Semantics and Verification 2007

Lecture 7

- bisimulation as a fixed point
- Hennessy-Milner logic with recursively defined variables
- game semantics and temporal properties of reactive systems
- characteristic property

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Summary of Tarski's Fixed Point Theorem Recalling the Definition of Strong Bisimulation Fixed Point Definition of Strong Bisimilarity

Tarski's Fixed Point Theorem – Summary

Let (D, \sqsubseteq) be a complete lattice and let $f : D \rightarrow D$ be a monotonic function.

Tarski's Fixed Point Theorem

Then f has a unique largest fixed point z_{max} and a unique least fixed point z_{min} given by:

$$z_{max} \stackrel{\text{def}}{=} \sqcup \{ x \in D \mid x \sqsubseteq f(x) \}$$
$$z_{min} \stackrel{\text{def}}{=} \sqcap \{ x \in D \mid f(x) \sqsubseteq x \}$$

If D is a finite set then there exist integers M, m > 0 such that

•
$$z_{max} = f^M(\top)$$

•
$$z_{min} = f^m(\perp)$$

Summary of Tarski's Fixed Point Theorem Recalling the Definition of Strong Bisimulation Fixed Point Definition of Strong Bisimilarity

Definition of Strong Bisimulation

Let
$$(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$$
 be an LTS.

Strong Bisimulation

A binary relation $R \subseteq Proc \times Proc$ is a strong bisimulation iff whenever $(s, t) \in R$ then for each $a \in Act$:

• if
$$s \stackrel{a}{\longrightarrow} s'$$
 then $t \stackrel{a}{\longrightarrow} t'$ for some t' such that $(s',t') \in R$

• if
$$t \stackrel{a}{\longrightarrow} t'$$
 then $s \stackrel{a}{\longrightarrow} s'$ for some s' such that $(s', t') \in R$.

Two processes $p, q \in Proc$ are strongly bisimilar $(p \sim q)$ iff there exists a strong bisimulation R such that $(p, q) \in R$.

$$\sim = \bigcup \{ R \mid R \text{ is a strong bisimulation} \}$$

・ロト ・日本 ・モート ・モート

Summary of Tarski's Fixed Point Theorem Recalling the Definition of Strong Bisimulation Fixed Point Definition of Strong Bisimilarity

Strong Bisimulation as a Greatest Fixed Point

Function $\mathcal{F}: 2^{(Proc \times Proc)} \rightarrow 2^{(Proc \times Proc)}$

Let $S \subseteq Proc \times Proc$. Then we define $\mathcal{F}(S)$ as follows:

 $(s,t) \in \mathcal{F}(S)$ if and only if for each $a \in Act$:

- if $s \stackrel{a}{\longrightarrow} s'$ then $t \stackrel{a}{\longrightarrow} t'$ for some t' such that $(s', t') \in S$
- if $t \xrightarrow{a} t'$ then $s \xrightarrow{a} s'$ for some s' such that $(s', t') \in S$.

Observations

- $(2^{(Proc \times Proc)}, \subseteq)$ is a complete lattice and \mathcal{F} is monotonic
- S is a strong bisimulation if and only if $S \subseteq \mathcal{F}(S)$

Strong Bisimilarity is the Greatest Fixed Point of ${\cal F}$

$$\sim = \bigcup \{ S \in 2^{(\mathit{Proc} \times \mathit{Proc})} \mid S \subseteq \mathcal{F}(S) \}$$

Summary of Tarski's Fixed Point Theorem Recalling the Definition of Strong Bisimulation Fixed Point Definition of Strong Bisimilarity

Strong Bisimulation as a Greatest Fixed Point

Function $\mathcal{F}: 2^{(Proc \times Proc)} \rightarrow 2^{(Proc \times Proc)}$

Let $S \subseteq Proc \times Proc$. Then we define $\mathcal{F}(S)$ as follows:

 $(s,t) \in \mathcal{F}(S)$ if and only if for each $a \in Act$:

- if $s \stackrel{a}{\longrightarrow} s'$ then $t \stackrel{a}{\longrightarrow} t'$ for some t' such that $(s', t') \in S$
- if $t \xrightarrow{a} t'$ then $s \xrightarrow{a} s'$ for some s' such that $(s', t') \in S$.

Observations

- $(2^{(Proc imes Proc)}, \subseteq)$ is a complete lattice and \mathcal{F} is monotonic
- S is a strong bisimulation if and only if $S \subseteq \mathcal{F}(S)$

Strong Bisimilarity is the Greatest Fixed Point of ${\cal F}$

$$\sim = \bigcup \{ S \in 2^{(Proc \times Proc)} \mid S \subseteq \mathcal{F}(S) \}$$

Summary of Tarski's Fixed Point Theorem Recalling the Definition of Strong Bisimulation Fixed Point Definition of Strong Bisimilarity

Strong Bisimulation as a Greatest Fixed Point

Function $\mathcal{F}: 2^{(Proc \times Proc)} \rightarrow 2^{(Proc \times Proc)}$

Let $S \subseteq Proc \times Proc$. Then we define $\mathcal{F}(S)$ as follows:

 $(s,t) \in \mathcal{F}(S)$ if and only if for each $a \in Act$:

- if $s \stackrel{a}{\longrightarrow} s'$ then $t \stackrel{a}{\longrightarrow} t'$ for some t' such that $(s', t') \in S$
- if $t \xrightarrow{a} t'$ then $s \xrightarrow{a} s'$ for some s' such that $(s', t') \in S$.

Observations

- $(2^{(Proc \times Proc)}, \subseteq)$ is a complete lattice and \mathcal{F} is monotonic
- S is a strong bisimulation if and only if $S \subseteq \mathcal{F}(S)$

Strong Bisimilarity is the Greatest Fixed Point of ${\cal F}$

$$\sim = \bigcup \{ S \in 2^{(Proc \times Proc)} \mid S \subseteq \mathcal{F}(S) \}$$