣ = {s} and

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · L. Bettini et al.

Γ ⊢ s[p]⊕〈Π, l〉;P⊲ ∆1 (20)

Γ ⊢{s} s : h⊲ ∆2 (21)

where
∆ = ∆2∗∆1

Using Lemma A.1(11) on (20) we have forl = l j (j ∈ I):
∆1 = ∆′

1,s[p] : ⊕〈Π,{l i : Ti}i∈I 〉

Γ ⊢ P⊲ ∆′
1,Tj . (22)

Using rule⌊QSEL⌋ on (21) we have
Γ ⊢{s} s : h · (p,Π, l)⊲ ∆2;{s[p] : ⊕〈Π, l〉}. (23)

Using⌊GPAR⌋ on (22) and (23) we have
Γ ⊢{s} P | s : h · (p,Π, l)⊲ (∆2;{s[p] : ⊕〈Π, l〉})∗ (∆′

1,s[p] : Tj).

Note that
∆2∗ (∆′

1,s[p] : ⊕〈Π,{l i : Ti}i∈I 〉) ⇒ (∆2;{s[p] : ⊕〈Π, l〉})∗ (∆′
1,s[p] : Tj).

- Case [Branch]

s[p j]&(q,{l i : Pi}i∈I) | s : (q,Π, l i0) ·h−→ Pi0 | s : (q,Π\ j, l i0) ·h (j ∈ Π) (i0 ∈ I)

Assume
Γ ⊢Σ s[p j]&(q,{l i : Pi}i∈I) | s : (q,Π, l i0) ·h⊲ ∆.

Using Lemma A.2(1) and A.2(6) we haveΣ = {s} and
Γ ⊢ s[p j]&(q,{l i : Pi}i∈I)⊲ ∆1 (24)

Γ ⊢{s} s : (q,Π, l i0) ·h⊲ ∆2 (25)

where
∆ = ∆2∗∆1 = ∆2∗∆1.

Using Lemma A.1(12) on (24) we have
∆1 = ∆′

1,s[p j] : &(q,{l i : Ti}i∈I)

Γ ⊢ Pi ⊲ ∆′
1,s[p j] : Ti ∀i ∈ I . (26)

Using Lemma A.3(3) on (25) we have
∆2 = {s[q] : ⊕(Π, l i′)} ∗∆′

2

Γ ⊢{s} s : h⊲ ∆′
2. (27)

Using⌊QSEL⌋ on (27) we get
Γ ⊢{s} s : (q,Π\ j, l i0) ·h⊲ {s[q] : ⊕(Π\ j, l i′)} ∗∆′

2. (28)

Using⌊GPAR⌋ on (26) and (28) we have
Γ ⊢{s} Pi0 | s : (q,Π\ j, l i0) ·h⊲ ({s[q] : ⊕(Π\ j, l i′)} ∗∆′

2)∗ (∆′
1,s[p j] : Ti0).

Note that
({s[q] : ⊕(Π, l i′)} ∗∆′

2)∗ (∆′
1,s[p j] : &(q,{l i : Ti}i∈I)) ⇒

({s[q] : ⊕(Π\ j, l i′)} ∗∆′
2)∗ (∆′

1,s[p j] : Ti0).

ACM Journal Name, Vol. V, No. N, Month 20YY.

